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Motivation.

◮ Satisfiability (SAT) is the problem of determining if there is
an interpretation that satisfies a given boolean formula in
conjunctive normal form.

◮ SAT is an NP-Complete problem, therefore we don’t expect to
have polynomial algorithms for it.

◮ SAT is very important because many other problems can be
encoded as satisfiability.

◮ Even though SAT is NP-Complete, we can solve efficiently
many hard real life problems.

◮ Even though an unsatisfiable formula may have a short
refutation, finding it might be hard.



Motivation.

◮ Conflict Driven Clause Learning (CDCL) is the main technique
for solving SAT

◮ When formulas are unsatisfiable, CDCL is equivalent to
Resolution.

◮ Some basic problems, like pigeon-hole principle, cannot have
short Resolution Refutations.

◮ Research on stronger proof systems, like Extended Resolution
or Cutting Planes, for refuting some formulas efficiently, has
failed.

◮ Ideas for improvements of SAT solving procedures for some
hard crafted instances.



Dual-Rail Approach

◮ Encode the principle as a partial MaxSAT problem using the
dual-rail encoding;

◮ then use MaxSAT.

◮ Advantages:
Polynomial size encodings.
We can use MaxSAT algorithms, like core-guided or minimum
hitting set.
Method efficiently solves some hard problems for Resolution,
like pigeon-hole.

◮ Topic of present work: what is the real power of dual-rail
MaxSAT technique compared with other proof systems?



MaxSAT and Partial MaxSAT

◮ Need to give weights to clauses, weight indicating the “cost”
of falsifying the clause.

◮ Clauses are partitioned into soft clauses and hard clauses.

◮ Soft clauses may be falsified and have weight 1; hard clauses
may not be falsified and have weight ⊤.

Definition
So Partial MaxSAT is the problem of finding an assignment that
satisfies all the hard clauses and minimizes the number of falsified
soft clauses.



Dual-Rail MaxSAT [Ignatiev-Morgado-MarquesSilva].
◮ Γ a set of hard clauses over the variables {x1, . . . , xN}.

◮ The dual-rail encoding Γdr of Γ, uses 2N variables n1, . . . , nN
and p1, . . . , pN in place of variables xi .

◮ pi is true if xi is true, and that ni is true if xi is false.

◮ Cdr of a clause C :
◮ replace (unnegated) xi with ni , and (negated) xi with pi .

◮ Example: if C is {x1, x3, x4}, then C dr is {n1, p3, n4}.

◮ Every literal in C dr is negated.

◮ dual rail encoding Γdr of Γ contains:

1. The hard clause Cdr for each C ∈ Γ.

2. The hard clauses pi ∨ ni for 1 ≤ i ≤ N.

3. The soft clauses pi and ni for 1 ≤ i ≤ N.



Dual-Rail MaxSAT approach

Lemma (Ignatiev-Morgado-Marques-Silva)

Γ is satisfiable if and only if there is an assignment that satisfies all

the hard clauses of Γdr, and N of the soft ones.

Corollary

Γ is unsatisfiable iff every assignment that satisfies all hard clauses

of Γdr, must falsify at least N + 1 soft clauses.

In the context of proof systems:
Γ is unsatisfiable, if using a proof system for Partical MaxSAT, we
can obtain at least N + 1 empty clauses (⊥).



MaxSAT Inference Rule. [Larrosa-Heras,
Bonet-Levy-Manya]

(Partial) MaxSAT rule, replaces two clauses by a different set of
clauses.
A clause may be used only once as a hypothesis of an inference.

