
MaxSAT
Current Solution Techniques

Fahiem Bacchus
University of Toronto

MaxSat

} MaxSat is a formalism for expressing Boolean optimization
problems expressed in CNF.
} Hard clauses: must be satisfied
} Soft clauses each with a weight, falsifying these incurs a cost

equal to their weight.
} MaxSat: find a truth assignment that satisfies all of the

hard clauses while falsifying a minimum weight of soft
clauses. (Equivalently satisfying a maximum weight of soft
clauses).

} MaxSat solvers are effective in a growing range of
applications.

2

MaxSat Applications
probabilistic inference [Park, 2002]

design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]
[Chen, Safarpour, Marques-Silva, and Veneris, 2010]

maximum quartet consistency [Morgado and Marques-Silva, 2010]

software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]
[Ignatiev, Janota, and Marques-Silva, 2014]

Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]

fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]

restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]

MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]

optimal covering arrays [Ansótegui,Izquierdo,Manỳ a,andTorres-Jiménez,2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]

treewidth computation [Berg and Järvisalo, 2014]

Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Ja ̈rvisalo, 2014]

visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]

cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Ja ̈rvisalo, 2016]

3

Annual MaxSat Evaluations
} Each year we receive new maxsat benchmarks in which

maxsat is being used to solve new problems.
} Not surprising as many problems involve optimization.

} The improvement in performance in MaxSat solvers has
been impressive.

4

Improvements in MaxSat Solving
WEIGHTED (2008-2016)

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Improvements in MaxSat Solving
UNWEIGHTED (2008-2016)

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Problem Sizes
} Largest problems solved in 2017 MaxSat Evaluation,

>6,000,000 variables and > 13,000,000 clauses (solved
by MaxHS in < 800 sec.)

} MaxSat is considerably harder than SAT, SAT solvers can
solve bigger problems

7

Outline

} Formalizing the MaxSat problem and some necessary
notation.

} Solvers that use SAT to solve a sequence of
relaxations.

} Implicit hitting set solvers that exploit both SAT and
Integer Programming technology.

8

Necessary Formal Notions

9

MaxSat

} A MaxSat instance F is a CNF where the clauses are
partitioned into HARD clauses and SOFT clauses:
F = H U S

} Associated with each soft clause c ∈ S is a integer
weight wt(c) > 0.
} Some solvers can handle floating point weights.

} For any set of soft clauses A ⊆ S, wt(A) is the sum
of the weights of the clauses in A.

wt A = '
(∈)

*+(-)

10

MaxSat

} A truth assignment ! that satisfies H is called a feasible
solution: ! ⊧ H

} Cost of a feasible solution ! is the weight of the set of
soft clauses it falsifies.

#$%& ! = ∑)⊭+ ,&(#)
} A feasible solution is an optimal solution if it has

minimum cost amongst all feasible solutions
∀0. 0 ⊨ 3 ⟶ #$%&(0) ≥ cost(:)

} Solving a MaxSat instance F means finding an optimal
solution.

11

Cores

} A set of soft clauses ! ⊆ S is a core of F if

! ∪ hard(F) is UNSAT

} Note that in SAT a core is a subset of clauses that
are UNSAT. In MaxSat we always have to satisfy the
hard clauses, so more useful to define cores
relative to the hard clauses.

12

Cores via Assumptions
} The current best performing algorithms for MaxSat need to

extract cores.
} Currently most accessible way to do this is to use SAT with

assumptions…built into most SAT solvers.
} Assumptions must be a set of literals.

} SAT_ASSUME(H, Asmp)
} Sat solve the CNF H under the assumption that every literal in

Asmp is true.
} Return SAT and ! if ! ⊧ H and makes every literal in Asmp true
} Return UNSAT and a conflict clause (¬l1, ¬l2, …, ¬lk) implied by H

where each li ∈ Asmp.
} At least one of the subset of assumptions {l1, l2, …, lk} must be falsified

in every model of H.

13

Cores via Assumptions
} Since assumptions are limited to literals, to extract

MaxSat cores we must have literals that imply the
satisfaction of soft clauses

} Unit soft clauses, we can use its literal as an
assumption
} (z) we can use the literal z as an assumption.

