Muchnik degrees and cardinal characteristics

(short version)

André Nies joint with Benoit Monin (Creteil) August 2019

Casa Matemática Oaxaca

NEW ZEALAND

For Z ∈ 2^N let p̄(Z) = lim sup_n |Z∩[0,n]|/n (upper density).
For X, Y ∈ 2^N let d(X, Y) = p̄(X △ Y) (Besicovich pseudo distance).

Definition (Andrews et al., 2013, rephrased) Given an oracle set A let

 $c(A) := \mathbf{d}_H(\{Y \colon Y \leq_{\mathrm{T}} A\}, \text{computable})$

where \mathbf{d}_H is Hausdorff distance $\sup_{Y \leq_T A} \inf_{S \text{ comp. }} d(Y, S)$.

Recall: $c(A) = \mathbf{d}_H(\{Y : Y \leq_T A\}, \text{computable}).$ $c(A) < 1/2 \Leftrightarrow A \text{ computable}. c(A) = 1 \Leftrightarrow A \text{ hyperimmune}.$ c(A) = 1/2 e.g. certain random sets.

Their Γ -question asked whether c(A) > 1/2 implies c(A) = 1.

Theorem (Monin (2016), Logic in Computer Science 2018) c(A) is either 0, or 1/2, or 1. Also $c(A) = 1 \Leftrightarrow \exists f \leq_{\mathrm{T}} A$ $\forall g$ computable, bounded by $2^{(2^n)} \exists^{\infty} n \ f(n) = g(n)$]

- ▶ Brendle and N. (2014) in Logic Blog 2015 entry introduced parameterized cardinal invariants $\mathfrak{b}(p), \mathfrak{d}(p)$ for $p \in [0, 1]$, and discussed classes $\mathfrak{b}(\neq_h^*), \mathfrak{d}(\neq_h^*)$
- ▶ Monin and N. (Logic in Computer Science conference, 2015) connected their recursion theoretic analogs.
- Monin and N. journal paper (submitted) provides dual of the recursion theoretic result and does the analogous ZFC equalities for cardinal characteristics.

Cardinal characteristics and their analogs

Rupprecht in his 2010 thesis studied computability theoretic analogs of cardinal characteristics. We have a binary relation $R \subseteq \mathcal{X} \times \mathcal{Y}$ between sets, or functions. Recall

 $\mathfrak{b}(R) = \min\{|F| : F \subseteq X \land \forall y \in Y \exists x \in F \neg xRy\}$ $\mathfrak{d}(R) = \min\{|G| : G \subseteq Y \land \forall x \in X \exists y \in G xRy\}.$

Variable x ranges over X, and y ranges over Y. One defines the analogous highness properties of Turing oracles

 $\mathcal{B}(R) = \{A : \exists y \leq_{\mathrm{T}} A \,\forall x \text{ computable } [xRy] \}$ $\mathcal{D}(R) = \{A : \exists x \leq_{\mathrm{T}} A \,\forall y \text{ computable } [\neg xRy] \}.$

Note we are negating the set theoretic definitions. Reason: to "increase" a cardinal of the form $\min\{|F|: \phi(F)\}$, we need to introduce via forcing objects y so that $\phi(F)$ no longer holds in an extension model. This forcing corresponding to the construction of a powerful oracle computing a witness for $\neg \phi$.

Analog of Cichoń's diagram (Rupprecht '10, BBNN, '14)

Relations \neq_h^* and \bowtie_p

Let
$$h: \omega \to \omega - \{0, 1\}$$
. For $x \in {}^{\omega}\omega$ and
 $y \in \prod_n \{0, \dots, h(n) - 1\} \subseteq {}^{\omega}\omega$, let
 $x \neq_h^* y \Leftrightarrow \text{ a.e. } n [x(n) \neq y(n)].$

Let $\underline{\rho}(z) = \liminf_n |z \cap n|/n$ for a bit sequence z. Let $\overline{0} \leq p < 1$. For $x, y \in {}^{\omega}2$ let

 $x \bowtie_p y \Leftrightarrow \underline{\rho}(x \leftrightarrow y) > p,$

where $x \leftrightarrow y$ is the set of n such that x(n) = y(n).

Equalities in computability theory

 $\mathcal{D}(\neq_h^*)$: A computes a function y such that for each computable function x < h, one has $\exists^{\infty} n x(n) = y(n)$. $\mathcal{D}(\bowtie_p)$: A computes a bit sequence y such that for each computable set x, one has $\underline{\rho}(x \leftrightarrow y) \leq p$. $\mathcal{B}(\bowtie_p)$: A computes a bit sequence x such that for each computable set y, one has $\underline{\rho}(x \leftrightarrow y) > p$. The following uses the techniques of Monin (2016) and dualises them as well.

