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A starting
pack for proof complexity

§ boring for experts
§ skip important topics (maybe) not in this program
§ you still have to do your own preliminaries

nevertheless useful, I hope.
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A theory to analyze SAT solvers

Goal: highlight weaknesses of SAT solvers

Methods: mainly lower bounds for proof length

3/8



On UNSAT, solving time ě proof length
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Proof system for UNSAT

A polytime machine Pp¨, ¨q so that

§ F is in SAT then PpF, πq rejects for every π

§ F is in UNSAT then PpF, πq accepts for some π

Then π is a refutation of F.

Observe: very similar to NP verifier. But proofs of UNSAT
can be much
larger than the formula.

Polysize proofs of UNSAT iff NP “ co-NP.
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Strength of the proof system
Expressiveness: stronger proofs systems

§ stronger SAT solvers
§ shorter proofs
§ hard to use
§ hard to analyze

Simplicity: weaker proofs systems

§ weaker SAT solver
§ simpler search space
§ better heuristics
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Outline

1. Proof systems and lower bound techniques
– resolution
– cutting planes
– polynomial calculus

2. Memory and space (quick mention)
3. Extended resolution and DRAT
4. Proof search

– bounded width/degree proof search
– non-automatizability
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i. resolution proofs
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Resolution proof system
Initial
CNF

F “ C1 ^ C2 ^ . . .^ Cm

Rules

Ci
(axiom) A_␣x x_ B

A_ B
(resolution step)

Refutation

... empty clause ÝÑ F is UNSAT
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§ Length/Size: #clauses in the proof (e.g. 14)
§ Width: largest #literals in clauses (e.g. 3)
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CDCL solver and resolution

Theorem (Pipatsrisawat and Darwiche, 2011)

On
UNSAT, non-deterministic CDCL solver
is
polynomially
equivalent
to
resolution
refutations.
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Width

Width
complexity of a derivation F $ D

mintw s.t. D has a proof from F of width wu

§ large width implies large proof length
§ small width implies small size
§ possible to study using EF games and expansion
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Large width Ñ Large size

Theorem (Ben-Sasson, Wigderson 1999)

Any
k-CNF on n variables
that
requires
width w to
be
refuted
also
requires
refutations
of
length
at
least

exp
ˆ

Ωpw´ kq2

n

˙

Width lower bound Ωpnq implies size lower bound 2Ωpnq.
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Small width Ñ small size

Any formula of n variable refutable in width w has a
refutation

§ of size nw

§ constructible in time nOpwq

Proof.

Generates all clauses derivable within width w and check
if the empty clause is reached.
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Small size AND large width
There are 3-CNFs on n variables that

§ require width Ω
`?

n
˘

to be refuted [BG’99]
§ have polynomial size refutation

Cor
1. cannot improve the exponent of lower bound

proof size ě exp
ˆ

Ωpw´ kq2

n

˙

Cor
2. The nOpwq proof search algorithm can be
inefficient.
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ii. resolution lower bounds 101
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Incidence graph of a CNF
C1 : x1 _ x3 _ x5

C2 : x1 _ x4 _ x6

C3 : x1 _ x5 _ x6

C4 : x1 _ x4 _ x6

C5 : x3 _ x5 _ x6

C6 : x3 _ x4 _ x5

C7 : x2 _ x5 _ x6

C8 : x2 _ x3 _ x5

C9 : x2 _ x3 _ x4

C10 x1 _ x3 _ x6

Neighborhood: ΓpCq “
Ť

CPC VarspCq
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CNF formulas with expansion

A CNF formula F is an pr, ϵq-expander when for every
C Ď F with |C| ď r,

|ΓpCq| ě p1` ϵq|C| .

Theorem (Ben-Sasson, Wigderson 1999)

An
unsatisfiable k-CNF oven n variable
which
is
an
pΩpnq, ϵq-expander
requires
resolution
refutations
of
length 2Ωpnq.
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Applications of expansion

§ Random k-CNFs
§ Tseitin formulas
§ ”Graph” pigeonhole principle
§ …

19/8



Feasible interpolation [Krajíček’97]
Proof system P has feasible
interpolation if, given UNSAT

Ap⃗x, y⃗q ^ Bp⃗x, z⃗q

with P-proof π, computes a total function Ip⃗xq so that

Ipαq “

#

0 only if Apα, y⃗q is UNSAT
1 only if Bpα, z⃗q is UNSAT.

in time/circuit size |π|Op1q.
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Clique vs Coloring formula

Variable sets: graph G, coloring χ, vertex set C

§ CliquekpG, Cq : G has a clique C of size k
§ Coloringk´1pG, χq : G has a coloring χ of size k´ 1

