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Overview

§ We study a new approach to topologies on 2κ generalizing the bounded
topology

§ These topologies are generated by ideals

§ The setting is connected with cardinal characteristics for 2κ

§ This is joint work with Peter Holy, Marlene Koelbing and Wolfgang Wohofsky
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Ideal topologies

Definition

The bounded topology on 2κ has the basic clopen sets

Nt “ tx P 2κ | t Ď xu,

where t P 2ăκ.

Let κ be a regular and uncountable cardinal. Let NSκ denote the non-stationary
ideal on κ. In a nutshell, the I-topology is obtained from the bounded topology by
working with a ăκ-closed ideal containing NSκ.

Definition

Let FunI “ tf : AÑ 2 | A P Iu. The I-topology on 2κ has the basic clopen sets

rf s “ tg P 2κ | f Ď gu,

where f P FunI .

Some, but not all of our results also apply to the generalized Baire space κκ rather
than 2κ.
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Some basic observations

Fact

§ The I-topology refines the bounded topology.

§ The basis of the I-topology has size 2κ.

§ There are 22κ many I-open sets.

Proposition (Baire category theorem for ideal topologies)

The intersection of κ many I-open dense sets is I-dense.

On the other hand, the I-topology cannot be characterized by converging sequences.

An ideal on κ is called tall if every unbounded subset of κ contains an unbounded
subset in I. For instance, any ideal I Ě NSκ is tall.

Proposition

Assume that I is tall. Then every I-convergent sequence (of any length) is eventually
constant.
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How does the hierarchy of I-Borel sets look like?
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A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an
interesting structure theory of I-Borel sets.

For x P 2κ, let x‖A “ txæA | A P Iu be the ideal on FunI generated by x.

Proposition

If T Ď FunI , then
rT s “ tx P 2κ | x‖I Ď FunIu

is an I-closed subset of 2κ. Conversely, every I-closed subset of 2κ is of the form rT s
for some T Ď FunI that is closed under restrictions.

Proof.

If X Ď 2κ is I-closed, let

T “ tx‖A | x P X ^A P NSκu.

If x P X, then clearly x‖I Ď T . Now take x R X. Since X is I-closed, there is A P I
with X X rxæAs “ H. But then xæA R T , hence also x‖I Ę T .

The first statement of the proposition is verified similarly.

6 / 23



A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an
interesting structure theory of I-Borel sets.

For x P 2κ, let x‖A “ txæA | A P Iu be the ideal on FunI generated by x.

Proposition

If T Ď FunI , then
rT s “ tx P 2κ | x‖I Ď FunIu

is an I-closed subset of 2κ. Conversely, every I-closed subset of 2κ is of the form rT s
for some T Ď FunI that is closed under restrictions.

Proof.

If X Ď 2κ is I-closed, let

T “ tx‖A | x P X ^A P NSκu.

If x P X, then clearly x‖I Ď T . Now take x R X. Since X is I-closed, there is A P I
with X X rxæAs “ H. But then xæA R T , hence also x‖I Ę T .

The first statement of the proposition is verified similarly.

6 / 23



A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an
interesting structure theory of I-Borel sets.

For x P 2κ, let x‖A “ txæA | A P Iu be the ideal on FunI generated by x.

Proposition

If T Ď FunI , then
rT s “ tx P 2κ | x‖I Ď FunIu

is an I-closed subset of 2κ. Conversely, every I-closed subset of 2κ is of the form rT s
for some T Ď FunI that is closed under restrictions.

Proof.

If X Ď 2κ is I-closed, let

T “ tx‖A | x P X ^A P NSκu.

If x P X, then clearly x‖I Ď T . Now take x R X. Since X is I-closed, there is A P I
with X X rxæAs “ H. But then xæA R T , hence also x‖I Ę T .

The first statement of the proposition is verified similarly.

6 / 23



An I-open set that is not I-Fσ

Let U “ tx P 2κ | x Ď κ is unboundedu. Note that U is I-open.

Proposition

U is not I-Fσ, i.e. no κ-union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. U “
Ť

αăκrTαs, with each Tα Ď FunI . We
inductively construct an unbounded subset of κ which is not in U . We say that
f P FunI is bounded in κ if tγ ă κ | fpγq “ 1u is.