(x ∨ A, 1)
(x ∨ B ,⊤)

(A ∨ B , 1)

(x ∨ A ∨ B, 1)
(x ∨ B ,⊤)

(x ∨ A, 1)
(x ∨ B , 1)

(A ∨ B , 1)

(x ∨ A ∨ B, 1)

(x ∨ A ∨ B , 1)

(x ∨ A,⊤)
(x ∨ B ,⊤)

(A ∨ B ,⊤)
(x ∨ A,⊤)
(x ∨ B ,⊤)

x ∨ A ∨ B , where A = a1 ∨ · · · ∨ as , B = b1 ∨ · · · ∨ bt and t > 0, is

x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

(1)



Example

Consider the unsatisfiable set of clauses: x1 ∨ x2, x1 and x2.

The dual rail encoding has the five hard clauses

p1 ∨ n2 n1 p2 p1 ∨ n1 p2 ∨ n2,

plus the four soft unit clauses

p1 n1 p2 n2.

Since there are two variables, a dual-rail MaxSAT refutation must
derive a multiset containing three copies of the empty clause ⊥.

(n1,⊤)
(n1, 1)

(⊥, 1)
(n1,⊤)

(p2,⊤)
(p2, 1)

(⊥, 1)
(p2,⊤)

(p1, 1)
(p1 ∨ n2,⊤)

(n2, 1)
(p1 ∨ n2, 1)
(p1 ∨ n2,⊤)

(n2, 1)
(n2, 1)

(⊥, 1)



Core-guided Algorithm for MaxSAT

1. Input: F = S ∪ H, soft clauses S and hard clauses H
2. (R ,FW , λ) → (∅, S ∪ H, 0)
3. while true do

4. (st,C ,A) → SAT (FW )
5. if st then return λ,A
6. λ → λ+ 1
7. for c ∈ C ∩ S do

8. R → R ∪ {r} // r is a fresh variable
9. S → S \ {c}
10. H → H ∪ {c ∪ {r}}
11. FW → S ∪ H ∪ CNF (

∑

r∈R r ≤ λ)



Relevant Proof Systems
A Frege system is a textbook-style proof system, usually defined
to have modus ponens as its only rule of inference.

An AC 0-Frege proof is a Frege proof with a constant upper bound
on the depth of formulas appearing in the Frege proof.

AC 0-Frege+PHP is constant depth Frege augmented with the
schematic pigeonhole principle.

The Cutting Planes system is a pseudo-Boolean propositional
proof system, with variables taking on 0/1 values.
The lines of a cutting planes proof are inequalities of the form

a1x1 + a2x2 + . . .+ anxn ≥ an+1,

where the ai ’s are integers.
Logical axioms are xi ≥ 0 and −xi ≥ −1;
rules are addition, multiplication by a integer, and a special
division rule.



The Pigeonhole principle
There is no 1− 1 function from [n + 1] to [n].

Set of clauses:

∨n
j=1 xi,j for i ∈ [n+1]

xi,j ∨ xk,j for distinct i , k ∈ [n+1].

[Cook-Reckhow] Polynomial size extended Frege proofs of
PHPn+1

n .

[Buss’87] Polynomial size Frege proofs of PHPn+1
n .

[Haken’85] Resolution requires exponential size refutations of
PHPn+1

n .

Polynomial size Cutting Planes refutations of PHPn+1
n .



Translation of the PHP to the dual-rail Language.

The dual-rail encoding, (PHPn+1
n )dr of PHPn+1

n .
Hard clauses:

∨n
j=1 ni,j for i ∈ [n+1]

pi,j ∨ pk,j for j ∈ [n] and
distinct i , k ∈ [n+1].

Soft clauses are:
Unit clauses ni,j and pi,j for all i∈[n+1] and j∈[n].

[Ignatiev-Morgado-MarquesSilva] Polynonial sequence of Partial
MaxSAT resolution steps to obtain (n+ 1)n+ 1 soft empty clauses
⊥.

[Bonet-Levy-Manya] MaxSAT rule requires exponential number of
steps to show one clause cannot be satisfied, when using usual
encoding.



Relationship of dual-rail MaxSAT and Resolution

Theorem
The core-guided MaxSAT algorithm with the dual-rail encoding

simulates Resolution.

