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The main result is joint work with Ralf Schindler.



Forcing axioms

Given a class K of forcing notions and a cardinal , FA(K) is
the following statement:

For every P 2 K and every collection {Di : i < } of dense
subsets of P there is a filter G ✓ P such that G \Di 6= ; for each
i < .

For this talk,  is always !1.
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Classical examples:

• MA!1 is FA!1({P : P ccc}).

• PFA is FA!1({P : P proper}).

• MM (Martin’s Maximum) is FA!1({P : P semiproper})
(equivalently,
FA!1({P : P preserves stationary subsets of !1})).



Theorem (Foreman-Magidor-Shelah, 1984)

(1) MM is a maximal forcing axiom: If P does not preserve
stationary subsets of !1, then FA!1({P}) fails.

(2) MM, and in fact MM++, can be forced assuming the
existence of a supercompact cardinal.

MM++ is the following strong form of MM: For every P
preserving stationary subsets of !1, every {Di : i < !1}
consisting of dense subsets of P and every {⌧i : i < !1}
consisting of P–names for stationary subsets of !1 there is a
filter G ✓ P such that

• G \ Di 6= ; for each i < !1, and
• {⌫ < !1 : (9p 2 G) p �P ⌫ 2 ⌧i} is a stationary subset of
!1 for each i < !1.
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MM++ has many consequences for H(!2):
• p = 2@0 = @2 and there is a simply boldface definable (over

H(!2)) well-order of H(!2) of length !2 (MA!1 [folklore?]
and PFA [Todorčević, Veličković, and Moore], resp.)

• All @1–dense sets of reals are order–isomorphic. (PFA
[Baumgartner])

• There is a 5-element basis for the uncountable linear
orders. (PFA [Moore])

• �1
2 = !2 (MM [Woodin])

• . . .

Empirical fact: MM++ seems to provide a complete theory for
H(!2) modulo forcing (on the other hand, MM, or even MM+!,
does not [Larson]).
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(⇤)

In the 1990’s, Woodin defined and studied the following axiom.1

(⇤): AD holds in L(R) and L(P(!1)) is a P
max

–extension of L(R).

P
max

2 L(R) is the forcing we will define next.

1Most uncredited results about (⇤) that follow are due to Woodin.
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Given ⌘  !1, a sequence (h(M↵, I↵),G↵, j↵,�i : ↵ < �  ⌘) is a
generic iteration (of (M0, I0)) iff

• M0 is a countable transitive model of ZFC⇤ (enough of
ZFC).

• I0 2 M0 is, in M0, a normal ideal on !M0
1 .

• j↵,�, for ↵ < �  ⌘, is a commuting system of elementary
embeddings

j↵,� : (M↵;2, I↵) �! (M� ,2, I�)

• For each ↵ < ⌘, G↵ is a P(!1)M↵/I↵–generic filter over M↵,

j↵,↵+1 : M↵ �! Ult(M↵,G↵)

is the corresponding elementary embedding, and
(M↵+1, I↵+1) = (Ult(M↵,G↵), j↵,↵+1(I↵)).

• If �  ⌘ is a limit ordinal, (M� , I�) and j↵,� (for ↵ < �) is the
direct limit of (h(M↵, I↵),G↵, j↵,↵0i : ↵ < ↵0 < �).



A pair (M, I) is iterable if the models in every generic iteration of
(M, I) are well–founded.

P
max

is the following forcing:

Conditions in P
max

are triples (M, I, a), where
(1) (M, I) is an iterable pair.
(2) M |= MA!1

(3) a 2 P(!1)M and M |= !1 = !L[a]
1 .

Extension relation: (M1, I1, a1) P
max

(M0, I0, a0) iff
(M0, I0, a0) 2 M1 and, in M1, there is a generic iteration
I = (h(M↵, I↵),G↵, j↵,�i : ↵ < �  ⌘) of (M0, I0) for ⌘ = !M1

1
such that
(a) j0,⌘(a0) = a1

(b) I is correct in (M1, I1), in the sense that j0,⌘(I0) ✓ I1 and
every I⌘–positive subset of !M⌘

1 (= !M1

1 ) in M⌘ is
I1–positive.



A pair (M, I) is iterable if the models in every generic iteration of
(M, I) are well–founded.

P
max

is the following forcing:

Conditions in P
max

are triples (M, I, a), where
(1) (M, I) is an iterable pair.
(2) M |= MA!1

(3) a 2 P(!1)M and M |= !1 = !L[a]
1 .

