eI
A IR

Matt Foreman
August 7,2019 Oaxaca, CMO
Research Supported by NSF grant ....

NEERFSULITS

RUS



ALLASNC AP AR JC )
CERFURY OUERS TN

Can you tell the difference between

“time running forwards”

and

“time running backwards’’?
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Let M be a compact smooth manifold and let
O RxM—>M

be a dynamical system (say solving some ODE).
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Let M be a compact smooth manifold and let
o RxM—>M

be a dynamical system (say solving some ODE).

Since R 1s commutative we can define
Y : R x M — M by setting

and get another dynamical system with
“Time running backwards.”
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HOW MANY BAD SCIENCE FICTION BOOKS ABOUT TIME TRAVEL ARE THERE?
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MEANY?

Since M is a compact manifo.

d 1t carries a

smooth volume form )\ that i

s absolutely

continuous with respect to Lebesgue measure.

Is there an invertible measure preserving
transformation # that conjugates ¢ to :

0-100 = 17
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If we let T : M — M be defined by T' = ¢(1),
then we get a Z-action where the forward vs.

backwards question is whether
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If we let T': M — M be defined by T" = ¢(1),
then we get a Z-action where the forward vs.
backwards question is whether

e s

We can go back to an R action from a Z-action
by interpolating using the method of suspenstons.
So everything I say applies to R-actions.



A QUESTION O VON
NEUMANN

Let (X, B, 1) be a standard measure space. Is
there any invertible measure preserving
transformation where

TP 7
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It was not until 1951 that Anzai gave an
example of a T2 T~ ! by inventing the method of
skew-product.
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Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T°}

such that:

1. m 1s the code for a true statement if and only
if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T *;

and
2. Form # n, F(m) is not isomorphic to F'(n).

The diffeomorphisms in the range of F' are ergodic.



Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T*}

such that:

1. m 1s the code for a true statement if and only
if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T *;

and
2. Form # n, F(m) is not isomorphic to F'(n).

The diffeomorphisms in the range of F' are ergodic.

To appear in a joint paper with |. Gaebler
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A sentence ¢ in the language Lps = {4+, *,0,1, <}

is ITY if it can be written in the form (Vag)(Vxy) . .. (Va,)v,
where 1 1s a Boolean combination of equalities

and inequalities of polynomials in the variables

xo, ... T, and the constants 0, 1.

T)}eée Senternces Aave Goea/e/ naméer\f .

y cCodes :



WHAT IS AN (EFFECTIVELY)
COMPUTARBLE DIFFEOMORPHISM?

We can code a modulus of continuity for a uni-
formly continuous function f : T? — T2 by a

g : N — N such that:

To know f(x,y) up to n-digits it suffices to
supply me with the first g(n) digits of (x,y).
Moreover the computation of the digits of f(x,y)
1S recurslive.

A diffeomorphism is computably C°° it all of its
differentials are computably continuous.



WHAT IS AN (EFFECTIVELY)
COMPUTARBLE DIFFEOMORPHISM?

A function T : T? — T? is said to be a computable
diffeomorphism it there exist computable functions
d:NxN—-Nand f: Nx({0,1} x{0, 1)< - N
such that d(k,—) and f(k, —) are the modulus of
continuity and approximation of the k-th differen-
tial of T', respectively.



Computable functions of this form are also
coded by Goedel numbers.



Computable functions of this form are also
coded by Goedel numbers.
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Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T°}

such that:

1. m 1s the code for a true statement if and only
if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T *;

and
2. Form # n, F(m) is not isomorphic to F'(n).

The diffeomorphisms in the range of F' are ergodic.



Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T*}

such that:

1. m 1s the code for a true statement if and only
if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T—!; <

Time forwards
and backwards

and

2. Form # n, F(m) is not isomorphic to F'(n).

The diffeomorphisms in the range of F' are ergodic.



What’s your favorite II) statement?



What’s your favorite II) statement?

Dow: “ZFC + P(w)/fin = P(w1)/ fin”
1S consistent.



What’s your favorite II) statement?

Dow: “ZFC + P(w)/fin = P(w)/ fin”
1S conslistent.

(yoldstern: "ZFC + @, = b <5~ 0< 2
1S consistent.



What’s your favorite II) statement?

Dow: “ZFC + P(w)/fin = P(w)/ fin”
1S conslistent.

(yoldstern: "ZFC + @, = b <5~ 0< 2
1S consistent.

Hrusak: “ZFC + no p-points + no g-points”
1S consistent.




Other audiences:

1. Riemann Hypothesis

2. Goldbach’s Conjecture
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There are diffeomorphisms of the torus

TDowa TGoldsterna THrusaka TRiemanna TGoldbach

such that the question of being isomorphic to their
inverses is equivalent to the corresponding state-
ment.



INDEPENDIEINCE RESUL IS

1. “ZFC 1s consistent”

2. “ZFC + there is a supercompact cardinal” is
consistent

The question of whether Ty = T ' is (presumably)
independent of ZFC.



WY OO CHEAY

Take two diffeomorphisms of the torus, Sy and 5;

with S() — So_l and Sl 7%' Sl_l

The choosing the right 1, T' = S,
works for the Riemann Hypothesis.



BULVVE DI OB

Take two diffeomorphisms of the torus, So and S;
with S= S tand T=T 1.

The choosing the right v, T' = 5;
works for the Riemann Hypothesis.

