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Bounding and dominating

Definition
Let κ ≥ ω be a regular cardinal. Let f , g ∈ κκ. f ≤∗ g means that
|{α < κ : g(α) < f (α)}| < κ

Definition
We say that F ⊆ κκ is ∗-unbounded if ¬∃g ∈ κκ∀f ∈ F

[
f ≤∗ g

]
.

Definition
b(κ) = min{|F| : F ⊆ κκ ∧ F is ∗ -unbounded}.

Dilip Raghavan (Joint work with Saharon Shelah) Higher cardinal invariants 3 / 24



Bounding and dominating
Splitting and reaping

Bibliography

Definition
We say that F ⊆ κκ is ∗-dominating if ∀g ∈ κκ∃f ∈ F

[
g ≤∗ f

]
Definition
d(κ) = min {|F| : F ⊆ κκ and F is ∗ -dominating}.

Theorem
For any regular κ ≥ ω, κ+ ≤ cf(b(κ)) = b(κ) ≤ cf(d(κ)) ≤ d(κ) ≤ 2κ

These are the only relations between b(κ) and d(κ) that are provable
in ZFC (Hechler for ω; Cummings and Shelah for κ > ω).

Dilip Raghavan (Joint work with Saharon Shelah) Higher cardinal invariants 4 / 24



Bounding and dominating
Splitting and reaping

Bibliography

Definition
We say that F ⊆ κκ is ∗-dominating if ∀g ∈ κκ∃f ∈ F

[
g ≤∗ f

]
Definition
d(κ) = min {|F| : F ⊆ κκ and F is ∗ -dominating}.

Theorem
For any regular κ ≥ ω, κ+ ≤ cf(b(κ)) = b(κ) ≤ cf(d(κ)) ≤ d(κ) ≤ 2κ

These are the only relations between b(κ) and d(κ) that are provable
in ZFC (Hechler for ω; Cummings and Shelah for κ > ω).

Dilip Raghavan (Joint work with Saharon Shelah) Higher cardinal invariants 4 / 24



Bounding and dominating
Splitting and reaping

Bibliography

When κ > ω, we can also use the club filter.

Definition
Let κ > ω be a regular cardinal. f ≤cl g means that {α < κ : g(α) < f (α)} is
non-stationary. For F ⊆ κκ, we say that:

F is cl-unbounded if ¬∃g ∈ κκ∀f ∈ F
[
f ≤cl g

]
, and

F is cl-dominating if ∀g ∈ κκ∃f ∈ F
[
g ≤cl f

]
.

Definition
We define

bcl(κ) = min{|F| : F ⊆ κκ ∧ F is cl-unbounded},

dcl(κ) = min
{
|F| : F ⊆ κκ and F is cl-dominating

}
.
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Theorem (Cummings and Shelah)

For every regular cardinal κ > ω, b(κ) = bcl(κ).

Theorem (Cummings and Shelah)
If κ ≥ iω is regular, then d(κ) = dcl(κ).

Question
Does d(κ) = dcl(κ), for every regular uncountable κ? In particular, does
d(ω1) = dcl(ω1)?
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Splitting and reaping

Definition

Let κ ≥ ω be regular.

For A,B ∈ P(κ), A splits B if |B ∩ A| = |B ∩ (κ \ A)| = κ.

F ⊆ P(κ) is called a splitting family if ∀B ∈ [κ]κ∃A ∈ F [A splitsB].

s(κ) = min{|F| : F ⊆ P(κ) ∧ F is a splitting family};

Theorem (Solomon)
ω1 ≤ s(ω) ≤ d(ω).
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Theorem (Suzuki)
For a regular κ > ω, s(κ) ≥ κ iff κ is strongly inaccessible and s(κ) ≥ κ+ iff κ
is weakly compact.

So if κ is not weakly compact, then s(κ) < κ+ ≤ b(κ).

Theorem (Zapletal)
If it is consistent to have a regular uncountable cardinal κ such that
s(κ) ≥ κ++, then it is also consistent that there is a κ with o(κ) ≥ κ++.

Theorem (Ben-Neria and Gitik)
If o(κ) = κ++, then there is a forcing extension in which s(κ) = κ++.

However κ does not remain measurable in their model.
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Question
What is the consistency strength of the statement that κ is a measurable
cardinal and s(κ) = κ++?

If κ is supercompact, it is not difficult to produce a model where κ
remains supercompact and s(κ) = κ++.

Dilip Raghavan (Joint work with Saharon Shelah) Higher cardinal invariants 9 / 24



Bounding and dominating
Splitting and reaping

Bibliography

s(ω) and b(ω) are independent.

