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The Satisfiability Problem (SAT)

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?

Can computers solve the SAT problem efficiently?
Mentioned already in Gödel’s famous letter in 1956 to von Neumann
Intense research in TCS ever since early 1970s [Coo71, Lev73]
Now one of Millennium Prize Problems in mathematics [Mil00]
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SAT in Practice

Dramatic progress last 15–20 years on SAT solvers using
conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]

Today routinely used to solve large-scale real-world problems
(100,000s or 1,000,000s of variables)

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best SAT solvers

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Method of reasoning used (resolution) also weak
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Pseudo-Boolean Reasoning to the Rescue?

Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially more powerful in theory

But PB solvers less efficient than CDCL in practice(!?)
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Outline

1 Conflict-Driven Clause Learning
CDCL by Example
Pseudocode and Analysis

2 Conflict-Driven Pseudo-Boolean Solving
Some Preliminaries
Pseudo-Boolean Solving Using Saturation
Pseudo-Boolean Solving Using Division
More About Pseudo-Boolean Reasoning

3 Open Problems and Future Directions

Slides online at www.csc.kth.se/˜jakobn/research/TalkCMO18.pdf
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Conflict-Driven Clause Learning CDCL by Example

Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics
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Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause
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Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump
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Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)
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z
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⊥
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Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Main Loop Pseudocode (High Level)
forever do

if current assignment falsifies clause then
apply learning scheme to derive new clause;
if learned clause empty then output UNSATISFIABLE and exit;
else

add learned clause and backjump
end

else if all variables assigned then output SATISFIABLE and exit;
else if exists unit clause C propagating x to value b ∈ {0, 1} then

add propagated assignment x
C= b

else if time to restart then
remove all variable assignments

else
if time for clause database reduction then

erase (roughly) half of learned clauses in memory
end
use decision scheme to choose assignment x

d= b;
end

end
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Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this
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Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:
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Conflict-Driven Clause Learning Pseudocode and Analysis
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Conflict-Driven Clause Learning Pseudocode and Analysis

Current state of affairs

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)
Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Explore stronger reasoning methods (potential exponential speed-up)

In particular, pseudo-Boolean solving (a.k.a. 0-1 integer
programming) corresponding to cutting planes proof system

Importantly, extends to pseudo-Boolean optimization (won’t talk
about that—instead listen to Daniel Le Berre’s talk in the afternoon)
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Pseudo-Boolean Constraints and Normalized Form

In this talk, “pseudo-Boolean” refers to 0-1 integer linear constraints

Convenient to use non-negative linear combinations of literals, a.k.a.
normalized form ∑

i ai`i ≥ A

coefficients ai: non-negative integers
degree (of falsity) A: positive integer
literals `i: xi or xi (where xi + xi = 1)

(All constraints in what follows assumed to be implicitly normalized)
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict-Driven Search in a Pseudo-Boolean Setting

Want to do “same thing” as CDCL but with linear constraints

Variable assignments
1 Always propagate forced assignment if possible
2 Otherwise make assignment using decision heuristic

At conflict
1 Do conflict analysis to derive new constraint
2 Add new constraint to instance
3 Backjump by rolling back max #assignments so that variable flips
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 19/41
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule [Hoo88, Hoo92]
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Saturation

Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude

x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)
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Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
(
x1

d= 0, x2
C1= 1, x3

C1= 1
)
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

(
x1

d= 0, x2
C1= 1

)
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj
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Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
(
x1

d= 0, x2
C1= 1, x3

C1= 1
)
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
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Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
(
x1

d= 0, x2
C1= 1, x3

C1= 1
)
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
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Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened
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Pseudo-Boolean Conflict Analys

analyzePBconflict(Cconfl, ρ)
while Cconfl not asserting do

`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Creason ← reason(`, ρ);
Creason ← reduceSat(Creason, Cconfl, `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);
Cconfl ← saturate(Cconfl);

end
ρ← removeLast(ρ);

end
return Cconfl;

The need to reduce the reason is new compared to CDCL
Everything else is the same
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Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures
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Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

The Cutting Planes Proof System
Cutting planes as defined in [CCT87] doesn’t use saturation but instead
division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])
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Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
(
x1

d= 0, x2
C1= 1, x3

C1= 1
)
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Conflict immediately!
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Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 31/41