Extension relation: (M1, I1, a1) P
max

(M0, I0, a0) iff
(M0, I0, a0) 2 M1 and, in M1, there is a generic iteration
I = (h(M↵, I↵),G↵, j↵,�i : ↵ < �  ⌘) of (M0, I0) for ⌘ = !M1

1
such that
(a) j0,⌘(a0) = a1

(b) I is correct in (M1, I1), in the sense that j0,⌘(I0) ✓ I1 and
every I⌘–positive subset of !M⌘

1 (= !M1

1 ) in M⌘ is
I1–positive.



Some properties of Pmax under ADL(R):

• Pmax is weakly homogeneous (for all p0, p1 2 Pmax there
are p0

0 Pmax p0 and p0
1 Pmax p1 such that

Pmax � p0
0
⇠= Pmax � p0

1).

• Pmax is �–closed (in particular it does not add new reals).



• If G is Pmax–generic over L(R), then L(R)[G] |= ZFC, and if

AG =
[

{b : (N, J, b) 2 G},

G can be computed in L(R)[AG] as the set �AG of
(M, I, b) 2 Pmax such that there is a correct iteration
(relative to (H(!2),NS!1)) sending b to AG.

If fact, for any A ✓ !1 such that !L[A]
1 = !1, �A can be

computed in L(R)[A], �A is a Pmax–generic filter over L(R),
and

L(R)[�A] = L(R)[G]

In particular, L(R)[G] |= V = L(P(!1)), and so
L(R)[G] |= (⇤) if L(R) |= AD and G is Pmax–generic over
L(R).



• (⇧2 maximality) Assuming enough large cardinals (e.g. a
proper class of Woodin cardinal). If G is Pmax–generic over
L(R), Q is a set–forcing in V , H is Q–generic over V , and
� is a ⇧2 sentence such that

(H(!2),2,NS!1)
V [H] |= �,

then
(H(!2),2,NS!1)

L(R)[G] |= �

• (Completeness modulo set-forcing) Assuming enough
large cardinals (e.g. a proper class of Woodin cardinal).
Let Q0 and Q1 be set-forcings in V , let H0 be Q0–generic
over V and H1 be Q1–generic over V , and let G0 be
PL(RV [H0])

max –generic over L(RV [H0]) and G1 be
PL(RV [H1])

max –generic over L(RV [H1]). Then

Th(L(RV [H0])[G0]) = Th(L(RV [H1])[G1])



Proof of the completeness result: Let � be any sentence and
suppose

L(RV [H0])[G0] |= �

By weak homogeneity of Pmax ,

L(RV [H0]) |= “ �Pmax �”

But the theory of L(R) is invariant under forcing with our
background large cardinals. Hence,

L(RV [H1]) |= “ �Pmax �”

and therefore
L(RV [H1])[G1] |= �

⇤



Some consequences of (⇤):

• p = 2@0 = @2 and there is a simply boldface definable (over
H(!2)) well–order of H(!2) of length !2.

• All @1–dense sets of reals are order–isomorphic.
• There is a 5-element basis for the uncountable linear

orders.

• �1
2 = !2

• . . .

So (⇤) and forcing axioms in the region of MM seem to be
closely related. However, MM+! does not imply (⇤): MM+! is
consistent with a lightface definable well–order, over H(!2), of
H(!2) [Larson], which cannot exist under (⇤). Otherwise by
weak homogeneity of Pmax there would be a well–order of R in
L(R), contradicting ADL(R).
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More consequences of (⇤):

• For every X ✓ !1 such that X /2 L[x ] for any x 2 R there is
a real r and a Coll(!, <!1)–generic filter H over L[r ] such
that L[r ][X ] = L[r ][H].

• For every X ✓ !1 there is Y ✓ !1 such that X 2 L[Y ] and
such that for every Z ✓ !1, if Z \ ↵ 2 L[Y ] for all ↵ < !1,
then Z 2 L[Y ].



(⇤) is NICE

To summarize:
(1) (⇧2–maximality) (⇤) + large cardinals implies that

(H(!2);2,NS!1) satisfies all forcible ⇧2 sentences over
(H(!2);2,NS!1).

(2) (Completeness) (⇤) + large cardinals provides a complete
theory for L(P(!1)), modulo set-forcing.

(3) (Minimality) (⇤) implies that L(P!1) is a “canonical” model;
in fact, of the form L(R)[H] for any r 2 R and any
Coll(!, <!1)–generic H over L[r ].



