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SAT and QBF

SAT — for a Boolean formula, determine if it is satis�able
Example: (x ∨ y) ∧ (x ∨ ¬y)

x , 1, y , 0
QBF — for a Quanti�ed Boolean formula, determine if it is true
Example: ∀x∃y. (x ↔ y)

Quanti�cations as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:
(1) ∀x∃y. (x ↔ y)
(2) ∀x. (x ↔ 0) ∨ (x ↔ 1)
(3) ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
(4) 1 (True)
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QBF is a strict subset of Bernays�Schön�nkel (EPR)

Consider the QBF:
(∀u∃e)(u↔ e)

1 Introduce a predicate for truth,
2 each existential variable replace by a predicate,
3 universal variables wrapped by the truth predicate:

is-true(t) ∧ ¬is-true(f ) ∧
(∀u)(is-true(u)↔ pe(u))

Alternatively, use equality:
t 6= f ∧ (∀u)((u = t)↔ pe(u))
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Relation to Complexity Theory

P

ΣP
1 = NPΠP

1 = co-NP

ΣP
2ΠP

2

ΣP
3ΠP

3

∃X . φ∀X . φ

∃Y∀X . φ∀Y∃X . φ

∃Z∀Y∃X . φ∀Z∃Y∀X . φ

Deciding QBF is PSPACE complete
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Relation to Two-player Games

In this talk we consider prenex form: Quanti�er-pre�x.Matrix
Example ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

A QBF represents a two-player games between ∀ and ∃.
∀ wins a game if the matrix becomes false.
∃ wins a game if the matrix becomes true.
A QBF is false i� there exists a winning strategy for ∀.
A QBF is true i� there exists a winning strategy for ∃.
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u.
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Why Quanti�ed Boolean Formulas?

“Funamental problem”: PSPACE, 2-player games (�n. space)
Direct applications

I model checking (subproblems)
I (circuit) synthesis
I non-monotonic reasoning
I conformant planning
I . . .

In other reasoners?
I SMT (e.g. Quanti�ed bit vectors)
I optimization with quanti�cation (“MaxQBF”)
I . . .
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Example: Smallest MUS

Given a CNF φ:
~s = {sC | C ∈ φ} are fresh variables
~x are the original variables of φ
k ∈ N
construct the following QBF:

(∃~s ∀~x )

∨
C∈φ

(sC ∧ ¬C)

 ∧ |~s | ≤ k

[Ignatiev et al., 2015]
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Framework à la CDCL

Conceptually backtracking algorithm with
. . . unit propagation
. . . clause learning
. . . order heuristics within the same quanti�er block

run propagation in parallel on φ and ¬φ
φ false if ⊥ derived from φ

φ true if ⊥ derived from ¬φ

[Zhang and Malik, 2002, Klieber et al., 2010, Goultiaeva et al., 2013].
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Propagation in QCNF

remove false existential literal (as in SAT)
remove universal literal that is the innermost w.r.t. pre�x in
the clause

Example: e1

(∃e1e2∀u∃e3)

¬e1 ∨ ∨ ¬e3

¬e2 ∨ u ∨ e3
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Propagation and Learning in QCNF

Example: propagate e1
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Propagation and Learning in QCNF Contd.

(∃e1e2∀u∃e3)

e1 ¬e3 e2

⊥

∀u

∀¬u

e2 ∨ ¬u ∨ e3 ¬e2 ∨ u ∨ e3

¬e1 ∨ ¬e3u ∨ ¬u ∨ e3

¬e1 ∨ u ∨ ¬u
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Long-distance Q-resolution — Remarks

The clause ¬e1 ∨ u ∨ ¬u immediately propagates ¬e1

resolution with complementary universal literals: long-distance
resolution
as a proof system, long-distance resolution requires a side
condition
. . . always sound when obtained in propagation
for semantics see [Suda and Gleiss, 2018]
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Solving by CEGAR Expansion

( ∃~E ∀~U )φ ≡ ( ∃~E )
∧
µ∈2~U φ[µ]

Can be solved by SAT
(∧

µ∈2~U φ[µ]
)
. Impractical!

Observe:

(∃~E) (
∧
µ∈2~U φ[µ])⇒ (∃~E)

∧
µ∈ω φ[µ]

for any ω ⊆ 2~U
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Solving by CEGAR Expansion Contd.