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 31/41



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 31/41



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 31/41



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Round-to-1 Reduction used in RoundingSat

Reduction method used in RoundingSat does max weakening right away

roundToOne(C, `, ρ)
c← coeff (C, `);
foreach literal `j in C do

if `j /∈ ρ and c - coeff (C, `j) then
C ← weaken(C, `j);

end
end
return divide(C, c);

And roundToOne used more aggressively in conflict analysis
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RoundingSat Conflict Analysis

analyzePBconflict(Cconfl, ρ)
while Cconfl contains no or multiple falsified literals on last level do

if no current solver decisions then
output UNSATISFIABLE and terminate

end
`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Cconfl ← roundToOne(Cconfl, `, ρ);
Creason ← roundToOne(reason(`, ρ), `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);

end
ρ← removeLast(ρ);

end
`← literal in Cconfl last falsified by ρ;
return roundToOne(Cconfl, `, ρ);
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Division vs. Saturation

Higher conflict speed when PB reasoning doesn’t help [EN18]

Seems to perform better when PB reasoning crucial [EGNV18]

Keeps coefficients small — can do fixed-precision integer arithmetic

But still equally hard to detect propagation

And still degenerates to resolution for CNF inputs
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Conflict-Driven Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
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Conflict-Driven Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 35/41



Conflict-Driven Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 35/41



Conflict-Driven Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] only learns cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i ai`i ≥ A∑

i : ai>0 `i ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 35/41



Conflict-Driven Pseudo-Boolean Solving More About Pseudo-Boolean Reasoning

Other PB Rules II: Strengthening

Strengthening by example:
Set x = 0 and propagate on constraints

x+ y ≥ 1 x+ z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1

Hence, can deduce constraint x+ y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ` = 0 ⇒

∑
i ai`i ≥ A oversatisfied by amount K

Then can deduce K`+
∑
i ai`i ≥ A+K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .
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Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
Jakob Nordström (KTH) Towards Faster Conflict-Driven Pseudo-Boolean Solving CMO Aug ’18 37/41
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Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution + saturation
4y + 4z + 2w ≥ 4

“Fusion resolution” [Goc17]
a`+

∑
i bi`i ≥ B a`+

∑
i bi`i ≥ B′∑

i bi`i ≥ min{B,B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]
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Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x+ 3y + 2z + w ≥ 3 2x+ 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from resolution + saturation + division
2y + 2z + w ≥ 2
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∑
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Open Problems and Future Directions

Open Problems I: Some Implementation Challenges

1 Degrees of freedom in PB conflict analysis
Skip resolution steps when slack very negative?
How much to weaken?
Learn general PB constraints or more limited form?

2 Efficient propagation detection for PB constraints
3 Assessment of quality of learned constraints
4 Distance to backjump? (Constraint can be asserting at several levels)
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Open Problems and Future Directions

Open Problems II: Some PB Reasoning Challenges

1 Better conflict analysis (also for CDCL)
Is trivial resolution optimal, or can it pay to be smarter?

2 Natural way to recover from bad encodings (e.g., CNF)
3 Efficient and concise PB proof logging
4 Theoretical potential and limitations poorly understood [VEG+18]

Separations of subsystems of cutting planes?
In particular, is division strictly stronger than saturation?

Hear more from Marc Vinyals this afternoon
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Open Problems and Future Directions

Open Problems III: Beyond PB Reasoning

Sometimes very poor performance even on LPs that are rationally
infeasible! (And trivial for mixed integer linear programming solvers)

But sometimes MIP solvers lost when learning from PB constraints
crucial (and when conflict-driven PB solvers shine)

Borrow techniques from (or merge with) MIP?
Stay tuned for Ambros Gleixner’s talk. . .
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Open Problems and Future Directions

Summing up

Conflict-driven search hugely successful SAT solving paradigm

This talk: Survey how to port from CDCL to PB constraints

Potential exponential performance gains haven’t materialized so far
Instead highly nontrivial challenges regarding

Efficient implementation
Theoretical understanding

But no obvious reason why efficient PB solvers should not be possible
(remember CDCL took 50 years)

And in any case lots of fun questions to work on! ,

Thank you for your attention!
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(remember CDCL took 50 years)
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