} Non unit soft clauses C, we need to create a new literal
b, add to the hard clauses the condition b → C, and
then use b as an assumption.
} (x, y, z) à (¬b, x, y, z)
} H = H U {(¬b, x, y, z)}
} Use b as an assumption

14

Conversion to Unit Softs
} In fact this “getting the formula ready for using

assumptions” transformation is the same as converting
it to a new MaxSat instance which has only unit soft
clauses.

} F = H U S è Fb = Hb U Sb

} Let S>1 = {ci | ci ∈ S and is non-unit}
} Hb = H U { (ci ∨ ¬bi) | ci ∈ S >1} with new variable bi

} Make non-unit softs into assumable hard clause
} S = (S \ S>1) U {(bi) | ci ∈ S>1}

} Add assumption literals as softs.

15

Conversion to Unit Softs
} This new ”only unit softs” instance is equivalent:

} Every feasible model of F, !, can be extended to a
feasible model of Fb with the same cost.
} For each new variable bi in Fb set bi to TRUE iff ! ⊧ ci

} Every feasible model of Fb, !b restricted to the variables
of F is a feasible model ! of F. cost(!) ≤ cost(!b)

} Hence, an optimal model of Fb restricted to the
variables of F is an optimal model of F.

16

Cores via Assumptions with unit softs.
} With Fb we can easily use assumptions to extract cores.

} SAT_ASSUME(Hb, Asmp)
where Asmp are the literals of a set of unit softs.

} If UNSAT, we get a conflict clause (¬l1, ¬l2, …, ¬lk) where
each ¬li falsifies the unit soft (li)

} The negation of literals in this conflict {l1, l2, …, lk} are a
core.

17

Unhiding the use of Assumptions
} Note that most MaxSat algorithms in the literature are

specified by abstracting away from the assumption
mechanisms.
} An interface with the SAT solvers is assumed that returns

cores in a black box manner.
} But I think this can make some of the details these

algorithms a bit more difficult to understand.
} So in this talk explain these algorithms in terms of

assumptions to the SAT solver.

18

Summation Circuits
} MaxSat solvers using sequences of relaxations exploit

cardinality constraints.
} These use CNF encodings of summation circuits that output

a unary representation of the sum of their inputs.

19

l1 l2 l3 … lk

CNF	Cardinality	Constraint

sk … s3 s2 s1

Summation Circuits
} The output is a string of 0’s followed by 1’s with (as

many 1’s as there are true inputs).
} The clauses of the summation circuit ensure that

} si � l1 + l2 ... + lk ≥ i
} ¬si � l1 + l2 ... + lk < i

20
0 1 0 … 1

CNF	Cardinality	Constraint

0 … 0 1 1

Cardinality Constraints
} So we can impose the constraint ∑ li < % by adding the

clauses of the summation circuit along with the
assumption -sk

21

l1 l2 L3 … Lk

CNF	Cardinality	Constraint

sk … 0 s2 s1

2 li < 3 =

Solving MaxSat by SAT solving a sequence of relaxation

22

Sat Solving a sequence of relaxations

} A sequence of SAT instances are created (usually
incrementally) where each instance is more relaxed so
that it allows a larger weight of soft clauses to be
falsified.

} The amount of additional weight that can be falsified is
restricted so that the first time the formula becomes
SAT the resulting satisfying models are optimal
solutions to the original MaxSat formula.
} i.e., there is no lesser relaxation that is satisfiable.

} We can also go the other direction starting with most
relaxed and working down until we reach a relaxation
that is UNSAT.
} This works ok, but not as well (so far)

23

CARDINALITY LAYER

} First we start off by ensuring that the input MaxSat F
has only unit soft clauses. (Using the Fb conversion
discussed before).

} Then the needed relaxations are achieved by adding a
CARDINALITY LAYER to the hard clauses of F.

} The inputs of the CARDINALITY LAYER are the negations
of the unit soft clause literals--limiting how many of
these that can be true limits how the number of soft
clauses that can be falsified.

