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Risk Models with Variable Probability Measures

X - Polish space with Borel g-algebra B8(X)
P (X) - the set of probability measures on (X, B(X)).
B(X) - the space of all real-valued bounded measurable functions on X.

Probabilistic Model: a pair [Z, P] € B(X) x P(X).
A measurable functional p : B(X) x P(X) — R is called a risk form

(i) It is monotonic, if V < W implies p[V/, P] < p[W, P] for all P € £ (X);
(ii) It is normalized if p[0, P] = 0 for all P € P (X);
(iii) It is translation equivariant if p[al + V,P] = a+ p[V, P] for all a € R;
(iv) It is positively homogeneous, if p[8V, P] = Bp[V, P] for all B € R4;

(v) It has the support property, if p[ﬂsupp(p) v, P] = p[V,P].

Andrzej Ruszczynski Risk-Averse Control of Partially Observable Systems



Bilinear form (the expected value)

E[Z,P] = fx Z(x) P(dx) = Ep[Z]

Mean-semideviation

T =

pIZ. P| = Ep[Z) + | Ep[(max(0. Z — Er[Z)))"]]
where p > 1, k € [0, 1].

Inverse risk measure

T =

}

plZ, P] = rr,gilig {r) a4 K[/EP[( max(0, Z — ”))p]]

where p > 1, k > 1.

All law invariant risk measures may be cast as risk forms
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Preliminaries 1

State Consistency

If a risk form p[Z, P] has the the normalization, translation equivariance,
and support properties then for every Z € B(X) and every x € X

pl2.8:] = Z(x)

A probabilistic model [Z, P] is smaller than a probabilistic model [Z’, P’]
in the increasing convex order, written [Z, P] < [Z/, P'], if for all n € R

/X [Z(x) —n], P(dx) < /x [Z(x) =] P'(dx).

A risk form p[Z, P] is consistent with the increasing convex order, if

[Z,P] < [Z',P'] = plZ,P] < plZ', P'].

v
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Preliminaries 2

A risk form p[Z, P] is comonotonically convex, if for all comonotonic
functions Z,V € B(X), all P € £(X), and all A € [0, 1],

P[AZ + (1= M)V, P] < Ap[Z, P] + (1 — A)p[V, P].

With every stochastic model [Z, P] we associate its distribution function,
FlZ,P](t)=P[Z <t], teR,
and its quantile function

@[Z,Pl(p) =inf{n: P[Z <yl =p}. pe(0.1].
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M — the set of countably additive finite measures on (0, 1]

The conjugate functional p* : M — R U {400}

1
W= sup { / 12, Pl(p) u(dp)—p[z,P]}.
1z.PleB(X)xP (%) | Jo

Suppose X is uncountable. If a risk form p: B(X) x P(X) — R is
normalized, translation equivariant, comonotonically convex, and consistent
with the increasing convex order, then a uniquely defined closed convex set

Dy € {u € M : pu(0,"] is nondecreasing and convex on (0, 1], w(0,1] =1}
exists, such that for all [Z, P] € B(X) x P(X)
1
piz.P1= s | [ 0lz.PYe) (o)~ (0
HED, 0

If the risk form is positively homogeneneous, then p*(u) = 0.

Andrzej Ruszczynski Risk-Averse Control of Partially Observable Systems




Kusuoka Representation

The Average Value at Risk at level o € [0, 1] of a probabilistic model [Z, P]:

L[ @IZ.Pl(p)dp ifae(0.1)
AVaRy([Z, P] = { @[Z, P](1) ifa =0
E[z,P] ifo=1

= ir)]f {77 + é/Ep[(Z - r)).,.]% (for @ > 0)

Suppose the conditions of the Duality Theorem are satisfied and the risk
form p[-, ] is positively homogeneous. Then a convex subset A, of the set
of probability measures on [0, 1] exists, such that for all [Z, P]

1
olZ, P] = sup/ AVaRg[Z, P] A(ds).
A€eA, JO

V.
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Conditional Risk Operator

Two Polish spaces X and ¥ and their Borel o-algebras B8(X) and B(Y)

Every P € (X x ¥) can be disintegrated into its marginal Py € £ (X)
and a transition kernel Py x : X — £ (¥) as follows:
P(dx, dy) = Px (dx) Py|x (dy|x).