Starting with f0 “ H, we construct a continuous and increasing κ-sequence of
bounded fα’s so that fα`1pγq “ 1 for some γ ě α, and so that fα`1 R Tα for all
α ă κ: If some Tα contained all bounded extensions of fα, then rTαs would have to
contain a bounded set. In the end, f “

Ť

αăκ fα is an unbounded subset of κ which
is not in U , yielding our desired contradiction.

One can show similarly that the set of clubs in κ is not I-Fσ, for I “ NSκ.

7 / 23



An I-open set that is not I-Fσ

Let U “ tx P 2κ | x Ď κ is unboundedu. Note that U is I-open.

Proposition

U is not I-Fσ, i.e. no κ-union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. U “
Ť

αăκrTαs, with each Tα Ď FunI . We
inductively construct an unbounded subset of κ which is not in U . We say that
f P FunI is bounded in κ if tγ ă κ | fpγq “ 1u is.

Starting with f0 “ H, we construct a continuous and increasing κ-sequence of
bounded fα’s so that fα`1pγq “ 1 for some γ ě α, and so that fα`1 R Tα for all
α ă κ: If some Tα contained all bounded extensions of fα, then rTαs would have to
contain a bounded set. In the end, f “

Ť

αăκ fα is an unbounded subset of κ which
is not in U , yielding our desired contradiction.

One can show similarly that the set of clubs in κ is not I-Fσ, for I “ NSκ.

7 / 23



An I-open set that is not I-Fσ

Let U “ tx P 2κ | x Ď κ is unboundedu. Note that U is I-open.

Proposition

U is not I-Fσ, i.e. no κ-union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. U “
Ť

αăκrTαs, with each Tα Ď FunI . We
inductively construct an unbounded subset of κ which is not in U . We say that
f P FunI is bounded in κ if tγ ă κ | fpγq “ 1u is.

Starting with f0 “ H, we construct a continuous and increasing κ-sequence of
bounded fα’s so that fα`1pγq “ 1 for some γ ě α, and so that fα`1 R Tα for all
α ă κ: If some Tα contained all bounded extensions of fα, then rTαs would have to
contain a bounded set. In the end, f “

Ť

αăκ fα is an unbounded subset of κ which
is not in U , yielding our desired contradiction.

One can show similarly that the set of clubs in κ is not I-Fσ, for I “ NSκ.

7 / 23



An I-open set that is not I-Fσ

Let U “ tx P 2κ | x Ď κ is unboundedu. Note that U is I-open.

Proposition

U is not I-Fσ, i.e. no κ-union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. U “
Ť

αăκrTαs, with each Tα Ď FunI . We
inductively construct an unbounded subset of κ which is not in U . We say that
f P FunI is bounded in κ if tγ ă κ | fpγq “ 1u is.

Starting with f0 “ H, we construct a continuous and increasing κ-sequence of
bounded fα’s so that fα`1pγq “ 1 for some γ ě α, and so that fα`1 R Tα for all
α ă κ: If some Tα contained all bounded extensions of fα, then rTαs would have to
contain a bounded set. In the end, f “

Ť

αăκ fα is an unbounded subset of κ which
is not in U , yielding our desired contradiction.

One can show similarly that the set of clubs in κ is not I-Fσ, for I “ NSκ.

7 / 23



The club filter is not I-Borel

Let I “ NSκ. Note first that the club filter is both I-dense and co-dense. Similar to
the Baire category theorem, one can show that every κ-intersection of I-open dense
sets contains both an element of the club filter, and of the nonstationary ideal.

By a similar argument as for the bounded topology, the club filter cannot have the
I-Baire property.

Lemma

For I “ NSκ, the club filter doesn’t have the I-Baire property. In particular, it’s not
I-Borel.
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What’s the relation between I-meager and meager?
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I-meager sets

From now on, let I “ NSκ. Recall:

Definition

§ A subset A of 2κ is I-nowhere dense if for each f P FunI , there’s some g P FunI
with f Ď g and rgs XA “ H.