} The outputs of the CARDINALITY LAYER can be set by
assumptions to restrict how many and which groups of
softs that can be falsified.

24

UNWEIGHTED INSTANCES

} First we assume that all soft clauses have the same
weight—so solving MaxSat is the same as minimizing
the number of falsified softs.

} Later we will show the technique for lifting to the
weighted case (i.e., differing weights).
} This technique is simple but it seems to lead to some

inefficiencies.

25

Example
} Standard reduction of MaxSat to a sequence of SAT

problems
} Is the formula satisfiable falsifying 0 softs?
} Is the formula satisfiable falsifying 1 soft?
} …
} Is the formula satisfiable falsifying k softs?

} Stop as soon as the answer is yes…the truth assignment
(excluding the new variables in the cardinality layer) is an
optimal solution.

26

Cardinality Layer Simple Example

27

F = H U S
S = { (l1), (l2), …, (ln) }

H	(only	the	hards)

¬l1 ¬l2 ¬l3 … ¬ln

CARDINALITY	LAYER
=	;<=(∑li)

sn … s3 s2 s1

Cardinality Layer Simple Example

28

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

¬l1 ¬l2 ¬l3 … ¬ln

CARDINALITY	LAYER
=	./0(∑li)

sn … s3 s2 s1

Cardinality Layer Simple Example

29

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

¬l1 ¬l2 ¬l3 … ¬ln

CARDINALITY	LAYER
=	./0(∑li)

sn … s3 s2 s1

Cardinality Layer Simple Example

30

On the i-th iteration solve SAT_ASSUME(H U Card,¬si)

H

¬l1 ¬l2 ¬l3 … ¬ln

CARDINALITY	LAYER
=	./0(∑li)

sn … s3 s2 s1

Cardinality Layer
} In these algorithms the unit soft clauses are not part of

the SAT solver’s CNF.
} Their literals serve as inputs to the cardinality layer.

} When we set various various literals in the cardinality layer
as assumptions these assumptions restrict the allowed
T/F settings of unit soft clauses.

31

Cardinality Layer Simple Example

32

Feasible settings of l1 to ln falsify at most 2 soft clauses
!
" + !

$ + !
% feasible settings

H

¬l1 ¬l2 ¬l3 … ¬ln

CARDINALITY	LAYER
=	345(∑li)

sn … s3 s2 s1

Cardinality Layer
} Given some assumptions A, let CARD(A) be all of the set of

T/F settings of the soft clauses allowed by the cardinality
layer under A.

} Since the softs are units, CARD(A) corresponds to a set of
truth assignments to {l1, l2, ..., ln} (the literals in the
SOFTS).

} To refute A, the SAT solver must refute every ! ∈ CARD(A).
That is, the SAT solver must verify that HARDS U ! is
UNSAT for every !.
} If A is refuted then he softs set to true by every ! form a core of

the input MaxSat Formula F. (Fahiem Bacchus, Nina
Narodytska, Cores in Core Based MaxSat Algorithms: An
Analysis. SAT 2014).

33

Cardinality Layer
} Clause learning can allow the SAT solver to refute entire

subsets of CARD(A) rather than having to refute each ! ∈
CARD(A) individually.

} The learnt clauses can contain the new variables added to
construct the Cardinality Layer. This can support learning
more powerful clauses that speed up the refutation.

} Different proposed algorithms construct differently
structured Cardinality Layers.

} Understanding more precisely how the structure of the
Cardinality layer affects the efficiency of refuting CARD(A)
is an important open question.

34

MSU3 using Incremental Cardinality
Constraints

} Used in OpenWBO.
} R. Martins, S. Joshi, V. Manquinho & I. Lynce

“Incremental Cardinality Constraints for MaxSAT”
CP-2014

} (Original MSU3) J. Marques-Silva & J. Planes. “On Using
Unsatisfiablity for Maximum Satisfiablity” CoRR, 2007

35

MSU3 Incremental

36

• Consider F = H U S where
• S = {(x1), (x2), …, (x8)}
• H = ∑i=18 xi≤4
• We want to satisfy all 8 literals xi but at most 4 of

these literals can be satisfied—at least 4 must be
falsified.

