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We study a new approach to topologies on 2% generalizing the bounded
topology

These topologies are generated by ideals
The setting is connected with cardinal characteristics for 2"
This is joint work with Peter Holy, Marlene Koelbing and Wolfgang Wohofsky
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Ideal topologies

Definition

The bounded topology on 2 has the basic clopen sets
Ny ={ze2"|tcua}

where t € 2<%,

Let k be a regular and uncountable cardinal. Let NS, denote the non-stationary
ideal on k. In a nutshell, the I-topology is obtained from the bounded topology by
working with a <k-closed ideal containing NS,..

Definition
Let Funy = {f: A— 2| A€ I}. The I-topology on 2" has the basic clopen sets

[fl={g9€2"| fcg}

where f € Fun;.

Some, but not all of our results also apply to the generalized Baire space k" rather
than 2%.
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Some basic observations

Fact
> The I-topology refines the bounded topology.
> The basis of the I-topology has size 2.

> There are 22 many I-open sets.

Proposition (Baire category theorem for ideal topologies)

The intersection of k many I-open dense sets is I-dense.

On the other hand, the I-topology cannot be characterized by converging sequences.

An ideal on k is called tall if every unbounded subset of x contains an unbounded
subset in I. For instance, any ideal I 2 NS, is tall.

Proposition

Assume that I is tall. Then every I-convergent sequence (of any length) is eventually
constant.



How does the hierarchy of I-Borel sets look like?
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A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an
interesting structure theory of I-Borel sets.

For x € 27, let z||A = {zA | A € I} be the ideal on Fun; generated by z.

Proposition

If T < Fung, then
[T] = {x €2" | z||I < Funs}

is an I-closed subset of 27. Conversely, every I-closed subset of 2" is of the form [T
for some T < Funy that is closed under restrictions.

Proof.
If X < 2% is I-closed, let

T={z||A|ze X A Ae NS,}.

If x € X, then clearly z||I < T. Now take = ¢ X. Since X is I-closed, there is A € [
with X n [z A] = . But then A ¢ T', hence also z||I & T.

The first statement of the proposition is verified similarly. O
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An [-open set that is not I-F,

Let U = {z € 2" | z < & is unbounded}. Note that U is I-open.

Proposition

U is not I-F,, i.e. no k-union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. U = |J,_,.[Ta], with each T,, < Fun;. We
inductively construct an unbounded subset of x which is not in U. We say that

f € Funy is bounded in k if {y < k| f(v) = 1} is.

Starting with fo = &, we construct a continuous and increasing k-sequence of
bounded fa’s so that fa+1(7y) = 1 for some v = «, and so that fo41 ¢ Tt for all

a < k: If some T, contained all bounded extensions of fa, then [T,] would have to
contain a bounded set. In the end, f = |J,_,. fa is an unbounded subset of x which
is not in U, yielding our desired contradiction. O

One can show similarly that the set of clubs in x is not I-F,, for I = NS,.
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The club filter is not /-Borel

Let I = NS,. Note first that the club filter is both I-dense and co-dense. Similar to
the Baire category theorem, one can show that every x-intersection of I-open dense
sets contains both an element of the club filter, and of the nonstationary ideal.

By a similar argument as for the bounded topology, the club filter cannot have the

[-Baire property.

Lemma

For I = NSy, the club filter doesn’t have the I-Baire property. In particular, it’s not
I-Borel.
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I-meager sets

From now on, let I = NS,. Recall:

Definition

> A subset A of 2" is I-nowhere dense if for each f € Funy, there’s some g € Fun;
with f S gand [g] n A =.
> Ais I-meager if it is a k-union of I-nowhere dense sets.

> A has the I-Baire property if it is of the form UAM, where U is I-open and M
is I-meager.

We call the sets [f] I-cones. By the Baire category theorem, these are not I-meager.

Basic properties of I-nowhere dense sets:

> every set of size < 2" is I-nowhere dense

> there is an I-nowhere dense set of size 2":

{z € 2" | z(a) = z(ar + 1) for each even a < K}.



I-meager versus meager

If f € Funy and |dom(f)| = &, then [f] is closed nowhere dense. Hence:

Proposition

There is a meager set which is not I-meager.
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The converse direction is more subtle.

Lemma

Assume kK is inaccessible or . holds.
Then every comeager set contains an I-cone [f]:

For D = {(Dy | & < &) open dense  3f € Fun; [f]gﬂDa.

a<k

The assumption holds for all successor cardinals kK = A with A > w and 2*
a result of Shelah from 2007.

= A" by
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Lemma

Assume k is inaccessible or . holds. For any D = (D; | i < k) open dense
3f € Fun; [f] < () Ds.

1<K

Theorem

Assume that I 2 NS, and the conclusion of the lemma holds. If A has the Baire
property, then “A is I[-meager” implies “A is meager”.

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not
I-meager.
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I—Incagor Versus meager

Lemma

Assume k is inaccessible or . holds. For any D = (D; | i < k) open dense

if € Fun; [f] € N D

1<K

Theorem

Assume that I 2 NS, and the conclusion of the lemma holds. If A has the Baire
property, then “A is I[-meager” implies “A is meager”.

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not
I-meager.

