Symmetry in SAT: an overview

August 27th, 2018
Theory and Practice of SAT solving
Oaxaca, Mexico

Jo Devriendt, KU Leuven
Intro

Everyone knows symmetry:

"something does not change under a set of transformations"
- Wikipedia
In combinatorial solving

Symmetry :=
Permutation of variable assignments that preserves satisfaction
In combinatorial solving

Symmetry :=
Permutation of variable assignments that preserves satisfaction
In combinatorial solving

Symmetry induces symmetry classes:
In combinatorial solving

Symmetry induces symmetry classes:

"......calculating......"

Symmetry classes tend to get huge -> search problem
In combinatorial solving

Goal: investigate only asymmetrical cases
Contents

1. Intro
2. SAT Prelims
3. "Classic" symmetry breaking
4. The pigeonhole problem
5. "Recent" symmetry breaking
6. Non-breaking approaches
7. Bonus: symmetry, local search & maxSAT
1. Intro
2. SAT Prelims
3. "Classic" symmetry breaking
4. The pigeonhole problem
5. "Recent" symmetry breaking
6. Non-breaking approaches
7. Bonus: symmetry, local search & maxSAT

"Interesting research question"
In SAT:

Syntactic symmetry :=

literal permutation that preserves the CNF

\[
\begin{align*}
a \lor \neg b & \quad \rightarrow \quad b \\
\neg a & \quad \rightarrow \quad \neg b \\
b \lor \neg c & \quad \rightarrow \quad c \\
\neg b & \quad \rightarrow \quad \neg c \\
c \lor \neg a & \quad \rightarrow \quad a \\
\neg c & \quad \rightarrow \quad \neg a
\end{align*}
\]
In SAT:

Syntactic symmetry := literal permutation that preserves the CNF

\[
\begin{align*}
 a & \mapsto b \\
 \neg a & \mapsto \neg b \\
 b & \mapsto c \\
 \neg b & \mapsto \neg c \\
 c & \mapsto a \\
 \neg c & \mapsto \neg a
\end{align*}
\]

\((a \lor \neg b) \lor (b \lor \neg c) \lor (c \lor \neg a)\)
In SAT literature:

- Shatter
- BreakID
- CDCLSym
- Adaptive prefix-assignment
- SymChaff
- Symmetric learning
Terminology

- variable x
 - set of all variables X
- literal l
- clause c
- (propositional) formula φ
- (variable) assignment α
 - $\alpha(l)$ is the truth value of l in α
- symmetry σ
 - $\sigma(...)$ is the symmetrical image of $...$
- symmetry group Σ
 - $\Sigma(...)$ is the orbit of $...$ under Σ
 - generator set $\text{gen}(\Sigma)$
3. "Classic" symmetry breaking
Symmetry breaking formulas: Crawford [1]

Given: \(\varphi, \Sigma \)
Find: symmetry breaking formula \(\text{sbf} \)
that invalidates symmetrical assignments
Symmetry breaking formulas: Crawford [1]

Core idea: sbf encodes "\(\alpha\) is lexicographically smaller than \(\sigma(\alpha)\)" for \(\sigma \in \Sigma\)
Symmetry breaking formulas: Crawford [1]

Core idea: sbf encodes "α is lexicographically smaller than σ(α)"
for σ ∈ Σ

\[x_1 \leq \sigma(x_1) \]
\[x_1 = \sigma(x_1) \Rightarrow x_2 \leq \sigma(x_2) \]
\[(x_1 = \sigma(x_1) \land x_2 = \sigma(x_2)) \Rightarrow x_3 \leq \sigma(x_3) \]

...
Symmetry breaking formulas: Crawford [1]

Core idea: sbf encodes "α is lexicographically smaller than σ(α)" for σ ∈ Σ

\[x_1 \leq \sigma(x_1) \]

\[x_1 = \sigma(x_1) \Rightarrow x_2 \leq \sigma(x_2) \]

\[(x_1 = \sigma(x_1) \land x_2 = \sigma(x_2)) \Rightarrow x_3 \leq \sigma(x_3) \]

\[\ldots \]

parameter: total order on X
Symmetry breaking formulas: Crawford [1]

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"
for all σ ∈ Σ

\(\varphi \cup \text{sbf} \)
Symmetry breaking formulas: Crawford [1]