• Every set of 5 or more soft clause is a core
• What will MSU3 do on this input formula?

MUS3 Incremental

37

Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{x1,x2,…,x8}),
I.e., try to falsify zero softs.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8

MUS3 Incremental

38

• UNSAT; say we get the core (¬x1,¬x2,¬x3, ¬x4, ¬x5)
• Add one to overall cost
• Build summation network over softs in core

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 s1

MUS3 Incremental

39

• We know that the sum must be at least one—set s1= 1.
• Now SAT_ASSUME(H U Card,{¬s2,x6,x7,x8}),
• Allow one soft to be falsified among x1—x5

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

40

• Get another core, add 1 to overall cost.
• Get another conflict, (s2, ¬x6)

} Either we must falsify two of x1...x5 or one of x1...x5 and x6

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

41

• Now the incremental part. MUS3-Incremental reuses
the previous summation constraint and its variables
subsuming them into a new summation constraint that
accounts for the new core (s2, ¬x6)

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

MUS3 Incremental

42

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

Summation

t6 t5 t4 t3 1 1

• We know that the sum must be at least 2—set t1 and t2

to 1.
• Now SAT_ASSUME(H U Card,{¬t3,x7,x8}),
• Allow two softs to be falsified among x1—x6

MUS3 Incremental

43

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

Summation

u7 u6 u5 u4 1 1 1

• Another core (t3, ¬x7), add 1 to the overall cost.
• Now SAT_ASSUME(H U Card,{¬u4,x8}), allow up to 3 falsified

softs

Summation

MUS3 Incremental

44

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• Another core (u4, ¬x8); Add one to overall cost. Then
SAT_ASSUME(H U Card,{¬w5})

Summation

Summation

MUS3 Incremental

45

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

Summation

w8 w7 w6 w5 1 1 1 1

• SAT – optimal solution with overall cost = accumulated overall
cost

Summation

Summation

OLL
} Used in RC2.
} A. Morgado, C. Dodaro, and J. Marques-Silva. Core-guided

MaxSAT with soft cardinality constraints. CP 2014
} Uses summation circuits like MUS3 but links up the

summation circuits in a more flexible way.

46

OLL

47

With same example
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{x1,x2,…,x8}),
I.e., try to falsify zero softs.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8

OLL

48

• UNSAT; say we get the core (¬x1,¬x2,¬x3, ¬x4, ¬x5)
• Build summation network over softs in core

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 s1

OLL

49

• We know that the sum must be at least one—set s1= 1.
• Now SAT_ASSUME(H U CARD,{¬s2,x6,x7,x8}),
• Allow one soft to be falsified among x1—x5

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

OLL

50

• Get another core
• Get another conflict, e.g., (s2, ¬x6)

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

OLL

51

• Like MSU3 we create a new summation constraint but
unlike MSU3 we do not subsume the prior summation
constraint into the new one. Only the literals of the
conflict.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

OLL

52

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

Summation

t2 1

OLL

53

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
Summation

s5 s4 s3 s2 1

Summation

t2 1

• Then SAT_ASSUME(H U CARD,{¬s3,¬t2,x7,x8})...continue
in this way

PMRES
} Used in Eva500a.
} Narodytska,N., Bacchus,F. Maximum satisfiability using

core-guided MaxSAT resolution. AAAI 2014
} Does not use summation circuits, rather it uses a circuit

that detects if more than one literal is true.

54

PM-Res

55

} The di and si variables are new.
} We make di if di-1 or li-1 are true.

