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I For Z ∈ 2N let ρ(Z) = lim supn
|Z∩[0,n]|

n
(upper density).

I For X, Y ∈ 2N let d(X, Y ) = ρ(X4Y )
(Besicovich pseudo distance).

Definition (Andrews et al., 2013, rephrased)

Given an oracle set A let

c(A) := dH({Y : Y ≤T A}, computable)

where dH is Hausdorff distance supY≤TA infS comp. d(Y, S)).
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Recall: c(A) = dH({Y : Y ≤T A}, computable).
c(A) < 1/2⇔ A computable. c(A) = 1⇐ A hyperimmune.
c(A) = 1/2 e.g. certain random sets.

Their Γ-question asked whether c(A) > 1/2 implies c(A) = 1.

Theorem (Monin (2016), Logic in Computer Science 2018)

c(A) is either 0, or 1/2, or 1.
Also c(A) = 1⇔ ∃f ≤T A

∀g computable, bounded by 2(2
n)∃∞n f(n) = g(n)]

I Brendle and N. (2014) in Logic Blog 2015 entry introduced
parameterized cardinal invariants b(p), d(p) for p ∈ [0, 1],
and discussed classes b( 6=∗h), d(6=∗h)

I Monin and N. (Logic in Computer Science conference,
2015) connected their recursion theoretic analogs.

I Monin and N. journal paper (submitted) provides dual of
the recursion theoretic result and does the analogous ZFC
equalities for cardinal characteristics.
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Cardinal characteristics and their analogs
Rupprecht in his 2010 thesis studied computability theoretic
analogs of cardinal characteristics. We have a binary relation
R ⊆ X × Y between sets, or functions. Recall

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y ∃x ∈ F ¬xRy}
d(R) = min{|G| : G ⊆ Y ∧ ∀x ∈ X ∃y ∈ GxRy}.

Variable x ranges over X, and y ranges over Y . One defines

the analogous highness properties of Turing oracles

B(R) = {A : ∃y ≤T A ∀x computable [xRy]}
D(R) = {A : ∃x ≤T A ∀y computable [¬xRy]}.

Note we are negating the set theoretic definitions. Reason: to

“increase” a cardinal of the form min{|F | : φ(F )}, we need to

introduce via forcing objects y so that φ(F ) no longer holds in

an extension model. This forcing corresponding to the

construction of a powerful oracle computing a witness for ¬φ.
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Analog of Cichoń’s diagram (Rupprecht ’10, BBNN, ’14)
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Relations 6=∗h and ./p

Let h : ω → ω − {0, 1}. For x ∈ ωω and
y ∈

∏
n{0, . . . , h(n)− 1} ⊆ ωω, let

x 6=∗h y ⇔ a.e. n [x(n) 6= y(n)].

−−−−−−−−−−−−−−−−−−−−−−−−
Let ρ(z) = lim infn |z ∩ n|/n for a bit sequence z.
Let 0 ≤ p < 1. For x, y ∈ ω2 let

x ./p y ⇔ ρ(x↔ y) > p,

where x↔ y is the set of n such that x(n) = y(n).
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Equalities in computability theory
D(6=∗h): A computes a function y such that for each computable
function x < h, one has ∃∞nx(n) = y(n).
D(./p): A computes a bit sequence y such that for each
computable set x, one has ρ(x↔ y) ≤ p.
B(./p): A computes a bit sequence x such that for each

computable set y, one has ρ(x↔ y) > p.

The following uses the techniques of Monin (2016) and
dualises them as well.

Theorem (Monin and N., 2017)

Fix any p ∈ (0, 1/2). We have

D(./p) = D( 6=∗, (2(2n)) and B(./p) = B(6=∗, (2(2n)).

The proof is via several intermediate classes.

Function values are viewed as encoding strings; this is where

the double exponential comes from.
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View the highness properties as mass problems

I Instead of classes of Turing oracles we use so-called
“mass problems” (i.e. subsets of ωω).

I They are compared via Muchnik (or weak)
reducibility: C ≤W D if ∀Y ∈ D∃X ∈ CX ≤T Y .

Re-define

B(./p) = {X ∈ 2N : ∀Y computable, ρ(X ↔ Y ) > p}.

B( 6=∗, h) = {f < h : ∀g computable a.e. n [g(n) 6= f(n)]}.

Let ≤S denote uniform reducibility, where the oracle TM is
fixed. For the case of B we have uniform reductions.

Theorem (strengthens half of previous theorem)

B(./p) ≡S B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).
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ZFC equalities
d(6=∗h) is the least size of a set G of h-bounded functions so
that for each function x there is a function y in G such that
a.e.n [x(n) 6= y(n)].

d(./p) is the least size of a set G of bit sequences so that for
each bit sequence x there is a bit sequence y in G so that
ρ(x↔ y) > p.

Theorem (Monin and N., 2017)

Fix any p ∈ (0, 1/2). We have

d(./p) = d( 6=∗, (2(2n)) and b(./p) = b(6=∗, (2(2n)).

Question

Is it consistent with ZFC to have d(0) < d(1/4)?
To have b(0) > b(1/4)?
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Separations of hierarchies
An order function is a function G : N→ N that is recursive,
nondecreasing unbounded.

Theorem (Joe Miller, Khan; Khan and N.)

Let F,G ∈ ωω be order functions such that G >> F .
Then B(6=∗, G) ⊃ B( 6=∗, F ) (proper containment).

Khan and Miller used forcing with bushy trees to separate

classes of bounded DNR functions. Khan and N. showed these

classes correspond to classes B( 6=∗, .) with similar bounds.

Analog in set theory: Kamo - Osuga 2011.

Theorem (Joe Miller, Monin, N.)

Let F,G ∈ ωω be order functions such that G >> F .
Then D( 6=∗, G) ⊂ D(6=∗, F ).

E.g., if F (n) = n we can let G(n) = exp exp exp(n2).
Analog in set theory not known at present.
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