Theorem (Baumgartner and Dordal)
It is consistent to have s(ω) < b(ω).

Theorem (Shelah)
It is consistent to have ω1 = b(ω) < s(ω) = ω2.
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It turns out the ω is the only regular cardinal for which the statement
b(κ) < s(κ) is consistent.

Theorem (R. and Shelah[1])
For any regular uncountable cardinal κ, s(κ) ≤ b(κ).

The proof of this is surprisingly elementary, relying on two standard
facts.
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Recall the Katětov order on ideals.

Definition
Let I and J be ideals on κ. I is Katětov below J if there is a function
f∗ : κ → κ such that ∀D ∈ I

[
f −1
∗ (D) ∈ J

]
.

The main point in the proof of s(κ) ≤ b(κ) is that if M is a model of (a
sufficient fragment of) set theory, then NSκ ∩M is Katětov below
every κ-complete maximal ideal over M ∩ P(κ).
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Lemma
Let κ > ω be a regular cardinal and M ≺ H(θ), where θ is a sufficiently
large regular cardinal. If there is a set B ∈ [κ]κ such that B⊆∗C for every
club C ∈ M of κ, then M ∩ κκ is bounded.

Proof.
Let 〈βξ : ξ < κ〉 enumerate B in strictly increasing order. Let h : κ → κ be
defined by h(ξ) = βξ+1. We will check that h dominates all of M ∩ κκ.
Consider any f ∈ M ∩ κκ. Then Cf = {ξ < κ : ξ is closed under f } ∈ M and it
is a club in κ. So there exists δ < κ such that B \ δ ⊆ Cf . We will check that
for any α ≥ βδ, h(α) > f (α). We have δ ≤ βδ ≤ α < α + 1 ≤ βα+1. So
βα+1 ∈ Cf , and so f (α) < βα+1 = h(α). a

Dilip Raghavan (Joint work with Saharon Shelah) Higher cardinal invariants 13 / 24



Bounding and dominating
Splitting and reaping

Bibliography

Let κ > ω be regular and suppose that κ+ < s(κ).

Let λ be a cardinal such that κ < λ < s(κ).

Let M ≺ H(θ) be such that λ ⊆ M and |M| = λ (θ is any sufficiently
large regular cardinal). Since M ∩ P(κ) is not a splitting family, there
exists A∗ ∈ [κ]κ which decides every x ∈ M ∩ P(κ) (i.e. either A∗ ⊆∗ x
or A∗ ⊆∗ (κ \ x), where X ⊆∗ Y means |X \ Y | < κ).

Define D to be {x ∈ P(κ) : A∗ ⊆∗ x}.

For any f , g ∈ M ∩ κκ, define f ∼D g iff {α < κ : f (α) = g(α)} ∈ D.

This is an equivalence relation on M ∩ κκ.

For f ∈ M ∩ κκ, let
[
f
]
D = {g ∈ M ∩ κκ : f ∼D g}.

For f , g ∈ M ∩ κκ, define
[
f
]
D <D

[
g
]
D iff {α < κ : f (α) < g(α)} ∈ D.

Let L =
{[

f
]
D : f ∈ M ∩ κκ

}
.
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〈L, <D〉 is a linear order.

In fact, 〈L, <D〉 is a well-order because D is a κ-complete filter on κ
(and because M is closed under various operations).

But we only need to know that the constant functions {[cα]D : α < κ}
have a least upper bound in L, where cα is the function δ 7→ α.

Lemma
Suppose f∗ ∈ M ∩ κκ is such that

[
f∗
]
D ∈ L is a least upper bound of

{[cα]D : α < κ} in 〈L, <D〉. Then for any C ∈ M which is a club in κ,
f −1
∗ (C) ∈ D.

Let B = f ′′∗ A∗. Then B ∈ [κ]κ because
[
f∗
]
D bounds all constant

functions.

Also if C ∈ M is any club of κ, then f ′′∗ A∗ ⊆∗ C.

It follows that M ∩ κκ is bounded.
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We could have chosen M to contain any given F ⊆ κκ with |F | ≤ λ.

So for any cardinal λ such that κ < λ < s(κ), if F ⊆ κκ with |F | ≤ λ,
then F is bounded.

It follows that s(κ) ≤ b(κ).