Theorem (Monin and N., 2017)

Fix any $p \in (0, 1/2)$. We have

 $\mathcal{D}(\bowtie_p) = \mathcal{D}(\neq^*, (2^{(2^n)}) \text{ and } \mathcal{B}(\bowtie_p) = \mathcal{B}(\neq^*, (2^{(2^n)}).$

The proof is via several intermediate classes.

Function values are viewed as encoding strings; this is where the double exponential comes from.

View the highness properties as mass problems

- ► Instead of classes of Turing oracles we use so-called "mass problems" (i.e. subsets of ω^{ω}).
- ► They are compared via Muchnik (or weak) reducibility: $C \leq_W D$ if $\forall Y \in D \exists X \in C X \leq_T Y$.

Re-define

 $\mathcal{B}(\bowtie_p) = \{ X \in 2^{\mathbb{N}} \colon \forall Y \text{ computable, } \rho(X \leftrightarrow Y) > p \}.$

 $\mathcal{B}(\neq^*,h) = \{ f < h \colon \forall g \text{ computable a.e. } n \left[g(n) \neq f(n) \right] \}.$

Let \leq_S denote uniform reducibility, where the oracle TM is fixed. For the case of \mathcal{B} we have uniform reductions.

Theorem (strengthens half of previous theorem) $\mathcal{B}(\bowtie_p) \equiv_S \mathcal{B}(\neq^*, 2^{(2^n)})$ for each $p \in (0, 1/2)$.

ZFC equalities

 $\mathfrak{d}(\neq_h^*)$ is the least size of a set G of h-bounded functions so that for each function x there is a function y in G such that a.e. $n [x(n) \neq y(n)]$.

 $\mathfrak{d}(\bowtie_p)$ is the least size of a set G of bit sequences so that for each bit sequence x there is a bit sequence y in G so that $\underline{\rho}(x \leftrightarrow y) > p$.

Theorem (Monin and N., 2017)

Fix any $p \in (0, 1/2)$. We have

 $\mathfrak{d}(\bowtie_p) = \mathfrak{d}(\neq^*, (2^{(2^n)}) \text{ and } \mathfrak{b}(\bowtie_p) = \mathfrak{b}(\neq^*, (2^{(2^n)}).$

Question

Is it consistent with ZFC to have $\mathfrak{d}(0) < \mathfrak{d}(1/4)$? To have $\mathfrak{b}(0) > \mathfrak{b}(1/4)$?

Separations of hierarchies

An order function is a function $G \colon \mathbb{N} \to \mathbb{N}$ that is recursive, nondecreasing unbounded.

Theorem (Joe Miller, Khan; Khan and N.)

Let $F, G \in {}^{\omega}\omega$ be order functions such that G >> F. Then $\mathcal{B}(\neq^*, G) \supset \mathcal{B}(\neq^*, F)$ (proper containment).

Khan and Miller used forcing with bushy trees to separate classes of bounded DNR functions. Khan and N. showed these classes correspond to classes $\mathcal{B}(\neq^*,.)$ with similar bounds. Analog in set theory: Kamo - Osuga 2011.

Theorem (Joe Miller, Monin, N.)

Let $F, G \in {}^{\omega}\omega$ be order functions such that G >> F. Then $\mathcal{D}(\neq^*, G) \subset \mathcal{D}(\neq^*, F)$.

E.g., if F(n) = n we can let $G(n) = \exp \exp \exp(n^2)$. Analog in set theory not known at present.

References

- J. Brendle, A. Brooke-Taylor, Keng Meng Ng, and A. Nies. An analogy between cardinal characteristics and highness properties of oracles. In *Proceedings of the 13th Asian Logic Conference: Guangzhou, China*, pages 1–28.
- B. Monin and A. Nies. A unifying approach to the Gamma question. In *Proceedings of Logic in Computer Science* (*LICS*). IEEE press, 2015.
- B. Monin. An answer to the Gamma question, LICS 2018
- B. Monin, A. Nies. Muchnik Degrees and Cardinal Characteristics, available on arXiv (Dec. 2017), forthcoming.
- A. Nies (editor). Logic Blogs 2015, 2016. Available on arXiv.

I acknowledge the Buenos Aires 2013 style file.