§ A is I-meager if it is a κ-union of I-nowhere dense sets.

§ A has the I-Baire property if it is of the form U4M , where U is I-open and M
is I-meager.

We call the sets rf s I-cones. By the Baire category theorem, these are not I-meager.

Basic properties of I-nowhere dense sets:

§ every set of size ă 2κ is I-nowhere dense

§ there is an I-nowhere dense set of size 2κ:

tx P 2κ | xpαq “ xpα` 1q for each even α ă κu.
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I-meager versus meager

If f P FunI and |dompfq| “ κ, then rf s is closed nowhere dense. Hence:

Proposition

There is a meager set which is not I-meager.
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I-meager versus meager

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or ♦κ holds.

Then every comeager set contains an I-cone rf s:

For ~D “ xDα | α ă κy open dense Df P FunI rf s Ď
č

αăκ

Dα.

The assumption holds for all successor cardinals κ “ λ` with λ ą ω and 2λ “ λ` by
a result of Shelah from 2007.

12 / 23



I-meager versus meager

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or ♦κ holds.
Then every comeager set contains an I-cone rf s:

For ~D “ xDα | α ă κy open dense Df P FunI rf s Ď
č

αăκ

Dα.

The assumption holds for all successor cardinals κ “ λ` with λ ą ω and 2λ “ λ` by
a result of Shelah from 2007.

12 / 23



I-meager versus meager

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or ♦κ holds.
Then every comeager set contains an I-cone rf s:

For ~D “ xDα | α ă κy open dense Df P FunI rf s Ď
č

αăκ

Dα.

The assumption holds for all successor cardinals κ “ λ` with λ ą ω and 2λ “ λ` by
a result of Shelah from 2007.

12 / 23



I-meager versus meager

Lemma

Assume κ is inaccessible or ♦κ holds. For any ~D “ xDi | i ă κy open dense
Df P FunI rf s Ď

Ş

iăκ

Di.

Theorem

Assume that I Ě NSκ and the conclusion of the lemma holds. If A has the Baire
property, then “A is I-meager” implies “A is meager”.

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not
I-meager.

Since A has the Baire property, there is an s P Funbdκ such that AX rss is comeager
in rss, i.e. there is ~D “ xDα | α ă κy open dense, with

Ş

αăκDα X rss Ď A.

By our assumption, there exists f Ě s, f P FunI with rf s Ď
Ş

αăκDα X rss Ď A.
Thus A is not I-meager.
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I-meager versus meager

Lemma

Assume κ is inaccessible or ♦κ holds. For any ~D “ xDi | i ă κy open dense
Df P FunI rf s Ď

Ş

iăκ

Di.

Proof sketch, part 1.

Fix a ♦κ-sequence ~A “ xAα | α ă κy, that is, for every A Ď κ, there is a stationary
set of α’s with Aα “ AX α.

Assume that ~D is decreasing. By induction on i ă κ, we define

§ a continuous Ď-increasing sequence ~f “ xfi | i ă κy of functions in Funbdκ , such
that rfi`1s Ď Di for every i ă κ, and

§ a club subset C “ tαj | j ă κu of κ that is disjoint from dompfiq for each i ă κ.

Let f0 “ s, and pick α0 ą suppdompsqq.

14 / 23
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Proof sketch, part 2.

Let i ă κ, and assume that xαj | j ď iy and fi P Funbdκ are defined.

Using that Di is open dense, pick h0
i P Funbdκ such that

§ h0
i extends fi,

§ h0
i pαjq “ Aipjq for j ă i,

§ h0
i pαiq “ 0, and

§ rh0
i s Ď Di.

Now pick h1
i P Funbdκ such that

§ h1
i extends h0

i on domph0
i qztαiu,

§ h1
i pαiq “ 1, and

§ rh1
i s Ď Di.

Let fi`1 “ h1
i æ pdomph

1
i qztαj | j ď iuq, and pick some αi`1 ą suppdompfi`1qq.

Given x P rf s, let A “ ti ă κ | xpαiq “ 1u. Let i ă κ with AX i “ Ai by ♦κ.