R. and Shelah also proved that for a supercompact κ, it is consistent
to have κ+ = s(κ) < b(κ) = κ++ (unpublished).

Do a < κ-support iteration 〈Pα; Q̊α : α < κ++〉 so that if α < κ+, then Q̊α
is the forcing for adding a Cohen subset of κ, while if κ+ ≤ α < κ++,
then Q̊α is the forcing for adding a dominating function from κ to κ

Exercise: check that the first κ+ Cohen subsets remain a splitting
family in the end.

Question
Is it possible to have κ+ = s(κ) < b(κ) < 2κ?
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b(ω) and d(ω) are dual to each other.

The dual of s(ω) is r(ω).

Definition
For a family F ⊆ [κ]κ and a set B ∈ P(κ), B is said to reap F if for every
A ∈ F, |A ∩ B| = |A ∩ (κ \ B)| = κ. We say that F ⊆ [κ]κ is unreaped if there
is no B ∈ P(κ) that reaps F.
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F ⊆ [κ]κ is unreaped iff each B ∈ P(κ) is decided by some member of
F.

Definition
r(κ) = min {|F| : F ⊆ [κ]κ and F is unreaped}.

The proof of s(ω) ≤ d(ω) dualizes to the proof of b(ω) ≤ r(ω).

Also r(ω) and d(ω) are independent.

Not clear if there is a good theory of duality at uncountable regular
cardinals too.

For example, Suzuki’s theorem says that s(κ) is small unless κ is
weakly compact.

So we might expect that r(κ) is large below the first weakly compact
cardinal (will be taken up in the next tutorial).
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The proof that for all κ > ω, s(κ) ≤ b(κ) does not dualize.

But the theorem does have a partial dual:

Theorem (R. + Shelah [2])
For all regular cardinals κ ≥ iω, d(κ) ≤ r(κ).

So for sufficiently large κ, s(κ) ≤ b(κ) ≤ d(κ) ≤ r(κ) provably in ZFC.

The proof of this is an application of PCF theory to cardinal invariants.

We use the revised GCH.
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Definition

Let κ and λ be cardinals. Define λ[κ] to be

min
{
|P| : P ⊆ [λ]≤κ and ∀u ∈ [λ]κ∃P0 ⊆ P

[
|P0| < κ and u =

⋃
P0

]}
.

The operation λ[κ] is sometimes referred to as the weak power.

Easy exercise: GCH is equivalent to the statement that for all regular
cardinals κ < λ, λ[κ] = λ.

The revised GCH, which is a theorem of ZFC says that for “lots of
pairs” of regular cardinals we have λ[κ] = λ.
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pairs” of regular cardinals we have λ[κ] = λ.
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Theorem (Shelah; The Revised GCH)

If θ is a strong limit uncountable cardinal, then for every λ ≥ θ, there exists
σ < θ such that for every σ ≤ κ < θ, λ[κ] = λ.

Corollary

Let µ ≥ iω be any cardinal. There exists an uncountable regular cardinal
θ < iω and a family P ⊆

[
µ
]≤θ such that |P| ≤ µ and for each u ∈

[
µ
]θ, there

exists v ∈ P with the property that v ⊆ u and |v| ≥ ℵ0.

This corollary is used with µ = r(κ).
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Actually the proof breaks into two cases and the revised GCH is only
needed in one of the cases.

Definition

Let E2 ⊆ E1 both be clubs in κ. Define
set (E2,E1) =

⋃{[
ξ,NextE1(ξ)

)
: ξ ∈ E2

}
.

The two cases are:
1 There is an unreaped family F ⊆ [κ]κ of minimal cardinality with the

property that there is a club E1 ⊆ κ such that for each club E2 ⊆ E1,
there exists B ∈ F with B ⊆∗ set(E2,E1).

2 For every unreaped family F ⊆ [κ]κ of minimal cardinality, for each club
E1 ⊆ κ, there exist a club E2 ⊆ E1 and a B ∈ F such that
B ⊆∗ (κ \ set(E2,E1)).

The revised GCH is only needed in Case 2.
I do not know if Case 2 can occur when (for example) κ = ℵ1.
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Question
Is d(ℵ1) ≤ r(ℵ1) provable? Is d(κ) ≤ r(κ) provable for all regular κ < iω?

If d(ℵ1) > r(ℵ1), then the corollary from the previous slide must fail for
µ = r(ℵ1).

This is known to imply the existence of large cardinals (e.g. there is a
κ with o(κ) = κ+).

There is an even more basic question.

Question
Is it consistent (relative to large cardinals) that r(ω1) < 2ℵ1?

This is related to an old question of Kunen about bases for uniform
ultrafilters (will be taken up in the next tutorial).
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