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A starting pack for proof complexity
» boring for experts
» skip important topics (maybe) not in this program

» you still have to do your own preliminaries

nevertheless useful, | hope.

2/0



A theory to analyze SAT solvers

Goal: highlight weaknesses of SAT solvers

Methods: mainly lower bounds for proof length
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On UNSAT, solving time > proof length
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Proof system for UNSAT

A polytime machine P(-,-) so that

» Fisin SAT then P(F, r) rejects for every 7
» Fis in UNSAT then P(F, rr) accepts for some

Then 7t is a refutation of F.
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Proof system for UNSAT

A polytime machine P(-,-) so that

» Fisin SAT then P(F, r) rejects for every 7
» Fis in UNSAT then P(F, rr) accepts for some

Then 7t is a refutation of F.

Observe: very similar to NP verifier. But proofs of UNSAT
can be much larger than the formula.

Polysize proofs of UNSAT iff NP = co-NP.



Strength of the proof system

Expressiveness: stronger proofs systems

v

stronger SAT solvers
shorter proofs

hard to use

hard to analyze

v

v

v

Simplicity: weaker proofs systems

» weaker SAT solver
» simpler search space
» better heuristics



Outline

B

. Proof systems and lower bound techniques

— resolution
— cutting planes
— polynomial calculus

Memory and space (quick mention)

Extended resolution and DRAT
Proof search

— bounded width/degree proof search
— non-automatizability



i. resolution proofs
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Resolution proof system
Initial CNF

F=CiACn...ANCy

Rules
Av— B
c (axiom) hd z B ry (resolution step)
Refutation

empty clause — F is UNSAT
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» Length/Size: #clauses in the proof (e.g. 14)
» Width: largest #literals in clauses (e.g. 3)
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CDCL solver and resolution

Theorem (Pipatsrisawat and Darwiche, 2011)

On UNSAT, non-deterministic CDCL solver is
polynomially equivalent to resolution refutations.
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Width

Width complexity of a derivation F + D

min{w s.t. D has a proof from F of width w}

» large width implies large proof length
» small width implies small size
» possible to study using EF games and expansion
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Large width — Large size

Theorem (Ben-Sasson, Wigderson 1999)

Any k-CNF on n variables that requires width w to be
refuted also requires refutations of length at least

(Bt

n
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Large width — Large size

Theorem (Ben-Sasson, Wigderson 1999)

Any k-CNF on n variables that requires width w to be
refuted also requires refutations of length at least

(Bt

n
Width lower bound Q(1) implies size lower bound 22V,
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Small width — small size

Any formula of n variable refutable in width w has a
refutation

» of size n%
» constructible in time n°®)

Proof.

Generates all clauses derivable within width w and check
if the empty clause is reached. O
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Small size AND large width

There are 3-CNFs on » variables that

» require width Q(y/n) to be refuted [BG’99]
» have polynomial size refutation
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Small size AND large width

There are 3-CNFs on » variables that

» require width Q(y/n) to be refuted [BG’99]
» have polynomial size refutation

Cor 1. cannot improve the exponent of lower bound

Qw — k)z)

proof size > exp ( -

Cor 2. The n°®) proof search algorithm can be
inefficient.
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ii. resolution lower bounds 101
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Incidence graph of a CNF

C1: X1V X3V X5
C21 X1V X4V Xg
Cs: X1V X5V Xg
C4I X1V X4V Xg
C5Z x3vY5vx6
Ce : X3V X4V X5
C7Z X2 V X5V Xg
Cg: szXg\/f5
Co : Xy VX3V Xg
ClO X1V X3V Xg

Neighborhood: I'(C) = |Jcec Vars(C)
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CNF formulas with expansion

A CNF formula F is an (r, €)-expander when for every
C < Fwith |C| <,

IT(C)| = (1+e)C|.
Theorem (Ben-Sasson, Wigderson 1999)

An unsatisfiable k-CNF oven n variable which is an
(Q(n), €)-expander requires resolution refutations of
length 24,
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Applications of expansion

Random k-CNFs
Tseitin formulas
”Graph” pigeonhole principle

v

v

v
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Feasible interpolation [Kraji¢ek’97]

Proof system P has feasible interpolation if, given UNSAT

with P-proof 7, computes a total function I(X) so that

I(a) = 0 onlyif A(a, ) is UNSAT
~ |1 onlyif B(a,Z) is UNSAT.

in time/circuit size |7r|O(1).
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Clique vs Coloring formula

Variable sets: graph G, coloring x, vertex set C

» Clique, (G, C) : G has a clique C of size k
» Coloring;, (G, x) : G has a coloring x of size k — 1