CliquekpG, Cq ^Coloringk´1pG, χq is unsatisfiable

IpGq “

#

0 only if G is k´ 1-colorable
1 only if G has the k-clique.
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Clique vs Coloring formula (II)
The interpolant of CliquekpG, Cq ^Coloringk´1pG, χq

IpGq “

#

0 only if G is k´ 1-colorable
1 only if G has the k-clique.

has monotone circuit size 2
4?n. [R’85][AB’97]

[Krajíček’97] Resolution has feasible
interpolation and
moreover for Clique vs Coloring

§ interpolation produces a monotone circuit
§ hence, refutation must be large.
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iii. cutting planes
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Defined by [Chvátal et al ’89]

§ based on integer programming [Gomory ’58]
§ cardinality constraints

ÿ

i

xi ď D

§ PseudoBoolean (E.g. Sat4j, cdcl-cuttingplanes,…)
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CNF encoding

A CNF is turned into a system of linear inequalities

x_ y_␣z ÝÑ x` y` p1´ zq ě 1

A refutation is a proof of the contradiction

0 ě 1
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Variables: xi P t0, 1u

Proof
lines: a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn ď b with b and ai P Z

Sum:
ř

i aixi ď A
ř

i a1
ixi ď A1

ř

ipαai ` βa1
iqxi ď αA` βA1

α, β P N

Cut:
ř

i caixi ď b
ř

i aixi ď t b
c u

c P N
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CP lower bound using interpolation

From a CP refutation π of

CliquekpG, Cq ^Coloringk´1pG, χq

we get monotone
real
circuit of size polyp|π|q for

IpGq “

#

0 only if G is k´ 1-colorable
1 only if G has the k-clique.

“IpGq requires large monotone real circuits” [Pudlák’97]
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Recent developments

Generalization of interpolation [HP’17][FPPR’17]

Lower bound for Θplogpnqq-CNF

Lifting + Communication complexity [GGKS’18]

§ Assume Fr⃗xs is a k-CNF of width complexity w
§ xi ÐÝ Indm : rms ˆ t0, 1um Ñ t0, 1u with m “ nδ

§ F ˝ Indn
m requires CP refutation of size nΘpwq.
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Is CP a good model for PB solvers?

§ if inequalities are encoded as CNF, the solver may
behave like resolution

§ PB solvers often cannot find short simple CP proofs
[Elffers et al.’18]

§ maybe weaker proof system are a tighter model
[Vinyals et al.’18]
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iv. polynomial calculus
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Defined by [CEI’96]

§ algebraic reasoning
§ polynomial equations, ideal membership
§ Hilbert’s Nullstellensatz
§ Gröbner basis computation
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CNF encodes as polynomial equations over field F

x_ y_␣z ÝÑ xyp1´ zq “ 0

§ 0 encodes true and 1 encodes false
§ boolean axioms x2

i ´ xi “ 0 for each variables xi
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Initial
CNF

F “ C1 ^ C2 ^ . . .^ Cm ÝÑ f1 “ 0 f2 “ 0 . . . fm “ 0

Rules (preserve common boolean roots)

f j x2
i ´ xi

p
xi p

p q
αp` βq

α, β P F

Refutation

...
1

no boolean rootsÝÑ F is UNSAT
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Monomial
size: cumulative #monomials in the proof
Degree: largest degree among proof lines

Degree
complexity of a PC derivation of p from F

mintd s.t. p has a PC proof from F of degree du
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Large degree Ñ Large monomial size

Theorem (IPS, 1999)

Any
k-CNF on n variables
that
requires
degree d to
be
refuted
in
PC also
requires
PC refutations
of
monomial
size
at
least

exp
ˆ

Ωpd´ kq2

n

˙

Degree lower bound Ωpnq implies 2Ωpnq monomial size,
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Small degree Ñ small monomial size

Any formula of n variable refutable in degree d has a
refutation

§ of size nd

§ constructible in time nOpdq

Proof.

E.g. Buchberger algorithms for Gröbner basis
computation, limited to degree d.
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Small monomial size AND large degree

There are 3-CNFs on n variables that

§ require degree Ω
`?

n
˘

to be refuted [GL’10]
§ have polynomial size refutation in PC

Cor
1. cannot improve the exponent of lower bound

monomial size ě exp
ˆ

Ωpd´ kq2

n

˙

Cor
2. The nOpdq proof search algorithm can be inefficient.
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Degree lower bound d

Define linear operator L over polynomials in F

§ Lp f jq “ 0 and Lpx2
i ´ xiq “ 0

§ if deg ppq ă d then Lpxi pq “ LpxiLppqq
§ Lp1q ‰ 0

L sets to 0 all polynomials derivable in degree ď d, and 1
is not among them.