But in order for (⇤) to be strongly NICE, it would have to be
compatible with all possible large cardinals.

Question (Woodin): Is (⇤) compatible with all possible large
cardinals? Does in fact (⇤) follow from MM++?



The main result

Theorem (A–Schindler)
MM++ implies (⇤).



A related result

Theorem (Todorčević)
Assume all sets of reals in L(R) are universally Baire. If U is a
Ramsey ultrafilter, then U is P(!)/Fin–generic over L(R).



In the rest of the talk, I will sketch the proof of our theorem. As
we will see, the main idea is to use “iterated L–forcing” with
side conditions.



MM++ implies ADL(R) (PFA suffices), so we only need to show
that L(P(!1)) is a P

max

–extension on L(R).

It is well-known that if NS!1 is saturated, MA!1 holds, P(!1)]

exists, and A ✓ !1 is such that !L[A]
1 = !1, then �A is a filter on

P
max

and L(P(!1)) = L(R)[�A].

Since MM++ implies the hypotheses (in fact MM does), it
suffices to assume MM++ and prove that �A is in fact
P

max

–generic over L(R).

So let D 2 L(R) be a dense subset of Pmax . We will prove that
�A \ D 6= ;.

MM++ implies that every set of reals in L(R) is universally Baire
and the class of sets of reals in L(R) is productive, so we may
fix a tree T on ! ⇥ 2@2 such that p[T ] is (a set of reals coding
the members of) D and such that

�Coll(!,!2) “p[T ] codes the members of a dense subset of Pmax ”
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It suffices to show that there is a forcing Q preserving
stationary subsets of !1 and forcing that there is a branch [x , b]
through T such that x codes a member of �A.

Let  = (2@2)+. Let d be Coll(,)–generic over V . In V [d ]
there is a club D ✓  of ordinals above !2 and a ‘diamond
sequence’

(hQ�,B�i : � 2 C)

such that (Q� : � 2 C) is a strictly ✓–increasing and
✓–continuous seq. of transitive elem. submodels of
H()V [d ] = H()V and B� ✓ Q� for all � 2 C.

Enough to show there is in V [d ] a forcing P preserving
stationary subsets of !1 and forcing that there is a branch [x , b]
through T such that x codes a member of �A. (Hence I’ll be
writting V for V [d ].)



P will be P, where

(P� : � 2 C [ {})

is the sequence of forcings defined by letting P� be the set,
ordered under ◆, of finite sets p of sentences, in a suitable
fixed language, such that Coll(!, �) forces that there is a
�–certificate for p.



�–certificates
A �–pre-certificate (relative to (H(!2)V ;2,NSV

!1
,A) and T ) is a

complete set ⌃ of sentences, in a suitable fixed language,
describing finitary information about the following objects.
(1) M0, N0 2 P

max

(2) x = hkn : n < !i, a real coding N0, and h(kn,↵n) : n < !i,
a branch through T .

(3) hMi ,⇡i,j : i  j  !N0
1 i 2 N0, a generic iteration of M0

witnessing N0 P
max

M0.

(4) hNi ,�i,j : i  j  !1i, a generic iteration of N0 such that if

N!1 = (N!1 ;2, I
⇤,A⇤),

then A⇤ = A.



(5) hMi ,⇡i,j : i  j  !1i = �0,!1(hMi ,⇡i,j : i  j  !N0
1 i) and

M!1 = (H(!2)
V ;2,NSV

!1
,A)

(6) K ⇢ !1, and for all � 2 K ,

(a) �� 2 C \ �, and if � < � is in K , then �� < �� and
X� [ {��} ⇢ X�,

(b) X� � (Q�� ;2,P�� ,B��), and

(c) X� \ !1 = �



A �–pre-certificate ⌃ is a �–certificate if, in addition:

(4) For every � 2 K ,

[⌃]<! \ X� \ E 6= ;

for every dense E ✓ P� definable over the structure

(Q��
;2,P��

,B��
)

from parameters in X�.

A condition in P� is a finite set p of sentences such that

�Coll(!,�) “There is a �–certificate ⌃ such that p 2 [⌃]<!”
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• (P� : � 2 C [ {}) is an ✓–increasing and ✓–continuous
seq. of forcings and P ✓ H()V .