Clique, (G, C) A Coloring, (G, x) is unsatisfiable

1G) = 0 onlyif Gis k— 1-colorable
~ |1 onlyif G has the k-clique.
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Clique vs Coloring formula (Il)
The interpolant of Clique, (G, C) A Coloring;, (G, x)

1G) - 0 onlyif Gis k— 1-colorable
~ |1 onlyif G has the k-clique.

has monotone circuit size 2V7. [R’85][AB’97]
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Clique vs Coloring formula (Il)
The interpolant of Clique, (G, C) A Coloring;, (G, x)

1G) - 0 onlyif Gis k— 1-colorable
~ |1 onlyif G has the k-clique.

has monotone circuit size 2V7. [R’85][AB’97]

[Krajicek’97] Resolution has feasible interpolation and
moreover for Clique vs Coloring

» interpolation produces a monotone circuit
» hence, refutation must be large.
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iii. cutting planes
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Defined by [Chvatal et al "89]

» based on integer programming [Gomory ’58]
» cardinality constraints

inéD
i

» PseudoBoolean (E.g. Sat4j, cdcl-cuttingplanes,...)
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CNF encoding

A CNF is turned into a system of linear inequalities
XVYVv -z — x+y+(1-—2z)=>1

A refutation is a proof of the contradiction

0=>1
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Variables: x; € {0,1}
Proof lines: a1x1 +ayxo + -+ ayx, <bwithbanda; € Z

Sum:

>iaixi < A duaixi < A
Dilaa; + pal)x; < aA + BA’

a,peN

Cut:
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CP lower bound using interpolation

From a CP refutation 7t of

Clique, (G, C) A Coloring, (G, x)
we get monotone real circuit of size poly(|r|) for

1G) - 0 onlyif Gis k— 1-colorable
~ |1 onlyif G has the k-clique.

“I(G) requires large monotone real circuits” [Pudlak’97]
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Recent developments

Generalization of interpolation [HP’17][FPPR’17]

Lower bound for ®(log(n))-CNF

Lifting + Communication complexity [GGKS’18]

» Assume F[X] is a k-CNF of width complexity w
» xj «— Ind,, : [m] x {0,1}" — {0,1} with m = n’
» F o Ind", requires CP refutation of size n®®),
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Is CP a good model for PB solvers?

» if inequalities are encoded as CNF, the solver may
behave like resolution

» PB solvers often cannot find short simple CP proofs
[Elffers et al.’18]

» maybe weaker proof system are a tighter model
[Vinyals et al.’18]
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iv. polynomial calculus
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Defined by [CEI’96]

v

algebraic reasoning

polynomial equations, ideal membership
Hilbert’s Nullstellensatz

Grébner basis computation

v

v

v

32/0



CNF encodes as polynomial equations over field [F

XVYv -z — xy(l—2z)=0

» 0 encodes true and 1 encodes false
» boolean axioms xi2 — x; = 0 for each variables x;
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Initial CNF
F=C1/\C2/\.../\Cm—>f1=0f2=0 fm=0

Rules (preserve common boolean roots)

p P q
£ £ 1 F
fi x2—x;  xp  ap+pq “pe

Refutation

no boolean roots— F is UNSAT
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Monomial size: cumulative #monomials in the proof
Degree: largest degree among proof lines

Degree complexity of a PC derivation of p from F

min{d s.t. p has a PC proof from F of degree d}
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Large degree — Large monomial size

Theorem (IPS, 1999)

Any k-CNF on n variables that requires degree d to be
refuted in PC also requires PC refutations of monomial

size at least
(Q(d — k)z)
exp ——

n

Degree lower bound Q(n) implies 22(") monomial size,
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Small degree — small monomial size

Any formula of n variable refutable in degree d has a
refutation

» of size n?

» constructible in time 7°(@)

Proof.

E.g. Buchberger algorithms for Grébner basis
computation, limited to degree d. O
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Small monomial size AND large degree

There are 3-CNFs on » variables that

» require degree ()(4/n) to be refuted [GL’10]
» have polynomial size refutation in PC

Cor 1. cannot improve the exponent of lower bound

Qd - k)z)

monomial size > exp (
n

Cor 2. The n°@ proof search algorithm can be inefficient.

