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A CLASSICAL EARLY 2OTH 

CENTURY QUESTION

Can you tell the difference between 

“time running forwards” 

and 

“time running backwards”?



MATHEMATICALLY

Let M be a compact smooth manifold and let

� : R⇥M ! M

be a dynamical system (say solving some ODE).



MATHEMATICALLY
Let M be a compact smooth manifold and let

� : R⇥M ! M

be a dynamical system (say solving some ODE).

Since R is commutative we can define

 : R⇥M ! M by setting

 (t, ~x) = �(�t, ~x)

and get another dynamical system with

“Time running backwards.”



Is � ⇠=  ?



DOES YOUR BEST PHYSICAL 
THEORY PROVE THAT TIME RUNS 
FORWARDS?
HOW MANY BAD SCIENCE FICTION BOOKS ABOUT TIME TRAVEL ARE THERE?



WHAT DOES ISOMORPHISM 
MEAN?

Since M is a compact manifold it carries a

smooth volume form � that is absolutely

continuous with respect to Lebesgue measure.

Is there an invertible measure preserving

transformation ✓ that conjugates � to  :
✓�1�✓ =  ?



BY THE ERGODIC THEOREM, 
MEASURE PRESERVING 
TRANSFORMATIONS PRESERVE 
STATISTICAL MEASUREMENTS.



Z   VS.   R

If we let T : M ! M be defined by T = �(1),
then we get a Z-action where the forward vs.

backwards question is whether

T ⇠
=

T�1.



Z   VS.   R

If we let T : M ! M be defined by T = �(1),
then we get a Z-action where the forward vs.

backwards question is whether

T ⇠
=

T�1.

We can go back to an R action from a Z-action
by interpolating using the method of suspensions.

So everything I say applies to R-actions.



A QUESTION OF VON 
NEUMANN

Let (X,B, µ) be a standard measure space. Is

there any invertible measure preserving

transformation where

T 6⇠
=

T�1
?



FIRST EXAMPLE

It was not until 1951 that Anzai gave an

example of a T 6⇠
=

T�1
by inventing the method of

skew-product.



THIS TALK IS GOING TO EXPLAIN 
WHY THIS IS A HARD PROBLEM





Theorem 1 (Main Theorem) There is a com-

putable function

F : {Codes for ⇧0
1-sentences} ! {Codes for computable di↵eomorphisms of T2}

such that:

1. m is the code for a true statement if and only

if F (m) is the code for a computable T , where
T is measure theoretically isomorphic to T�1

;

and

2. For m 6= n, F (m) is not isomorphic to F (n).

The di↵eomorphisms in the range of F are ergodic.
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To appear in a joint paper with J. Gaebler



FOR THOSE OF YOU WHO FORGOT 
YOUR FIRST YEAR LOGIC COURSE

A sentence � in the language LPA = {+, ⇤, 0, 1, <}
is⇧

0
1 if it can be written in the form (8x0)(8x1) . . . (8xn) ,

where  is a Boolean combination of equalities

and inequalities of polynomials in the variables

x0, . . . xn and the constants 0, 1.

These sentences have Goedel numbers: 
“codes”



WHAT IS AN (EFFECTIVELY) 
COMPUTABLE DIFFEOMORPHISM?

We can code a modulus of continuity for a uni-

formly continuous function f : T2 ! T2
by a

g : N ! N such that:

To know f(x, y) up to n-digits it su�ces to

supply me with the first g(n) digits of (x, y).

Moreover the computation of the digits of f(x, y)

is recursive.

A di↵eomorphism is computably C

1
if all of its

di↵erentials are computably continuous.



WHAT IS AN (EFFECTIVELY) 
COMPUTABLE DIFFEOMORPHISM?

A function T : T2 ! T2
is said to be a computable

di↵eomorphism if there exist computable functions

d : N⇥N ! N and f : N⇥ ({0, 1}⇥{0, 1})<N ! N
such that d(k,�) and f(k,�) are the modulus of

continuity and approximation of the k-th di↵eren-

tial of T , respectively.



Computable functions of this form are also

coded by Goedel numbers.



Computable functions of this form are also

coded by Goedel numbers.

Let’s try to see what the  
theorem is saying?
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Time forwards
and backwards



What’s your favorite ⇧0
1 statement?



What’s your favorite ⇧0
1 statement?

Dow: “ZFC + P (!)/fin ⇠
=

P (!1)/fin”
is consistent.



What’s your favorite ⇧0
1 statement?

Dow: “ZFC + P (!)/fin ⇠
=

P (!1)/fin”
is consistent.

Goldstern: “ZFC + !1 < b < s < d < 2

!
”

is consistent.



What’s your favorite ⇧0
1 statement?

Dow: “ZFC + P (!)/fin ⇠
=

P (!1)/fin”
is consistent.

Hrusak: “ZFC + no p-points + no q-points”

is consistent.

Goldstern: “ZFC + !1 < b < s < d < 2

!
”

is consistent.



Other audiences:

1. Riemann Hypothesis

2. Goldbach’s Conjecture



WHAT THE THEOREM SAYS:

There are di↵eomorphisms of the torus

TDow, TGoldstern, THrusak, TRiemann, TGoldbach

such that the question of being isomorphic to their

inverses is equivalent to the corresponding state-

ment.