(∃~E ∀~U) φ ≡ (∃~E)
∧
µ∈2~U φ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

Pick τ0 arbitrary assignment to ~E
SAT(¬φ[τ0]) = µ0 assignment to ~U
SAT(φ[µ0]) = τ1 assignment to ~E
SAT(¬φ[τ1]) = µ2 assignment to ~U
SAT(φ[µ0] ∧ φ[µ1]) = τ2 assignment to ~E
After n iterations

(∃~E )
∧
i∈1..n φ[τi]
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Abstraction-Based Algorithm for a Winning Move

Algorithm for ∃∀ [J. and Marques-Silva, 2011]

1 Function Solve((∃~E ∀~U)φ)

2 α← true // start with an empty abstraction

3 while true do
4 τ ← SAT(α) // find a candidate

5 if τ = ⊥ then return ⊥
6 µ← SAT(¬φ[~E ← τ ]) // find a countermove

7 if µ = ⊥ then return τ
8 α← α ∧ φ[~U ← µ] // refine abstraction
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Expansion Continued

The algorithm is non-CNF
The algorithm can be generalized
. . . to arbitrary number of levels by recursion [J. et al., 2012]
. . . non-prenex [J. et al., 2016].
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Results, QBF-Gallery ’14, Application Track
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Careful Expansion: Good Example

(∃x . . . ∀y . . . )(φ ∧ y)
Setting countermove y ← 0 yields false. Stop.
(∃x . . . ∀y . . . )(x ∨ φ)
Setting candidate x ← 1 yields true (impossible to falsify). Stop.
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Careful Expansion: Bad Example

(∃x∀y)(x ↔ y)
1 x ← 1 candidate
2 SAT(¬(1↔ y)) . . . y ← 0 countermove
3 SAT(x ↔ 0) . . . x ← 0 candidate
4 SAT(¬(0↔ y)) . . . y ← 1 countermove
5 SAT(x ↔ 0 ∧ x ↔ 1) . . . UNSAT Stop
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Careful Expansion: Ugly Example

(∃x1x2∀y1y2) ((x1 ↔ y1) ∨ (x2 ↔ y2))
1 x1, x2 ← 0,0
2 SAT(¬(0↔ y1 ∨ ¬0↔ y2)) . . . y1 ← 1, y2 ← 1
3 SAT(x1 ↔ 1 ∨ x2 ↔ 1) . . . x1, x2 ← 0, 1
4 SAT(¬(0↔ y1 ∨ 1↔ y2)) . . . y1 ← 1, y2 ← 0
5 SAT

(
(x1 ↔ 1 ∨ x2 ↔ 1) ∧ (x1 ↔ 1 ∨ x2 ↔ 0)

)
. . .

6 . . .
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Issue

CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)
∨
i∈1..n

xi ↔ yi

BUT: We know that the formula is immediately false if we set
yi ← ¬xi .(

∃x1 . . . xn∀y1 . . . yn.
∨
i∈1..n

xi ↔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

Idea: instead of plugging in constants, plug in functions.
Where do we get the functions?
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Use Machine Learning

[J., 2018]

1 Enumerate some number of candidate–countermove pairs.
2 Run a machine learning algorithm to learn a Boolean function

for each variable in the inner quanti�er.
3 Strengthen abstraction with the functions.
4 Repeat.
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Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.
SAT(x1 ↔ ¬x1 ∨

∨
i∈2..n xi ↔ 1)

After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

Eventually we learn the right functions.
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Current Implementation

Use CEGAR as before.
Recursion to generalize to multiple levels as before.
Re�nement as before.
Every K re�nements, learn new functions from last K samples.
Re�ne with them.
Learning using decision trees by ID3 algorithm.
Additional heuristic: If a learned function still works, keep it.
“Don’t �x what ain’t broke.”
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Current Implementation: Experiments
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Challenges

CNF input harmful because we need to reason about the
negation as well
[Ansótegui et al., 2005, J. and Marques-Silva, 2017]
but CNF preprocessing useful [Biere et al., 2011]

Formulas with sure strategies can be hard to solve
Approach: Machine learning strategies [J., 2018]
Approach: incremental determinization
[Rabe and Seshia, 2016]

Since QBF is a subset of FOL, relation to FOL solvers?
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Summary

QBF natural representation for PSPACE or problems at nth level
of polynomial hierarchy
SAT’s CDCL can be lifted to QBF
An alternative approach: gradually expand quanti�ers and then
call a SAT solver
Experiments show that expansion tends to be better on small
number of quanti�er levels and the other way around.
An important challenge: �nd good winning strategies
One way of tackling: machine learning
Other approaches?
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Thank You for Your Attention!

Questions?
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