• For every � 2 C, P� 6= ;: Let g be Coll(!, !2)-generic over V .
Then

M0 = (H(!2)
V ;2,NSV

!1
)

is a P
max

–condition. Since p[T ] is a dense subset of P
max

in
V [g], there is in V [g] a branch h(kn)n<!, (↵n)n<!i of T with
(kn)n<! coding N0 2 Pmax, together with a correct iteration
I0 = hMi ,⇡i,j : i  j  !N0

1 i 2 N0 of M0 witnessing
N0 P

max

M0.

In V [g], let (Ni ,�i,j : i < j  !1) be a generic iteration of N0.
Let I = (Mi ,⇡i,j : i < j  !1) = �0,!1(I0).
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I lifts to a generic iteration (M+
i ,⇡

+
i,j : i < j  !1) of V . Let

M = M+
!1

and ⇡ = ⇡+
0,!1

. The theory of

hMi ,⇡i,j ,Ni ,�i,j : i < j  !1i, h(kn)n<!, (⇡(↵n))n<!i, hi

is a �–certificate for ;, relative to ⇡((H(!2)V ;2,NSV
!1
,A)) and

⇡(T ), in some outer model. But then there is a �–certificate for
;, relative to ⇡((H(!2)V ;2,NSV

!1
,A)) and ⇡(T ), in MColl(!,⇡(�))

by ⌃1
1–absoluteness, and the same is true in V Coll(!,�), relative

to (H(!2)V ;2,NSV
!1
,A) and T , by elementarity of ⇡. ⇤



• Standard density argument show that if G is P-generic over V
and

hMi ,⇡i,j ,Ni ,�i,j : i < j  !1i, h(kn,↵n) : n < !i, h��,X� : � 2 K i

is the term model given by ⌃ :=
S

G, then

I = hNi ,�i,j : i < j  !1i

is a generic iteration such that
• H(!2)V ✓ N!1 ,

• (P(!1) \ NS!1)
V ✓ P(!1)

N!1 \ IN!1
,

• AN!1
= A, and

• N0 is coded by a real in p[T ].



Crucial lemma
Lemma
If S 2 P(!1)

N!1 \ IN!1
, then S is stationary in V [G].

[This immediately implies that I is correct in V [G] and that P
preserves stationary subsets of V .]

Proof sketch of Lemma: Let Ċ be a P–name for a club, Ṡ a
P–name for set in P(!1)

N!1 \ IN!1
, and p 2 P. Let � 2 C such

that B� codes Ċ \ (P� ⇥ !1) and

(Q�;2,P�, Ċ \ P�) � (H()V ;2,P, Ċ)

Working in collapse W of V with !V
1 < !W

1 , find a P�–generic
filter G over V with p 2 G. Let

hMi ,⇡i,j : i < j < !V
1 i, hNi ,�i,j : i < j < !V

1 i, . . .

be the corresponding objects given by G.



We may extend
hNi ,�i,j : i < j < !V

1 i

to
hNi ,�i,j : i < j < !W

1 i

such that � = !V
1 2 �!V

1 ,!W
1
(Ṡ).

By an elementarity argument as in the proof that P� 6= ;, there
is, in V , some q⇤ P

max

q for which there is some

� 2 K q⇤

which q⇤ enforces to be in Ṡ and such that

�� = �

(For example existence of X� is witnessed by ⇡“Q�.)



But since

(Q�;2,P�, Ċ \ P�) � (H()V ;2,P, Ċ),

by a density argument q⇤ forces that � is a limit point of Ċ, and
hence in Ċ. Clause (4) is used crucially for this:

Given any q0 P q⇤ and ⇠ < �, any –certificate ⌃ for q0 will
contain p 2 X� forcing some ordinal ⇠0 > ⇠ in Ċ (thanks to (4),
since

{r 2 P� : (9⇠0 > ⇠)r �P� ⇠0 2 Ċ}

is a dense set definable over

(Q�;2,P�,B�)

from ⇠ 2 X�). Of course ⇠0 < � since p 2 X� and X� \ !1 = �.
But then p [ q0 is a common extension of p and q0 in P. ⇤



Corollary
MM++ implies the following.

• For every X ✓ !1 such that X /2 L[x ] for any x 2 R there is
a real r and a Coll(!, <!1)–generic filter H over L[r ] such
that L[r ][X ] = L[r ][H].

• For every X ✓ !1 there is Y ✓ !1 such that X 2 L[Y ] and
such that for every Z ✓ !1, if Z \ ↵ 2 L[Y ] for all ↵ < !1,
then Z 2 L[Y ].



Thank you!
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