Some form of expansion in the formula allows to define
such operator for large d. [AR’01][GL’10][MN’15]
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v. memory issues
(quick mention)
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Clause database

CDCL solvers learn a massive amount clauses.

Too many to be kept in memory:

§ remove clauses to make space
§ removed clauses may be useful to the proof
§ which clauses to keep?

strategy
to
manage
clause
database
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Blackboard model

A proof of f from F “ f1 ^ f2 ^ . . .^ fm of length t is

B0 B1 . . . Bt´1 Bt

where Bi is the content of the blackboard at time i.

§ B0 is emtpy
§ Bt contains f .
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Proof steps in the “blackboard model”

B0 B1 . . . Bt´1 Bt

At every step i either:

§ (axiom
download) Bi “ Bi´1 Y t f ju

§ (erasure) Bi Ď Bi´1

§ (inference) Bi “ Bi´1 Y tgu where Bi´1 $ g.

If a formula is erased, if needed again must be re-derived.
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Space measures: the “size” of the board

Resolution

§ clauses, occurrences of literals

Polynomial calculus:

§ monomials, polynomials

Cutting planes

§ inequalities, cumulative coefficient bit-lengths
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Questions about space complexity

Theoretical

§ Space lower bounds
§ Size/Space trade-offs
§ Connection between width/degree and space

Practical

§ How well does space measure memory in solvers?
§ Is it a relevant measure of hardness?
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vi. Extended resolution and DRAT
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DRAT proofs
Resolution proofs capture basic CDCL solvers

§ does not capture state-of-the-art pre/in-processing
§ too verbose

DRAT proofs [JHB’12][HHW’13]

§ simulates resolution (hence CDCL generated proofs)
§ simulates state-of-the-art pre/in-processing
§ more compact
§ includes description of erasures
§ stay
tuned for next talk.
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Extended resolution (ER)

ER =
Resolution
+
Extension
axiom:

yj Ø ℓ1 _ ℓ2 _ ¨ ¨ ¨ _ ℓm

or equivalently

␣yj _ ℓ1 _ ℓ2 _ ¨ ¨ ¨ _ ℓm ␣ℓi _ yj for i P rms

where ℓi are literals over

§ initial variables
§ extension variables y1, . . . , yj´1.
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Power of Extended resolution

Strength is connected to proof lines computational power

§ clauses (resolution)
§ linear inequalities (CP)
§ polynomial equations (PC)
§ bounded depth circuits (BD-Frege)
§ formulas (Frege)
§ boolean circuits (Extended Frege)

ER equivalent to Extended Frege, a very
strong system
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Unsatisfactory state of affair

DRAT and Extended resolution are equivalent
[JHB’12][KRPH’18]

§ no chances of proving unconditional lower bounds
§ not many candidates for hard formulas

Impossible to say something relevant about modern SAT
solvers using DRAT/ER as the reference proof system.
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vii. proof search
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Automatizability [Bonet, Pitassi, Raz, 1997]

Proof system P is automatizable when

§ there is algorithm A : UNSAT Ñ proofs in P
§ Apϕq is a proof of ϕ in P;
§ Apϕq runs in time p|ϕ| ` |π|qOp1q;

where π is a smallest proof of ϕ in P.
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A tentative approach

Width complexity w Ñ resolution refutation in time nOpwq

Degree complexity d Ñ PC refutation in time nOpdq

Are these proof search algorithms efficient?

These algorithms are tight for worst case [ALN’16]

Formulas with resolution/PC proofs of size nOp1q and
nΩp1q width/degree complexity [BG’99][GL’10]
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Non-Automatizability

Theorem (Alekhnovich, Razborov 2001)

Assuming FPT ‰ WrPs, neither
resolution
nor
tree-like
resolution
are
automatizable.

§ original proof has a stronger assumption
§ fixed by [EGG ’08]
§ proved for Polynomial Calculus in [GL’10]
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conclusions
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Summary

1. Proof systems and lower bound techniques
– resolution
– cutting planes
– polynomial calculus

2. Memory and space (quick mention)
3. Extended resolution and DRAT
4. Proof search

– bounded width/degree proof search
– non-automatizability
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Read more…

On the Interplay Between Proof Complexity and SAT
Solving [Nordström, ACM SIGLOG 2015]

A (Biased) Proof Complexity Survey for SAT Practitioners
[Nordström, SAT 2014]
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The
end
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