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Introduction

the answer is YES (without assuming a = c) if the answer to this is
YES

Question
Does N∗ map onto every finite topological space by an open
continuous map (with crowded fibers)

I may not have been the first to show YES for finite T1-spaces

[BH] proved that it suffices to work with finite T0-spaces providing
we have crowded fibers.
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what does this really mean?

the T0 Alexandroff topologies
For a finite tree T we use the topology where, for each t ∈ T ,
t↑ is open and {t} = t↓

Observation
If f : ω∗ → T is onto, open, and continuous, then for t ∈ T \ {∅}

continuous implies Ut = f −1(t↑) is non-empty open,
+ f open implies that f (∂Ut) = t↓ \ {t}
t ¬ s < s ′ ∈ T implies f −1(t) is nwd in the nwd f −1(s)

related to Veksler Problem: Can N∗ have maximal nwd sets?
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branching is also hard

Consider T
•∅H

HH
•t

HH
H

��
�t0 • • t2

• t1

and f : N∗ → T

Then (not previously known to exist in ZFC)

Ut0,Ut1,Ut2 are disjoint (regular) open sets
Ut0 ∪ Ut1 ∪ Ut2 is dense,
(Ut0 ∪ Ut1 ∪ Ut2) ( Ut ( N∗

∂Ut0 = ∂Ut1 = ∂Ut2

Beszhanishvili-Harding used a = c, i.e. madf’s
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now for adf’s

Say that an open U ⊂ N∗ is an adf* if
there is an infinite adf A such that U = UA =

⋃
a∈A a∗

i.e. U is paracompact (and not compact)

a point x is in ∂UA if x ⊂ A+

of course A+ = {X ⊂ N : {a ∈ A : X ∩ a 6=∗ ∅ is infinite}}

A is completely separable if each X ∈ A+ contains* some a ∈ A

Simon: tfae
1. There is no maximal nwd subset of N∗
2. every madf has a completely separable madf refinement
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more adf terminology

Definition
Let A0, . . . ,An be adf’s

1 for X ∈ A0, A0 � X = {a ∩ X : a ∈ A0} \ [N]<ℵ0

2 A1 ≺ A0 if A1 =
⋃
{A1(a) = A1 ∩ [a]ℵ0 : a ∈ A0}

3 A1 ≺+ A0 if also A+
0 ⊂
⋃
{A1(a)

+ : a ∈ A0}
(corresponds to ∂UA0 is nwd in ∂UA1)

4 A1 ≺++ A0 if also each A1(a) is a madf on a

5 A1, . . . ,An is a + -partition of A0 if A+
0 = A+

1 = · · · = A+
n

(corresponds to disjoint open with a common boundary)

every infinite completely separable adf A is + -partitionable and
+ -refinable because c = |{a ⊂∗ X : a ∈ A}| for X ∈ A+
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Some difficulties

Simon and not Simon
1 If for all madf A0 there is A1 ≺+ A0, then there is a

completely separable madf (which is presently unknown)

2 For all madf A, there is an X ∈ A+ such that A � X is
+ -partitionable into any finitely many

3 it is consistent to have a madf that is not + -partitionable

Trivially a = c implies that every madf is + -partitionable and every
madf has a ≺+-refinement.

Questions

1 Do there exist madf’s with

A2 ≺+

A1 ≺+ A0?
2 Can A1 also be +-partitionable?
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1 Do there exist madf’s with A2 ≺+ A1 ≺+ A0?
2 Can A1 also be +-partitionable?
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Proposition

If a = ℵ1 (or a = h = cof ([h]ℵ0)), then A1 ≺+ A0 exists.
but unlikely that |A1| = a so no continuing

Proof.
If A0 = {aα : α ∈ ω1}, then for each α choose an almost disjoint
refinement Xα for ({aβ : β < α})+

so that Xα ∪ {aβ : β < α} is an adf
(using Balcar-Simon tree π-base trick).

Choose a madf A1(aα) on aα so that, for each β < α, each
member of Xβ � aα contains infinitely many members of A1(aα).

Then, for all X ∈ A+
0 , there is a α such that X mod finite contains

a member b of Xα, and so, there is a γ ­ α such that b ∩ aγ is
infinite and contains infinitely many members of A1(aγ).
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constructing a function f : N∗→→ m¬n

Main Lemma

Assume we have adf’s {At : t ∈ m¬n} satisfying for t ∈ m<n

1 A∅ is a madf (although A∅ = {N} is fine)
2
⋃

i<mAt_i ≺++ At (each a ∈ At refined by a madf)
3 {At_i : i < m} is a + -partition of

⋃
i<mAt_i

hence At_i ≺+ At

e.g.
⋃
{At : t ∈ mk} is a madf for each k ¬ n

then {UAt : t ∈ m¬n} codes the desired map

Corollary
If there is a completely separable madf,

then {At : t ∈ m¬n} as above exists for all n,m,

hence N∗ will map onto every m¬n by an open continuous map.
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Question

For which n,m does such a family {At : t ∈ m¬n} exist?
Are there natural ZFC constructions?
Is this equivalent to the existence of a completely separable madf?

Here is a new tree:

Definition

Let Tn,m = m¬n ∪ {t_m : t ∈ m<n} ⊂ (m + 1)¬n

i.e. the subtree of (m + 1)¬n such that having m in the range
makes it a maximal node.
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Lemma (Balcar-Simon)

There is an infinite completely separable adf A.

Lemma

There exist adf’s {At : t ∈ m¬n} satisfying for t ∈ m<n

1 A∅ is a madf (although A∅ = {N} is fine)
2
⋃

i<mAt_i ≺+ At ( a ∈ At NOT refined by a madf)
3 {At_i : i < m} is a + -partition of

⋃
i<mAt_i

still have At_i ≺+ At

Proof.
Same construction except that, for t ∈ m<n and a ∈ At ,⋃

i<mAt_i (a) is a completely separable adf but not mad
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LAST SLIDE!!!

Theorem
There is an open continuous map from N∗ onto Tn,m

Proof.

Start with {At : t ∈ (m + 1)¬n} and for t ∈ m¬n,
Ut = UAt AND UAt_m ⊂ Ut_m =

⋃
a∈At

a∗ \ cl (
⋃

i<m Ut_i )

Loosely speaking: Ut_m absorbs the missing non-madness part of
each a ∈ At and makes up for the fact that we weren’t using a
completely separable madf at each step.

Now for some finite topology!

Tn,m maps onto m¬n by an open continuous map.
Solving the Modal Logic problem.
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