} di encodes that at least one of the first i-1 inputs is true.
} di ∧ li→ si one of the first i-1 inputs was true and li is

true (i.e., sum of l1 .. li is > 1 AND li is true)

l1 l2 l3 ... ln-1 ln

d2 d3 ... dn-1 dn

s2 s3 ... sn-1 sn

PM-Res

56

} Draw this as below.

l1 l2 l3 ... ln-1 ln

s2 s3 ... sn-1 sn

PMRes

PMRes

57

Using same example
Start with Cardinality Constraint Layer with inputs only

Literals assumed FALSE

First SAT solve is SAT_ASSUME(H,{x1,x2,…,x8}),
I.e., try to falsify zero softs.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8

PMRes

58

• UNSAT; say we get the core (¬x1,¬x2,¬x3, ¬x4, ¬x5)
• Build PMRes circuit over softs in core.
• In the new formula (with the PMRes circuit) we always

assume the negation of all outputs of the cardinality
layer

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

59

• Now SAT_ASSUME(HUCard,{¬s2, ¬s3, ¬s4, ¬s5, x6,x7,x8}),
• è We can falsify at most one of the softs x1, ..., x5 but

no other softs.
• UNSAT (we must falsify at least 4)

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

60

• Various conflicts, say SAT_ASSUME(H,{¬s2, ¬s3, ¬s4, ¬s5,
x6,x7,x8}) returns the core
(x6,x7,x8,¬s2,¬s3)

• PMRes then builds a new PMRes circuit with these
literals as input.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

61

• new core (x6,x7,x8,¬s2,¬s3)
• PMRes then builds a new PMRes circuit with these as

input.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

62

• SAT_ASSUME(H,{¬s4, ¬s5, ¬t2, ¬t3, ¬t4, ¬t5})
• It gets complex...

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

63

• But subject to these assumptions at most two original
softs can be falsified.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

PMRes

64

• PMRes continues in this way until it it achieves SAT.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6 ¬x7 ¬x8
PMRes

s2 s3 s4 s5

PMRes

t2 t3 t4 t5

Dealing with Weights.
} These algorithms employ the technique of clause cloning

to deal with weighted softs.
} When a core is found e.g., {l1, l2, l3, l4} where the soft

clauses (li) have different weights.
} Let minWt be the minimum weigh among the softs in the core.
} Add minWt to the overall cost (instead of 1)
} Make a copy of those literals that have cost greater than minWt.

Give these copies weight = original weight – minWt

65

Weighted instances

66

Say S = {(x1), (x2), (x3), (x4)} with wt(xi) = i

First SAT solve is SAT_ASSUME(H,{x1,x2,x3,x4}),

H

¬x1 ¬x2 ¬x3 ¬x4

Weighted instances

67

UNSAT; say we get the core (x1,x2,x3)
As before build summation network over softs in core.
minWt=1, so we must clone x2 and x2.

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x2 ¬x3
Summation

s3 s2 s1

Clones.	
wt(x2)	=1
wt(x3)	=	1

Weighted instances

68

Now SAT_ASSUME(H,{¬s2,x4, x2 ,x3}),

H

¬x1 ¬x2 ¬x3 ¬x4 ¬x2 ¬x3
Summation

s3 s2 s1

Clones.	
wt(x2)	=1
wt(x3)	=	1

Solving a sequence of relaxations

} The approach can be very effective. Much more effective
than the naive approach of restricting the sum over all
falsified soft clauses.

} The discovered cores are exploited in a non-trivial manner
to constraint the search for the set of soft clauses that
can be falsified.

69

Solving a sequence of relaxations
} The structure of the Cardinality layer becomes quite

complex, and although clear empirical differences can be
observed among the different ways of constructing the
Cardinality layer, there is no real understanding of this.

} Instance independent question:
} From each UNSAT result we extract a conflict clause. Are the

current ways of constructing the cardinality layer fully exploiting
the information in those conflicts? How can we formalize this
question.

} Instance dependent question:
} Each way of constructing the cardinality layer ends up posing a

different type of query to the SAT solver. Do instances with
particular structure work better with particular ways of
constructing that layer?

70

Solving a sequence of relaxations
} As the cardinality layer grows the SAT solver has a harder

and harder time solving it.
} The approach of clause cloning for dealing with weighted

instances is limited.
} In the 2018 MaxSat Evaluation a OLL solver RC2 solved more

weighted instances among those tested than any other solver.
} But clearly less effective the implicit hitting set solver MaxHS

when run on a larger benchmark suite.
} On instances where the # of distinct weights > 3, the difference

is more profound.
} On unweighted instances (all softs have the same weight)

sequence of sat approaches are generally superior to
implicit hitting set approaches.