Since A has the Baire property, there is an s € Funpq,, such that A n [s] is comeager
in [s], i.e. there is D = (D4 | @ < k) open dense, with (1),_,. Da N [s] S A.

By our assumption, there exists f 2 s, f € Funy with [f] < (), ., Da N [s] S A.
Thus A is not I-meager. O
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Lemma
Assume k is inaccessible or . holds. For any D = (D; | i < k) open dense
Efe Fun; [f] c m D;.

i<k

Proof sketch, part 1.

Fix a {n-sequence A = (Ao | @ < k), that is, for every A C &, there is a stationary
set of a’s with A, = A N a.

Assume that D is decreasing. By induction on ¢ < x, we define

> a continuous C-increasing sequence f = {f; | i < k) of functions in Funyq,, such
that [fi+1] € D; for every i < s, and

> a club subset C' = {a; | j < k} of k that is disjoint from dom(f;) for each i < k.

Let fo = s, and pick ap > sup(dom(s)). -
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Proof sketch, part 2.

Let ¢ < k, and assume that {«; | j < i) and f; € Funpq, are defined.

Using that D; is open dense, pick h? € Funpg, such that
> h{ extends f;,
> BO(ay) = i) for j <,
> hd(a;) = 0, and
> [h?] € Ds.
Now pick h% € Funpg,, such that
> hi extends h? on dom(hd)\{a;},
> hi(a;) =1, and
> [hi] € Ds.
Let fir1 = hi | (dom(hi)\{a; | j <1i}), and pick some a;+; > sup(dom(fit1)).
Given z € [f], let A= {i < k| z(a;) = 1}. Let ¢ < x with Ani= A; by .

By the construction of f;11, we have = € [hY] € D; or = € [hi] € D;. So z is in the
intersection of the D;, as desired.
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I-meager versus [-nowhere dense

A similar argument shows the following:

Lemma

Let I = NS,.. Assume that k is inaccessible or . holds. Then for every f € Funy,
every k-intersection of I-open dense sets contains an I-cone [g] with f < g.

Theorem

Assume that K is inaccessible or . holds. Then every I-meager set is I-nowhere
dense.

Proof.

Suppose that A is disjoint from U = [1),_, Us;, where each U; is I-open dense. Now
take any I-cone [f]. By the lemma, we can find an I-cone [g] S [f] disjoint from U.
Hence A is not dense in [f].
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Theorem (k inaccessible)
Assume t(k) = 27.

Then there is an [-nowhere dense set which is not meager.

Let Funyy, denote the set of partial functions from  to 2 with |dom(f)| = .
Definition
R is the smallest size of a family 7  Funyp,, such that [ J [f] = 2%. (Call this a cone

fEE
covering family.)

Lemma (|2<%| = k)

R=r.

Lemma (x inaccessible)

R is the smallest size of a family F < Funyuy,, such that |J [f] is comeager.
feF
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Lemma (|2<%| < k™)

R=r.

Proof.

A strong reaping family at k is a set R € ub, such that for every a C k, there is is
b € R for which either a n b= & or b\a = J. Let t*(k) be the cardinality of a
smallest strong [-reaping family.
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Lemma (|2<%| < k1)

R=r.

Proof.

A strong reaping family at k is a set R < ub, such that for every a S k, there is is
b € R for which either a n b= & or b\a = J. Let t*(k) be the cardinality of a
smallest strong [-reaping family.

If F is a reaping family, then {z\y | z € F, y € [k]~"} is a strong reaping family. So
(k) = v(k).

R(k) < t*(k): Let F be a strong reaping family at x. Let ¢ denote the function
with domain A and constant value x.

Then {c! | be F, i € 2} is a cone covering family for 2%: For every z € 2%, there is
be F and i € 2 such that z71(i) nb= . So z € [¢}_;].

t*(k) < R(k): Let C be a cone covering family at k. Let
F:={f"()| feC, ie?2} nub,.
For any a C k, there is f € C with x, € [f]. Then f~'({0}) na = & and
1) A (8\a) = @
Since dom(f) € ubs, £~ ({0}) or f~'({1}) is unbounded and hence in F. O
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I—meagor versus meager

Remark

Assume that x is inaccessible. If non(M) < 2% or t(k) = 27, then we’ve seen that
there’s a non-meager set which is I-nowhere dense.

The missing case is t(k) < non(M) = 2%. It’s open whether this configuration is
consistent:

> t(k)

<
> b(k) < (k) holds for all regular k. Moreover by Raghavan and Shelah (2018):
(k) < t(k) for regular k > J,,.

» Brendle, Brooke-Taylor, Friedman and Montoya (2016) ask whether

2" is consistent for various x (see Dilip’s talk).

b(x) < non(M)

is consistent for inaccessibles. This seems to be open (and possibly harder) for
successor cardinals £ with K=" = k as well.
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Some open questions

Question
What’s the length of the I-Borel hierarchy?

Question

Let k = w1 and I = NSy. Is it consistent that there is a set A with the Baire property
which is I-meager, but not meager? (So { has to fail.)

Question

Is there always am I-nowhere dense set without the I-Baire property?

Question

Is it consistent that v(k) < non(M) =2~ ¢

Question

Is it consistent that the covering number of I-meager sets is < 2" ¢
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