Core idea: sbf encodes "α is lexicographically smaller than σ(α)"
for all σ ∈ Σ

- Sound
- Complete
- Huge: Ω(|X|^2 |Σ|)

φ ∪ sbf
Symmetry breaking: Shatter [2]

- construct sbf for -much smaller- gen(\(\Sigma\))
- "chain encoding"
- improved clausal encoding
Symmetry breaking: Shatter [2]

- construct sbf for -much smaller- gen(Σ)
- "chain encoding"
- improved clausal encoding

Sound ✓
Incomplete ✗
Feasible: $O(|X| |\text{gen}(\Sigma)|)$
Detecting symmetry: Saucy [3]

Sparse graph automorphism detection
Detecting symmetry: Saucy [3]

Sparse graph automorphism detection

- Graph construction from CNF:
 - node for each literal and clause
 - edge between literals occurring in clause
 - edge between literal and negation
- No polynomial algorithm known
- Output: generators to automorphism group
Static symmetry breaking: Shatter+Saucy

Propositional description

\[a \lor \neg b \]
\[b \lor \neg c \]
\[c \lor \neg a \]

Graph automorphism detection

Add symmetry breaking formulas

\[\neg a \lor b \]

SAT/UNSAT

off-the-shelf SAT solver
4. The pigeonhole problem
Pigeonhole!

Do n pigeons fit in n-1 holes?

\[\forall p: \bigvee_h x_{ph} \]
\[\forall h: \forall p \neq p': \neg x_{ph} \lor \neg x_{p'h} \]
Do n pigeons fit in n-1 holes?

\[\forall p: \bigvee_h x_{ph} \]

\[\forall h: \forall p \neq p': \neg x_{ph} \lor \neg x_{p'h} \]

- Proof-theoretic problem
- Simple but large symmetry group
 - composition of "pigeon interchangeability" and "hole interchangeability"
 - 1 symmetry class
Original Shatter experiment:

<table>
<thead>
<tr>
<th>Benchmark Family</th>
<th>Instance</th>
<th># Generators</th>
<th># Generators & their compositions</th>
<th>Time to find symmetries (sec)</th>
<th>Time to solve orig. instance (sec)</th>
<th>Time to solve instances and SBPs (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Generators only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All Bits</td>
</tr>
<tr>
<td>Hole-n</td>
<td>hole07</td>
<td>13</td>
<td>102</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>hole08</td>
<td>15</td>
<td>133</td>
<td>0.00</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>hole09</td>
<td>17</td>
<td>168</td>
<td>0.01</td>
<td>0.97</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>hole10</td>
<td>19</td>
<td>207</td>
<td>0.02</td>
<td>14.4</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>hole11</td>
<td>21</td>
<td>250</td>
<td>0.02</td>
<td>133</td>
<td>9.04</td>
</tr>
<tr>
<td></td>
<td>hole12</td>
<td>23</td>
<td>297</td>
<td>0.02</td>
<td>>1000</td>
<td>6.90</td>
</tr>
</tbody>
</table>

- **Generators only**
- **Irredundant Bits**
- **Quadratic construction**
- **Linear construction**
Pigeonhole!

Original Shatter experiment:

<table>
<thead>
<tr>
<th>Benchmark Family</th>
<th>Instance</th>
<th># Generators</th>
<th># Generators & their compositions</th>
<th>Time to find symmetries (sec)</th>
<th>Time to solve orig. instance (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole-n</td>
<td>hole07</td>
<td>13</td>
<td>102</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>hole08</td>
<td>15</td>
<td>133</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>hole09</td>
<td>17</td>
<td>168</td>
<td>0.01</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>hole10</td>
<td>19</td>
<td>207</td>
<td>0.02</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>hole11</td>
<td>21</td>
<td>250</td>
<td>0.02</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>hole12</td>
<td>23</td>
<td>297</td>
<td>0.02</td>
<td>>1000</td>
</tr>
</tbody>
</table>

			Time to solve instances and SBPs (sec)							
			Generators only	Generators & their compositions						
			All Bits	Irredundant Bits	Quadratic construction	Linear construction	Quadratic construction	Linear construction		
			0.03	0.01						
			0.17	0.01						
			0.30	0.01						
			2.87	0.01						
			9.04	0.01						
			6.90	0.01						

Seems ok?
Pigeonhole!