71

Implicit Hitting Set Solvers

72

Implicit Hitting Set (IHS) Approach to MaxSat

} First developed by [Davies PhD]
} IHS solvers utilize both a SAT solver and an Integer

Program solver (IP)

73

Implicit Hitting Set (IHS) Approach to MaxSat

} Unlike the previous approaches, IHS solvers never
modify the input MaxSat F.
} The SAT solver is always run on instances that are no more

complex that the input F.
} The cores exploited by IHS solvers are cores of the input

formula F (not cores of F augmented by cardinality
constraints).

} All numeric reasoning about weights is delegated to an
Integer Programming solver (e.g., CPLEX)
} designed for optimization
} weights can be floating point numbers
} the underlying LP + Cuts approach is very powerful

74

Cores and hitting sets
} Remember

} A set of soft clauses !⊆S is a core of F if !∪H is UNSAT
} Feasible solutions satisfy the hard clauses H

} Let K be any set of cores of F and π any feasible solution.
π must falsify at least one soft clause of every core in K.

} Let A = {c | $ ⊭ c} be the set of clauses falsified by $
} Then A is a hitting set of K (non-empty intersection with

every member of K).

75

Cores and hitting sets
} Let MCHS(K) be a minimum cost hitting set of K–this is a

set of soft clauses.
} For every feasible solution !

cost(π) = wt(A) ≥ wt(MCHS(K))
} The weight of a minimum cost hitting set of any set of

cores is a lower bound on the cost of an optimal solution.
} Therefore, for any set of cores K and any feasible solution
π if cost(π) = wt(MCHS(K)), π must be an optimal solution.

} This leads to a simple algorithm for finding an optimal
solution.

76

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

77

UNSAT

SAT

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

78

UNSAT

SAT

1 satisfies	H	and	all	soft	
clauses	except	possibly	
the	softs	in	hs.	So	
cost(1)	≤	wt(MCHS(!))

! = ! U {softs in returned conflict}
ℎC =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

79

UNSAT

SAT

If UNSAT the SAT solver the
conflict returned is a core

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

80

UNSAT

SAT

The returned core must be
new, not previously in !-—the
new core contains no softs
from hs, but every core in !
contains a soft of hs.

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

81

UNSAT

SAT

This process must terminate as
there are only a finite number
of cores.

IP solver used to compute MCHS
(when an MCHS is needed)

} The MCHS (aka, set-cover) problem is an NP-Hard
optimization problem. But in practice it can usually be
solved efficiently by an integer programming solver.
} Typically IBM’s CPLEX is used
} Seems to be by far the most effective way of finding an MCHS.

} The approach is most closely related to the implicit
hitting set formalism of Karp. It can also be viewed as
being a CEGAR or a logic based Benders approach.

} The direct encoding of MaxSat into an IP is far less
effective than this hybrid approach.

82

The IHS Algorithm

} This basic IHS algorithm is not that effective.

83

Solved Unsolved

The IHS Algorithm

} The IP hitting set model is being incrementally improved
by adding new cores.

} Generally many cores have to be accumulated before the
IP model is strong enough to yield hitting sets whose
removal yields SAT.

} Always computing an MCHS on these “too weak” IP
models becomes very expensive.

84

The IHS Algorithm

} Various are employed techniques to improve the IP model
more quickly

} Most importantly computing an MCHS can be delayed and
performed only occasionally. Much cheaper to compute
non-minimum hitting sets can be used instead.

} This leads to a different formulation of IHS algorithms (this
formulation is what is used in current IHS solvers).

85

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

86

UNSAT

SAT

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	MCHS(!)

87

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

88

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

89

UNSAT

SAT

Ok, always returns new
core

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

1 is an
optimal
solution

! = ! U {softs in returned conflict}
ℎ3 =	any	hitting	set	of	!