38/



Degree lower bound d

Define linear operator £ over polynomials in [F

» L(f;) =0and L(x? —x;) =0
» if deg (p) < d then ,C(xip) = £(xz£(p))
» L(1) #0

L sets to 0 all polynomials derivable in degree < d, and 1
is not among them.
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Degree lower bound d

Define linear operator £ over polynomials in [F

» L(f;) =0and L(x? —x;) =0
» if deg (p) < d then ,C(xip) = £(xz£(p))
» L(1) #0

L sets to 0 all polynomials derivable in degree < d, and 1
is not among them.

Some form of expansion in the formula allows to define
such operator for large d. [AR’01][GL10][MN’15]
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V. memory issues

(quick mention)
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Clause database

CDCL solvers learn a massive amount clauses.

Too many to be kept in memory:

» remove clauses to make space
» removed clauses may be useful to the proof
» which clauses to keep?

strategy to manage clause database
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Blackboard model

A proof of f from F = f1 A fo A ... A f Of length t is

Bp By ... Bi_1 B
where B; is the content of the blackboard at time i.

» By is emtpy
» B; contains f.

42/0



Proof steps in the “blackboard model”

By By ... By B

At every step i either:
» (axiom download) B; = B; 1 U {f}}
» (erasure) B; < B;_4

» (inference) B; = B, 1 u {g} where B; 1 - g.

If a formula is erased, if needed again must be re-derived.
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Space measures: the “size” of the board

Resolution

» clauses, occurrences of literals
Polynomial calculus:

» monomials, polynomials
Cutting planes

» inequalities, cumulative coefficient bit-lengths
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Questions about space complexity

Theoretical
» Space lower bounds
» Size/Space trade-offs
» Connection between width/degree and space

Practical

» How well does space measure memory in solvers?
» Is it a relevant measure of hardness?
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vi. Extended resolution and DRAT
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DRAT proofs

Resolution proofs capture basic CDCL solvers

» does not capture state-of-the-art pre/in-processing
» too verbose
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DRAT proofs

Resolution proofs capture basic CDCL solvers

» does not capture state-of-the-art pre/in-processing
» too verbose

DRAT proofs [JHB’12][HHW13]

» simulates resolution (hence CDCL generated proofs)
» simulates state-of-the-art pre/in-processing

» more compact

includes description of erasures

stay tuned for next talk.

v

v
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Extended resolution (ER)

ER = Resolution + Extension axiom:
yiolbyvilyv.vily
or equivalently
—yjv Ll vl v by —L; v yjforie[m]

where /; are literals over

» initial variables
» extension variables vy, . . S Yj-1-
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Power of Extended resolution

Strength is connected to proof lines computational power

v

clauses (resolution)

linear inequalities (CP)

polynomial equations (PC)
bounded depth circuits (BD-Frege)
formulas (Frege)

boolean circuits (Extended Frege)

v

v

v

v

v

ER equivalent to Extended Frege, a very strong system
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Unsatisfactory state of affair
DRAT and Extended resolution are equivalent
[JHB’12][KRPH’18]

» no chances of proving unconditional lower bounds
» not many candidates for hard formulas

Impossible to say something relevant about modern SAT
solvers using DRAT/ER as the reference proof system.
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vii. proof search
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Automatizability [Bonet, Pitassi, Raz, 1997]

Proof system P is automatizable when

» there is algorithm A : UNSAT — proofs in P
» A(¢) is a proof of ¢ in P;
» A(¢) runs in time (|¢| + |7t[)°Y;

where 77 is a smallest proof of ¢ in P.
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A tentative approach

Width complexity w — resolution refutation in time #°(®)

Degree complexity d — PC refutation in time n°(@

Are these proof search algorithms efficient?
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A tentative approach

Width complexity w — resolution refutation in time #°(®)

Degree complexity d — PC refutation in time n°(@

Are these proof search algorithms efficient?
These algorithms are tight for worst case [ALN’16]

Formulas with resolution/PC proofs of size n°(1) and
n21) width/degree complexity [BG’99][GL’10]
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Non-Automatizability

Theorem (Alekhnovich, Razborov 2001)

Assuming FPT # W[P], neither resolution nor tree-like
resolution are automatizable.

» original proof has a stronger assumption
» fixed by [EGG '08]
» proved for Polynomial Calculus in [GL'10]
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conclusions
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Summary

1. Proof systems and lower bound techniques

— resolution
— cutting planes
— polynomial calculus

2. Memory and space (quick mention)

3. Extended resolution and DRAT
4. Proof search

— bounded width/degree proof search
— non-automatizability
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Read more...

On the Interplay Between Proof Complexity and SAT
Solving [Nordstréom, ACM SIGLOG 2015]

A (Biased) Proof Complexity Survey for SAT Practitioners
[Nordstrom, SAT 2014]
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The end
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