Own Shatter experiment:

- **glucose**
- **glucose+shatter**
Own Shatter experiment:

Modest gains...
Better results in original paper?
Pigeonhole!

- Propositional encoding reduces "pigeon interchangeability" to "row interchangeability"
- Shatter's sbf's are complete [4] with correct choice of
 - \(\text{gen}(\Sigma) \)
 - variable order

\[
\begin{array}{ccc}
 x_{11} & x_{12} & x_{13} \\
 x_{21} & x_{22} & x_{23} \\
 x_{31} & x_{32} & x_{33} \\
 x_{41} & x_{42} & x_{43} \\
\end{array}
\]

- \(|\text{full sbf}| = O(n^2) \)
Propositional encoding reduces "pigeon interchangeability" to "row interchangeability"

Shatter's sbf's are complete [4] with correct choice of
- $\text{gen}(\Sigma)$
- variable order

$|\text{full sbf}| = O(n^2)$
5. "Recent" symmetry breaking
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search $\sigma_1, \sigma_2 \in \text{gen}(\Sigma)$ that form 2 subsequent row swaps
 - forms initial 3-rowed variable matrix M
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search $\sigma_1, \sigma_2 \in \text{gen}(\Sigma)$ that form 2 subsequent row swaps
 - forms initial **3-rowed variable matrix** M
2. Apply every $\sigma \in \text{gen}(\Sigma)$ to all detected rows $r \in M$ so far
 - images $\sigma(r)$ disjoint of M are candidates to extend M
 - test if swap $r \leftrightarrow \sigma(r)$ is a symmetry by syntactical check on φ
 - if success, **extend M with $\sigma(r)$**
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search $\sigma_1, \sigma_2 \in \text{gen}(\Sigma)$ that form 2 subsequent row swaps

 - forms initial 3-rowed variable matrix M

2. Apply every $\sigma \in \text{gen}(\Sigma)$ to all detected rows $r \in M$ so far

 - images $\sigma(r)$ disjoint of M are candidates to extend M
 - test if swap $r \leftrightarrow \sigma(r)$ is a symmetry by syntactical check on φ
 - if success, extend M with $\sigma(r)$

3. Use Saucy to extend $\text{gen}(\Sigma)$ with new symmetry generators by fixing all variable nodes with variable in M, first row excepted
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

Caveat!
Symmetry breaking: BreakID [5]

Core idea: detect "row swap" symmetries

Caveat!

Detect row interchangeability subgroups?
Symmetry breaking: BreakID [5]

Core idea: maximize number of binary sbf clauses
Symmetry breaking: BreakID [5]

Core idea: maximize number of **binary sbf clauses**

- First clause in sbf for σ is binary:
 \[\neg x_1 \lor \sigma(x_1) \]

- x is **stabilized** by Σ iff $\Sigma(x) = \{x\}$

- Given Σ with **smallest non-stabilized** x, for each $x' \in \Sigma(x)$:
 \[\neg x \lor x' \]

 is clause of sbf under some $\sigma \in \Sigma$
Symmetry breaking: BreakID [5]

Core idea: exploit binary sbf clauses
Symmetry breaking: BreakID [5]

Core idea: exploit **binary sbf clauses**

- Create **stabilizer chain** of Σ:
 \[
 \Sigma \supset \Sigma_1 \supset \Sigma_2 \supset \ldots \supset 1
 \]

- Σ_i is the **stabilizer subgroup** of Σ_{i-1} stabilizing the next non-stabilized variable in ordering
 - Σ_i have different smallest non-stabilized variables x_i

- For each $x' \in \Sigma_i(x_i)$:
 \[
 \neg x_i \lor x'
 \]

is a clause of some sbf
Symmetry breaking: BreakID [5]

Core idea: exploit binary sbf clauses
Symmetry breaking: BreakID [5]

Core idea: exploit *binary sbf clauses*

- Approximative implementation
 - which adapts the variable order!
Symmetry breaking: BreakID [5]

Core idea: exploit binary sbf clauses

- Approximative implementation
 - which adapts the variable order!

- Works well for polarity symmetry \(\sigma \) where for all \(x \):
 \[
 \sigma(x) = \neg x
 \]
 as sbf is equivalent to unit clause
 \[
 \neg x_1
 \]
 and their number is maximized through adopted variable order.
Symmetry breaking: BreakID [5]

Core idea: exploit binary sbf clauses

• Approximative implementation
 ▪ which adapts the variable order!