90

UNSAT

SAT

But now, we
cannot conclude
1 is	optimal

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

91

UNSAT

SAT

However 3
might	be	lower	
cost	model	than	
we	have	seen	
before

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

92

UNSAT

SAT

We must continue

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	
install	as	new	
incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

93

UNSAT

SAT

We must continue

Make sure that
we don’t cycle
returning the
same hs as
before!

hs = {}
! = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!

94

UNSAT

SAT

To terminate we must
occasionally compute
an MCHS.

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!)

95

UNSAT

SAT

To terminate we must
occasionally compute
an MCHS.

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	
cheapest	model	
found	install	as	
new	incumbent

! = ! U {softs in returned conflict}
ℎ> =	any	hitting	set	of	!
Occasionally (via some policy):

hs = MCHS(!); LB = wt(hs)

96

UNSAT

SAT

MCHS provides a
lower bound!

hs = {}
! = {}

SatAssume
(H,	S\hs)

If	3 is	the	cheapest	
model	found	install	as	
new	incumbent.	
If LB ≥ cost(incumbent)
return incumbent

! = ! U {softs in returned conflict}
ℎ? =	any	hitting	set	of	!
Occasionally (via some policy):
hs = MCHS(!); LB = wt(hs)
If LB ≥ cost(incumbent) return incumbent

97

UNSAT

SAT

Lower bound meets
upper bound
becomes new
termination condition.

IHS Algorithm
} As long at computing an MCHS is never “starved” (i.e.,

always eventually we compute the MCHS) the algorithm
must terminate.

} Maintaining an UB model also allows the IP technique of
reduced cost fixing to be exploited
} Fahiem Bacchus, Antti Hyttinen, Matti Jarvisalo, and Paul

Saikko; Reduced Cost Fixing in MaxSAT, CP 2018

98

IHS on our Example.
• F = H U S
• H = ∑i=1%& xi<n Generalized to 2n unit softs.
• S = {(x1), (x2), …, (x2n)}
• Optimal solution has cost n+1.
• [Davies 2013] The IHS approach needs to accumulate at least

%&
& cores in * before wt(MCHS(*)) = n+1.

• For any set of cores X of size with |X| < %&& ,MCHS X < n+ 1
• So the IHS approach has to make an exponential number of

calls to the SAT solver in this case.

99

Weighted Case (Intuition)

• H =
(¬#$$ … ¬#$& ¬')
⋮ ⋮ ⋮

(¬#*$ … ¬#*& ¬')

• S = {(y11), ..., (ymk), (z)}

• Weight of all softs is 2 except weight of wt(z)=2k-1.
} Every clause specifies a core. IHS would find k cores, all by unit

prop.
} In the i-th iteration (1 ≤ i ≤ k-1) the MCHS would have weight 2i,

and would consist of one yij from each of the i cores found so
far.

} At step k, the MCHS would be computed to be {(z)}, with cost
2k-1.

} With hs = {(z)} we get SAT.

100

Weighted Case.

• H =
(¬#$$ … ¬#$& ¬')
⋮ ⋮ ⋮

(¬#*$ … ¬#*& ¬')

• S = {(y11), ..., (ymk), (z)}

• Weight of all softs is 2 except weight of wt(z)=2k-1.
} The sequence of sat approaches with clause cloning

would do something more complex.
} Each UNSAT call would add a cardinality constraint over

the variables in the core, and would clone z.
} So the formula gets harder to solve—not clear if this could

lead to a non-polynomial separation.

101

Implicit Hitting Set Solvers

} The SAT solving episodes are much simpler—they involve
restrictions of the original MaxSat formula rather than
augmentations of that formula.

} In practice, like other CEGAR approaches, only a few
thousand cores need to be generated before the MCHS
lower bound meets the optimal cost.

} But there are other cases where the number of cores
required is too large, making both finding them and
solving the MCHS too expensive.

} Currently it is usually a more effective way of dealing with
a diverse collection of weights.
} It would be good get some theoretical results here.

102

Implicit Hitting Set Solvers.
} As with the sequence of SAT approaches, it is not clearly

understood how to guide the SAT solver to find good cores
(cores that move the MCHS bound up more rapidly).

103

Thank you

104