Let @(Y|X) be the space of all kernels Q@ : X — £ (¥). For any A € £(X)
and and any Q € Q(Y|X), the composition P = A ® Q defined as
P(dx, dy) = A(dx)Q(dy|x) is an element of P (X x ¥)

Suppose the risk form p : B(X x Y) x (X x ¥) — R is monotonic,
translation equivariant, and normalized. Then it induces a conditional risk
operator py|x : B(X x ¥) x Q(Y|X) — B(X) defined as follows:

py|x[Z. Ql(x) = p[Z.6x @ Q]. xe X

y
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Conditional Risk Forms

Conditional risk operator

py|x[Z. Ql(x) = p[Z.6x® Q. xe X

If the risk form p has the support property, we can define
the conditional risk forms py|, : B(Y) x P(¥) — R, x € X, as follows:

Py|x[Z(x.7), Q)] = py|x[Z. Ql(x). x € X.

If the risk form pl[-, -] is monotonic (normalized, translation equivariant),
then, for every x € X, the conditional risk form py, is monotonic
(normalized, translation equivariant).
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Conditional Consistency and Risk Disintegration

A risk form p: B(X x Y) x P (X x ¥) — R is conditionally consistent if for
all Z,Z' € B(X x ¥Y) and all Q, Q" € Q(Y|X) the inequality

pyxl[Z. Ql < pyx[Z', Q']

implies that plZ,A® Q] <plZ,A® Q'], VA e P(X).

Marginal Risk Form

Suppose p: B(X x ¥Y) x P(X x ¥Y) — R is monotonic, normalized,
translation equivariant, has the support property, and is conditionally
consistent. Then a marginal risk form pyx : B(X) x P(X) — R exists,
such that for all [Z,P] € B(X x ¥) x P (X x ¥):

plZ. Pl = px[py|x[Z. Pyx]. Px]

It is monotonic, normalized, translation equivariant, and has the support
property.
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Controlled Two-Stage System. Functional Formulation

Control Spaces - U (stage 1) and Uy (stage 2).
Random Data - X observed after first stage, Y - never observed.

After choosing u; € U, observation of X is made, and we choose control
uy € Ur(X, u1) C Uy to minimize the risk of c(X, Y, uy, wo).
The risk is measured by the form pl[-, -].

Functional Perspective

We represent w5 it as a decision rule : up = w(x), x € X. The overall cost

= 7" (x,y) = c(x,y,u1,m(x)), (x,y) e X xY.

The problem takes on the form
H uy, T
min P27, P]
s.t. up € Uy,
() < Ua(-,u1) (7 is a selection of Us)

V.
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Controlled Two-Stage System. Hierarchical Formulation

Let the following assumptions be satisfied:

(i) The risk form p is monotonic, normalized, translation equivariant, has
the support property, and is conditionally consistent;

(ii) The multifunction U, is upper-semicontinuous and has nonempty and
compact values;

(iii) The function ¢ is uniformly bounded, measurable, and
lower-semicontinuous with respect to its second argument.

Then the functional problem is equivalent to the two-stage problem:

min px[V (., u), Px],

um €Uy

where V/(-,-) is the optimal value of the second stage problem:

V(x,u1) = min p;y|x[c(x,-, uy, Up), Py|x(x)], x e X, u € U.
up€Us(x,u1)

4
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Controlled Observation Distribution

After a control u; € U; C Uy is chosen, the distribution of the observation
X depends on Y and u; via a controlled kernel K : ¥ x U; — P(X). J

Let Py be the marginal distribution of Y. After the first decision u; will be
chosen, the joint distribution of (Y, X) will become

M(uy) = Py & K(, u1),

that is, M(dy, dx|u1) = Py(dy)K(dx|y, u1). Therefore, denoting the second
stage decision by u, = m(x), our problem is

min p[Z“7, M(u1)],
uy,w

s.t. up € Uy,
m(-) < Ua(:, up).
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Two-Stage Formulation

Marginal distribution of the observation: My (u1) = [y K(y. u1) Py(dy)
Disintegration: M(u1) = My (u1) ® I'(u1)

The transition kernel I" is the Bayes operator.