• Works well for polarity symmetry σ where for all x:
 \[\sigma(x) = \neg x \]
 as sbf is equivalent to unit clause
 \[\neg x_1 \]
 and their number is maximized through adopted variable order.

Complete algorithm?
Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically
Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically

- Keep track of **reducer** symmetries where $\sigma(\alpha) < \alpha$
 - by watching smallest variable s.t. $\sigma(v) \neq v$
- **Generate clause** from sbf forcing $\alpha \leq \sigma(\alpha)$

Additionally: try Bliss instead of Saucy
Symmetry breaking: CDCLSym [6]

Core idea: generate sbf dynamically

- Keep track of **reducer** symmetries where $\sigma(\alpha) < \alpha$
 - by watching smallest variable s.t. $\sigma(v) \neq v$
- **Generate clause** from sbf forcing $\alpha \leq \sigma(\alpha)$

Additionally: try Bliss instead of Saucy

Use clauses for propagation?
Not only generator symmetries?
Symmetry breaking: On completeness

- Pigeon *interchangeability* can be completely broken with polynomial sbf
Symmetry breaking: On completeness

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent interest [11] [14]
Symmetry breaking: On completeness

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent interest [11] [14]
- How about **general interchangeability** over arbitrary high dimensional relations?
Symmetry breaking: On completeness

- Pigeon **interchangeability** can be completely broken with polynomial sbf
- How about **edge interchangeability**?
 - E.g., find coloring of complete graph (Ramsey numbers)
 - Recent interest [11] [14]
- How about **general interchangeability** over arbitrary high dimensional relations?

Tractable sbf for edge interchangeability?
Symmetry breaking: Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

∀x: ∃y: \(\varphi(x, y) \)
Symmetry breaking: Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

∀x: ∃y: ϕ(x, y)
6. Non-breaking approaches
Symmetry handling: SymChaff [8]

Core idea: search decisions consider row interchangeability

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>x_{12}</td>
<td>x_{13}</td>
</tr>
<tr>
<td>x_{21}</td>
<td>x_{22}</td>
<td>x_{23}</td>
</tr>
<tr>
<td>x_{31}</td>
<td>x_{32}</td>
<td>x_{33}</td>
</tr>
<tr>
<td>x_{41}</td>
<td>x_{42}</td>
<td>x_{43}</td>
</tr>
</tbody>
</table>
Symmetry handling: SymChaff [8]

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use **cardinality decision points** over row-interchangeable variables

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>x_{12}</td>
<td>x_{13}</td>
</tr>
<tr>
<td>x_{21}</td>
<td>x_{22}</td>
<td>x_{23}</td>
</tr>
<tr>
<td>x_{31}</td>
<td>x_{32}</td>
<td>x_{33}</td>
</tr>
<tr>
<td>x_{41}</td>
<td>x_{42}</td>
<td>x_{43}</td>
</tr>
</tbody>
</table>
Symmetry handling: SymChaff [8]

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use **cardinality decision points** over row-interchangeable variables

Cardinality decision of 1 over first column:

<table>
<thead>
<tr>
<th></th>
<th>x_{11}</th>
<th>x_{12}</th>
<th>x_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{21}</td>
<td>x_{22}</td>
<td>x_{23}</td>
<td></td>
</tr>
<tr>
<td>x_{31}</td>
<td>x_{32}</td>
<td>x_{33}</td>
<td></td>
</tr>
<tr>
<td>x_{41}</td>
<td>x_{42}</td>
<td>x_{43}</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry handling: SymChaff [8]

Core idea: search decisions consider row interchangeability

- Only for row interchangeability symmetry
- Keep track of row-interchangeable variables
 - interchangeability reduces under previous choices
- Use **cardinality decision points** over row-interchangeable variables

Cardinality decision of 1 over first column:

<table>
<thead>
<tr>
<th></th>
<th>x_{12}</th>
<th>x_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_{22}</td>
<td>x_{23}</td>
</tr>
<tr>
<td>0</td>
<td>x_{32}</td>
<td>x_{33}</td>
</tr>
<tr>
<td>1</td>
<td>x_{42}</td>
<td>x_{43}</td>
</tr>
</tbody>
</table>
Symmetry handling: SymChaff [8]

