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» For Z € 2V let p(Z) = limsup,, IZﬂg)m]I (

» For X,V € 2V let d(X,Y) = p(XAY)
(Besicovich pseudo distance).

upper density).

Definition (Andrews et al., 2013, rephrased)

Given an oracle set A let
c(A) :=dy({Y: Y <r A}, computable)

where dy is Hausdorff distance supy . 4 infg comp. d(Y, 5)).

below A

computable




Recall: ¢(A) =dyg({Y: Y <t A}, computable).
¢(A) < 1/2 < A computable. ¢(A) =1 < A hyperimmune.
¢(A) =1/2 e.g. certain random sets.

Their I'-question asked whether ¢(A) > 1/2 implies ¢(A) = 1.

Theorem (Monin (2016), Logic in Computer Science 2018)

c(A) is either 0, or 1/2, or 1.
Alsoc(A)=1<3f <t A
Yg computable, bounded by 22")3%n, f(n) = g(n)]

» Brendle and N. (2014) in Logic Blog 2015 entry introduced
parameterized cardinal invariants b(p),d(p) for p € [0, 1],
and discussed classes b(#7),0(#})

» Monin and N. (Logic in Computer Science conference,
2015) connected their recursion theoretic analogs.

» Monin and N. journal paper (submitted) provides dual of
the recursion theoretic result and does the analogous ZFC
equalities for cardinal characteristics.
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Cardinal characteristics and their analogs

Rupprecht in his 2010 thesis studied computability theoretic
analogs of cardinal characteristics. We have a binary relation
R C X x ) between sets, or functions. Recall

b(R) = min{|F|: FC X A Vy € Y3z € F-zRy}
9(R) = min{|G|:GCY A Vz e XJye GxRy}.

Variable z ranges over X, and y ranges over Y. One defines
the analogous highness properties of Turing oracles

B(R) = {A: 3Jy <t AVzx computable [xRy|}
D(R) = {A: Jz <y AVy computable [~z Ry|}.

Note we are negating the set theoretic definitions. Reason: to
“increase” a cardinal of the form min{|F|: ¢(F')}, we need to
introduce via forcing objects y so that ¢(F') no longer holds in
an extension model. This forcing corresponding to the
construction of a powerful oracle computing a witness for —¢.
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Analog of Cichont’s diagram (Rupprecht ’10, BBNN, "14)
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Relations #; and >,

Let h: w — w — {0,1}. For z € “w and
y e [[,{0,...,h(n) — 1} C“w, let

x #y < ae nlz(n) #yn)l.

Let p(z) = liminf, |z Nn|/n for a bit sequence z.
Let 0 <p< 1. Forzx,ye“2let

T, Y & p(r > y) > p,

where x <> y is the set of n such that z(n) = y(n).



Equalities in computability theory

D(#7): A computes a function y such that for each computable
function = < h, one has 3*°nz(n) = y(n).
D(><p,): A computes a bit sequence y such that for each
computable set z, one has p(z <> y) < p.
B(>p,): A computes a bit sequence x such that for each
computable set y, one has p(z <+ y) > p.
The following uses the techniques of Monin (2016) and
dualises them as well.

Theorem (Monin and N., 2017)
Fix any p € (0,1/2). We have
D(>,) = D(#, (2®7) and B(psy) = B(#*, (227).

The proof is via several intermediate classes.
Function values are viewed as encoding strings; this is where
the double exponential comes from.



View the highness properties as mass problems

» Instead of classes of Turing oracles we use so-called
“mass problems” (i.e. subsets of w*).

» They are compared via Muchnik (or weak)
reducibility: C <y DifVY e DAX e CX < Y.

Re-define
B(r<,) = {X € 2V: VY computable, p(X <> Y) > p}.

B(#*,h) = {f < h: Vg computable a.e. n[g(n) # f(n)]}.

Let <g denote uniform reducibility, where the oracle TM is
fixed. For the case of B we have uniform reductions.

Theorem (strengthens half of previous theorem)
B(<,) =5 B(#£*,22") for each p € (0,1/2).



ZFC equalities

0(#;) is the least size of a set G of h-bounded functions so
that for each function x there is a function y in GG such that

a.en[z(n) # y(n)).

0(><,) is the least size of a set G of bit sequences so that for
each bit sequence x there is a bit sequence y in G so that

p(r < y) > p.
Theorem (Monin and N., 2017)
Fix any p € (0,1/2). We have
0(ep) = 0(#*, (2%) and b(>qy) = b(*, (227).

Question

Is it consistent with ZFC to have 9(0) < 9(1/4)?
To have b(0) > b(1/4)?
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Separations of hierarchies

An order function is a function G: N — N that is recursive,
nondecreasing unbounded.

Theorem (Joe Miller, Khan; Khan and N.)

Let F,G € “w be order functions such that G >> F.
Then B(#£*,G) D B(#*, F) (proper containment).

Khan and Miller used forcing with bushy trees to separate
classes of bounded DNR functions. Khan and N. showed these
classes correspond to classes B(#%,.) with similar bounds.
Analog in set theory: Kamo - Osuga 2011.

Theorem (Joe Miller, Monin, N.)

Let F,G € “w be order functions such that G >> F.
Then D(#*,G) C D(#", F).

E.g., if F'(n) = n we can let G(n) = exp exp exp(n?).
Analog in set theory not known at present.
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