Theorem
Multiple dual rail MaxSAT simulates tree-like Resolution.

Theorem
Weighted dual rail MaxSAT simulates general Resolution.



Dual-rail Core-guided MaxSAT simulation of Resolution

¬pi ∨ ¬ni pi

¬ni ni

⊥

Substitute {pi , ni} soft, by
{pi ∨ ai1 , ni ∨ ai2 , ai1 + ai2 ≤ 1)} hard,
ai1 and ai2 new variables.

pi ∨ ai1 ¬ai1 ∨ ¬ai2

pi ∨ ¬ai2 ni ∨ ai2

pi ∨ ni

For every i , we have pi ∨ ni .

C ∨ ¬ni ni ∨ pi

C ∨ pi Now we have all clauses with pi vars.
Follow resolution refutation.



Dual-rail MaxSAT simulation of Resolution

(pi ,wi )
(pi ∨ ni ,⊤)

(ni ,wi )
(pi ∨ ni ,wi )
(pi ∨ ni ,⊤)

(ni ,wi )
(ni ,wi )

(⊥,wi )

(C ∨ ni ,⊤)
(pi ∨ ni ,wi )

(C ∨ pi ,wi )
other clauses

We used soft clauses ni and pi , and obtained soft ⊥ and pi ∨ ni .
Soft clauses ni and pi will have considerable weight initially,
pi ∨ ni will have weight to eliminate ni variables,
weights will be used to account for several uses of a clause in the
refutation.



The Parity Principle.

Given a graph with an odd number of vertices, it is not posible to
have every vertex with degree one.

The propositional version of the Parity Principle, for m ≥ 1, uses
(

2m+1
2

)

variables xi ,j , where i 6= j and xi ,j is identified with xj ,i .
Meaning of xi ,j : there is an edge between vertex i and vertex j .

The Parity Principle, Parity2m+1,

∨

j6=i xi,j for i ∈ [2m+1]

xi,j ∨ xk,j for i , j , k distinct members of [2m+1].



Results using the Parity Principle

Theorem
AC 0-Frege+PHP p-simulates the dual-rail MaxSAT system.

Theorem (Beame-Pitassi)

AC 0-Frege+PHP refutations of Parity require exponential size.

Corollary

MaxSAT refutations of the dual-rail encoded Parity Principle

require exponential size.

Corollary

The dual rail MaxSAT proof system does not polynomially

simulate CP.

Fact
Dual-rail minimum hitting set algorithm has short proofs of the

Parity principle.



AC
0-Frege+PHP p-simulation the dual-rail MaxSAT

· · · · · ·

X1

X2
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The Double Pigeonhole Principle

if 2m+1 pigeons are mapped to m holes then some hole contains
at least three pigeons.

Set of clauses of 2PHP2m+1
m :

∨m
j=1 xi,j for i ∈ [2m+1]

xi,j ∨ xk,j ∨ xℓ,j for distinct i , k , ℓ ∈ [2m+1].



Translation of the Double PHP to dual-rail

The dual-rail encoding, (2PHP2m+1)dr , of 2PHP2m+1
m .

Hard clauses:

∨m
j=1 ni,j for i ∈ [2m+1]

pi,j ∨ pk,j ∨ pℓ,j for j ∈ [m] and
distinct i , k , ℓ ∈ [2m+1].

Soft clauses are:
ni,j and pi,j for all i∈[2m+1] and j∈[m].

Theorem
There are polynomial size MaxSAT refutations of the dual rail

encoding of the 2PHP2m+1
m .



Experimentation
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Summary of Results

◮ dual-rail MaxSAT is strictly stronger than Resolution.

◮ A stronger pigeon-hole principle also has polynomial-size
proofs in dual-rail MaxSAT, but requires exponential size in
Resolution.

◮ We did experimentation with such pigeon-hole principle to
back up the theoretical results.

◮ dual-rail MaxSAT does not simulate Cutting Planes.