Strong performance on pigeonhole

<table>
<thead>
<tr>
<th>Problem</th>
<th>SymChaff</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-008</td>
<td>0.01</td>
</tr>
<tr>
<td>013-012</td>
<td>0.01</td>
</tr>
<tr>
<td>051-050</td>
<td>0.24</td>
</tr>
<tr>
<td>091-090</td>
<td>0.84</td>
</tr>
<tr>
<td>101-100</td>
<td>1.20</td>
</tr>
</tbody>
</table>
Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses
Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses

- Learnt clauses are **logical consequences** of \(\varphi \)
- Whenever \(c \) is a consequence of \(\varphi \), so is \(\sigma(c) \)
- Problem: \(\Sigma(c) \) is huge
 - Learn only \(\sigma(c) \) for \(\sigma \in \text{gen}(\Sigma) \)
Symmetry handling: Symmetric learning [9]

Core idea: consider symmetrical learned clauses

- Learnt clauses are **logical consequences** of φ
- Whenever c is a consequence of φ, so is $\sigma(c)$
- Problem: $\Sigma(c)$ is huge
 - Learn only $\sigma(c)$ for $\sigma \in \text{gen}(\Sigma)$

![Symmetric learning graph](#)
Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses
Symmetry handling: Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

- Learn $\sigma(c)$ that **propagate at least once**
 - symmetries typically permute only a **fraction** of the literals
 - if c is unit, $\sigma(c)$ has a good chance of being unit as well
 - explanation clauses are unit ;-)
Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses
Symmetry handling: Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

- For each $\sigma \in \text{gen}(\Sigma)$, whenever c propagates, store $\sigma(c)$ in a separate clause store θ
 - Propagation on θ happens only if standard unit propagation is at a fixpoint
 - Whenever a $\sigma(c) \in \theta$ propagates, upgrade it to a "normal" learned clause
 - After backjump over c's propagation level, clear $\sigma(c)$ from θ
Symmetry handling: Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

- For each $\sigma \in \text{gen}(\Sigma)$, whenever c propagates, store $\sigma(c)$ in a separate clause store θ
 - Propagation on θ happens only if standard unit propagation is at a fixpoint
 - Whenever a $\sigma(c) \in \theta$ propagates, upgrade it to a "normal" learned clause
 - After backjump over c's propagation level, clear $\sigma(c)$ from θ
- Every learned $\sigma(c)$ is useful & original
- Transitive effect: track $\sigma'(\sigma(c))$ when $\sigma(c)$ propagates
Symmetry handling: Symmetric explanation learning [10]
Symmetry handling: Symmetric explanation learning [10]

Caveat: performance on larger instances
Symmetry handling: Symmetric explanation learning [10]

Caveat: performance on larger instances

What is "complete" symmetrical learning? Can it be done efficiently?
Research trends:

- Symmetry detection on propositional level is hard
 - not a solved problem, cfr. pigeonhole
 - papers often assume **high-level symmetry input** [7] [8]
- Sbf construction based on **canonical labeling** [7] [11]
- Dynamical approaches often perform **lazy clause generation** [6] [10] [12]
- Use computational group algebra to detect symmetry **group structure** [5] [13]

Proof checking and symmetrical learning?
The influence of the variable order on an sbf?
Thanks for listening!
Questions?

7. Bonus: symmetry, local search & maxSAT
Bonus: symmetry, local search & maxSAT

- (Satisfying) assignments now have an associated **score**
Bonus: symmetry, local search & maxSAT

- (Satisfying) assignments now have an associated **score**
- Local search "**moves**" from one to the other based on **structure-preserving transformations**
Bonus: symmetry, local search & maxSAT

- (Satisfying) assignments now have an associated **score**
- Local search "**moves**" from one to the other based on **structure-preserving transformations**
- Designing local moves is typically done **by hand**...
Bonus: symmetry, local search & maxSAT

- (Satisfying) assignments now have an associated score
- Local search "moves" from one to the other based on structure-preserving transformations
- Designing local moves is typically done by hand...

Symmetries form moves!
Can be automatically detected!
Bonus: symmetry, local search & maxSAT

Scatter plot of objective value of knapsack instances (higher is better)
Bonus: symmetry, local search & maxSAT

Scatter plot of objective value of knapsack instances (higher is better)

Symmetry-based local search in weighted maxSAT?