INDEPENDENCE RESULTS

1. “ZFC is consistent”

2. “ZFC + there is a supercompact cardinal” is

consistent

The question of whether T�
⇠
=

T�1
� is (presumably)

independent of ZFC.



HOW TO CHEAT:

Take two di↵eomorphisms of the torus, S0 and S1

with S0
⇠= S�1

0 and S1 6⇠= S�1
1 .

The choosing the right i, T = Si

works for the Riemann Hypothesis.



BUT WE DIDN’T CHEAT.

Take two di↵eomorphisms of the torus, S0 and S1

with S ⇠= S�1 and T ⇠= T�1.

The choosing the right i, T = Si

works for the Riemann Hypothesis.

The same i doesn’t work for all examples!

Let’s look at the statement of the theorem again.
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Time forwards
and backwards

The diffeo’s faithfully
code the statements



Theorem 1 (Main Theorem) There is a com-

putable function

F : {Codes for ⇧0
1-sentences} ! {Codes for computable di↵eomorphisms of T2}

such that:

1. m is the code for a true statement if and only

if F (m) is the code for a computable T , where
T is measure theoretically isomorphic to T�1

;

and

2. For m 6= n, F (m) is not isomorphic to F (n).

The di↵eomorphisms in the range of F are ergodic.

Time forwards
and backwards

The diffeo’s faithfully
code the statements

Primitive Recursive



REVERSE MATH

<= ACA_0



WHAT ABOUT THE PROOF?







IN ENGLISH (SORT OF)



The proof is an adaptation of a previous result of

Benjy Weiss and I:

Theorem 1 In the space of C1
measure preserv-

ing di↵eomorphisms:

{T : T ⇠
=

T�1}

is complete ⌃

1
1.

Corollary 2

{(S, T ) : S, T ergodic MP di↵eos and S ⇠
=

T}

is not Borel.



This impossibility result answered another ques-
tion asked by von Neumann in a 1931 paper. He
proposed classifying the “statistical behavior” of
smooth systems. Our result shows that this is not
possible.

At least with countable resources



IN PROVING THAT THEOREM

We built a continuous reduction F from the space

TREES to Di↵

1
(T2,�) such that

• T is ill-founded

i↵

• F (T )

⇠
=

F (T )

�1



How do you adapt this to ⇧0
1?

Given a ⇧

0
1 statement 8n you check:

 (0), (1), (2) . . . (n) . . .

You either hit a counterexample ⌦

or you don’t.



1. As long you don’t hit a counterexample you

keep trying to make T ⇠
=

T�1

2. If you do hit a counterexample you start tak-

ing countermeasures.



THE RELEVANT TREES LOOK LIKE 
THIS:



THE ACTUAL PROOF



LOTS OF TECHNICALITIES 
(350 PAGES)

1. Symbolic Shifts

2. Canonical way of building symbolic shifts:
Construction sequences

3. 3 classes

(a) Odometer based systems: easiest to un-
derstand

(b) Circular Systems: Symbolic transforma-
tions of odometer based systems

(c) Di↵eomorphisms: realizable from Cir-
cular Systems



BIG PICTURE



GLOBAL STRUCTURE THEOREM
The classes of odometer based systems and

circular systems naturally form categories. The

morphisms are (roughly) factor maps and isomor-

phisms.

1. The odometer based systems are ubiquitous:

they form a cone in the space of finite entropy

MPTS

2. The circular systems are a tiny slice of MPT

but they are all realizable as di↵eomorphisms.



GLOBAL STRUCTURE THEOREM
Theorem 1 (Modulo Details) The category of odome-
ter based systems is isomorphic (as a category) to
the category of circular systems.

Corollary 2 (modulo vagueness) ALL ergodic be-
havior of finite entropy systems is realized on the
di↵eomorphisms of the torus. For example

1. Distal Height

2. Simplices of invariant measures

3. etc.





MAKING T ISOMORPHIC TO ITS 
INVERSE
This is not so bad:

1. if you make a word w occur frequently in a

typical element of the symbolic system then

a good approximation of the reverse word

should appear frequently.

2. it can’t be too good an approximation or you

can’t make T 6⇠
=

T�1



COUNTERMEASURES
1. To prevent a symbolic shift from being iso-

morphic to its inverse you need to make the

words that appear frequently statistically in-

dependent from their reverses.

2. Building large collections of such words di-

rectly is di�cult (if known)

3. Instead use a finite version of the Law of

Large Numbers to build the words proba-

bilistically: for long words most of the col-

lections of words will have the relevant prop-

erty. (Even if you can’t build such a collec-

tion explicitly.)





Theorem 1 (Main Theorem) There is a com-

putable function

F : {Codes for ⌃1
1-sentences} ! {Codes for computable di↵eomorphisms of T2}

such that:

1. m is the code for a true statement if and only

if F (m) is the code for a computable T , where
T is measure theoretically isomorphic to T�1

;

and

2. For m 6= n, F (m) is not isomorphic to F (n).

The di↵eomorphisms in the range of F are ergodic.

Tim Carlson suggested generalizing this for

lightface ⌃

1
1 subsets of N. This works.



THE METHOD OF OBTAINING 
INDEPENDENCE IS GENERAL (SORT OF)

Any sufficiently concrete continuous reduction between concrete 
Polish spaces is can be adapted to prove such a result.



THANK YOU!