The same 7 doesn’t work for all examples!
Let’s look at the statement of the theorem again.






Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T*}

such that:

1. m 1s the code for a true statement if and only

if F'(m) is the code for a computable T', where | Time forwards

. . . . g <
T 1s measure theoretically isomorphic to I, and backwards

and

2. Form # n, F(m) is not isomorphic to F'(n). % The diffeo’s faithfully
code the statements

The diffeomorphisms in the range of F' are ergodic.



Theorem 1 (Main Theorem) There is a com-

: ( G 3
putable function Primitive Recursive

\'4

F : {Codes for I1}-sentencest — {Codes for computable diffeomorphisms of T*}

such that:

1. m 1s the code for a true statement if and only
if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T *; <

and

2. Form # n, F(m) is not isomorphic to F'(n). <

Time forwards
and backwards

The diffeo’s faithfully
code the statements

The diffeomorphisms in the range of F' are ergodic.
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Input s, and
set ¢ to 0.

Set G,'+1
to Z/2Z.

yes

Vd

A\

#Seti=i+1

4

/" Is on(Z)
~ true for all

no

Set Gi+1
to {e}, the
trivial group. ‘,

<
-

>
>

.

& Is i < 87

Initialize Wy,
G01 and Qg

|

4

\ __

. no
R

Return W,

l yes

 Build Wiy
and Q;’*‘l for
05 <e

A\

Calculate 2

for 0 < j <.



Input n and set m = 0. — Initialize (€,,) and (€,).

|

Output d(n + 1), yes o

where d is Sj,+1’s -~ Ism>n+17 — Generate W,,,.
- modulus of continuity.
* Calculate the modulus =~ | |

of continuity and . Set m to m + 1. Choose I,,.

approximation of S,,.

~ Calculate (h:, : m < n) :
from (hy, : m < n) <— . Build hy, us- { Calculate o, with [,,.
ing €., and a,.
and (¢,, : m < n).
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The proof is an adaptation of a previous result of
Benjy Weiss and I:

Theorem 1 In the space of C'™° measure preseruv-
ing diffeomorphisms:

e i e
is complete X7 .
Corollary 2
{(5,T):S5,T ergodic MP diffeos and S = T'}

15 not Borel.



This impossibility result answered another ques-
tion asked by von Neumann in a 1931 paper. He
proposed classifying the “statistical behavior” of
smooth systems. Our result shows that this is not
possible.

4 Z /east eorlh cownt dé/e resSources
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We built a continuous reduction F' from the space
TREES to Diff*(T?, \) such that

e 7 is ill-founded
iff



How do you adapt this to I157

Given a IIY statement Vniy you check:

$(0),9(1),9(2) ... ¢(n)...

You either hit a counterexample )
or you don't.



1. As long you don’t hit a counterexample you
keep trying to make T' == T

2. If you do hit a counterexample you start tak-
Ing countermeasures.
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| OTS OF TECHNICALITIES
(350 PAGES)

1. Symbolic Shifts

2. Canonical way of building symbolic shifts:
Construction sequences

3. 3 classes
(a) Odometer based systems: easiest to un-

derstand

(b) Circular Systems: Symbolic transforma-
tions of odometer based systems

(c) Diffeomorphisms: realizable from Cir-
cular Systems
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Codes for
I19-sentences

F

S

Fo

Odometer
Based
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The classes of odometer based systems and
circular systems naturally form categories. The
morphisms are (roughly) factor maps and isomor-
phisms.

1. The odometer based systems are ubiquitous:

they form a cone in the space of finite entropy
MPTS

2. The circular systems are a tiny slice of MPT
but they are all realizable as diffeomorphisms.
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Theorem 1 (Modulo Details) The category of odome-
ter based systems is isomorphic (as a category) to
the category of circular systems.

Corollary 2 (modulo vagueness) ALL ergodic be-

havior of finite entropy systems is realized on the
diffeomorphisms of the torus. For example

1. Daistal Height

2. Simplices of invariant measures

S el






PAAKENG | ISONCORPHIL I S
INVERSE

'This 1s not so bad:

1. if you make a word w occur frequently in a
typical element of the symbolic system then
a good approximation of the reverse word
should appear frequently.

2. 1t can’t be too good an approximation or you
can’t make 7' 2 T—1



COUNTERMEASURES

1. To prevent a symbolic shift from being iso-
morphic to its inverse you need to make the
words that appear frequently statistically in-
dependent from their reverses.

2. Building large collections of such words di-
rectly is difficult (if known)

3. Instead use a finite version of the Law of
Large Numbers to build the words proba-
bilistically: for long words most of the col-
lections of words will have the relevant prop-
erty. (Even if you can’t build such a collec-
tion explicitly.)



o o P o

. .
I
LI L
i 1 P \.u\;.a ...U\W
‘ » "




Tim Carlson suggested generalizing this for
lightface %7 subsets of N. This works.

Theorem 1 (Main Theorem) There is a com-
putable function

F : {Codes fm{ Z%]sentences} — { Codes for computable diffeomorphisms of T}

such that:

1. m 1s the code for a true statement if and only

if F'(m) is the code for a computable T', where
T is measure theoretically isomorphic to T™1;

and
2. Form # n, F(m) is not isomorphic to F(n).

The diffeomorphisms in the range of F' are ergodic.
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Any sufficiently concrete continuous reduction between concrete
Polish spaces is can be adapted to prove such a result.



THANKYOU!