By the construction of fi`1, we have x P rh0
i s Ď Di or x P rh1

i s Ď Di. So x is in the
intersection of the Di, as desired.
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I-meager versus I-nowhere dense

A similar argument shows the following:

Lemma

Let I “ NSκ. Assume that κ is inaccessible or ♦κ holds. Then for every f P FunI ,
every κ-intersection of I-open dense sets contains an I-cone rgs with f Ď g.

Theorem

Assume that κ is inaccessible or ♦κ holds. Then every I-meager set is I-nowhere
dense.

Proof.

Suppose that A is disjoint from U “
Ş

iăκ Ui, where each Ui is I-open dense. Now
take any I-cone rf s. By the lemma, we can find an I-cone rgs Ď rf s disjoint from U .
Hence A is not dense in rf s.
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I-meager versus meager

For a, y P rκsκ, we say that a splits y if aX y and pκzaq X y are of size κ.

Definition

A reaping family on κ is a set R Ď rκsκ such that
no a P rκsκ splits all y P R.

rpκq is the smallest size of a reaping family on κ.

Theorem (κ inaccessible)

Assume rpκq “ 2κ.
Then there is an I-nowhere dense set which is not meager.
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I-meager versus meager

Theorem (κ inaccessible)

Assume rpκq “ 2κ.
Then there is an I-nowhere dense set which is not meager.

Let Funubκ denote the set of partial functions from κ to 2 with |dompfq| “ κ.

Definition

R is the smallest size of a family F Ď Funubκ such that
Ť

fPF
rf s “ 2κ. (Call this a cone

covering family.)

Lemma (|2ăκ| “ κ)

R “ r.

Lemma (κ inaccessible)

R is the smallest size of a family F Ď Funubκ such that
Ť

fPF
rf s is comeager.
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Lemma (|2ăκ| ď κ`)

R “ r.

Proof.

A strong reaping family at κ is a set R Ď ubκ such that for every a Ď κ, there is is
b P R for which either aX b “ H or bza “ H. Let r˚pκq be the cardinality of a
smallest strong I-reaping family.

If F is a reaping family, then txzy | x P F , y P rκsăκu is a strong reaping family. So
r˚pκq “ rpκq.

Rpκq ď r˚pκq: Let F be a strong reaping family at κ. Let cAx denote the function
with domain A and constant value x.

Then tcbi | b P F , i P 2u is a cone covering family for 2κ: For every x P 2κ, there is
b P F and i P 2 such that x´1

piq X b “ H. So x P rcb1´is.

r˚pκq ď Rpκq: Let C be a cone covering family at κ. Let

F :“ tf´1
piq | f P C, i P 2u X ubκ.

For any a Ď κ, there is f P C with χa P rf s. Then f´1
pt0uq X a “ H and

f´1
pt1uq X pκzaq “ H.

Since dompfq P ubκ, f´1
pt0uq or f´1

pt1uq is unbounded and hence in F .
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I-meager versus meager

Remark

Assume that κ is inaccessible. If nonpMq ă 2κ or rpκq “ 2κ, then we’ve seen that
there’s a non-meager set which is I-nowhere dense.

The missing case is rpκq ă nonpMq “ 2κ. It’s open whether this configuration is
consistent:

§ rpκq ă 2κ is consistent for various κ (see Dilip’s talk).

§ bpκq ď rpκq holds for all regular κ. Moreover by Raghavan and Shelah (2018):
dpκq ď rpκq for regular κ ě iω.

§ Brendle, Brooke-Taylor, Friedman and Montoya (2016) ask whether

bpκq ă nonpMq

is consistent for inaccessibles. This seems to be open (and possibly harder) for
successor cardinals κ with κăκ “ κ as well.
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Some open questions

Question

What’s the length of the I-Borel hierarchy?

Question

Let κ “ ω1 and I “ NSκ. Is it consistent that there is a set A with the Baire property
which is I-meager, but not meager? (So ♦ has to fail.)

Question

Is there always am I-nowhere dense set without the I-Baire property?

Question

Is it consistent that rpκq ă nonpMq “ 2κ?

Question

Is it consistent that the covering number of I-meager sets is ă 2κ?
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Thank you!
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