Under the same assumptions as in the uncontrolled observation case, the
problem is equivalent to the two-stage problem:

min px[V(-, ui), Mx(ul)]»

um €Uy

where V/(-,-) is the optimal value of the second stage problem:

V(x,u1) = min py|X[c(x,-, uy, up), I'(x, ul)], xeX, u €l
uz€Us(x,u1)
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Partially Observable Discrete-Time Models

@ Markov Process: {X;, Y¢}t=1,.., 7 on the Borel state space X x ¥
The process {X;} is observable, while {Y;} is not observable

Control sets: Uy : X = U, t=1,..., T

Transition kernel: P[(X¢+1, Yet1) € C | x¢, Vi, U] = Qe(Xe, ye, us)(C)
Costs: Zy = c¢(Xe, Y, Up), t =1,..., T

Two relevant filtrations

° {?’txy} defined by the full state process {X;, Y:}
° {f’”f} defined by the observed process {X;}

Space of costs: Z; = {Z 2 —> R } Zis thX’Y—measurabIe and bounded}

Classical Problem:

min E{Cl(Xl, Y1, U1) + oo(Xo, Yo, Un) + -+ + c7 (X7, YT, UT)}
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Partially Observable Discrete-Time Models

@ Markov Process: {X;, Y¢}t=1,.., 7 on the Borel state space X x ¥
The process {X;} is observable, while {Y;} is not observable

Control sets: Uy : X = U, t=1,..., T

Transition kernel: P[(X¢+1, Yet1) € C | x¢, Vi, U] = Qe(Xe, ye, us)(C)
Costs: Zy = c¢(Xe, Y, Up), t =1,..., T

Two relevant filtrations

° {?’txy} defined by the full state process {X;, Y:}
° {f’”f} defined by the observed process {X;}

Space of costs: Z; = {Z 2 —> R } Zis ?tx’y—measurable and bounded}

Risk-Averse Problem:

min p1,7{c1(X1. Y1, U1), ©2(X2, Y2, Ua), ..., c7 (X7, Y7, UT)}
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Dynamic Risk Measures

Probability space (£2, ¥, P) with filtration $1 C ---C ¥ C ¥
Adapted sequence of random variables (costs) Zi, 2o, ..., Z7
Spaces: Z; of Fi-measurable functions and Z; 17 =2 x---x Z7
Dynamic Risk Measure

A sequence of conditional risk measures p¢ 7 : Ze 7 —> Z, t=1,..., T.
Monotonicity condition:

pe, T(Z) < pr,7(W) for all Z, W € Z; 7 such that Z < W

Local property: For all A€ ¥;
pt,T(IaZ) = 1apt,7(2)
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Conditional Risk Evaluators

Space of observable random variables:

S: = {5 92— R ‘ Sis ?tx—measurable and bounded}, t=1,..., T

A mapping p:, 7 : Z¢ X --- X ZT — S, is a conditional risk evaluator

(i) It is monotonic if Zs < W; for all s =t,..., T, implies that
pe,7T(Ze, ... Z7) < pe,7T(We, ..., WT)

(ii) It is normalized if p¢, 7(0,...,0) = 0;

(iii) It is translation equivariant if V(Z;,...,Z7) € 8 X Zyy1 X -+ X LT,
pt,T(Ztr.... Z7) = Zt + p1,7(0, Zt41,.... Z7);

(iv) It is decomposable if a mapping p: : Z; — S; exists such that:

pe(Zt) = Zy, YVZi €Sy,
pe,T(Zts.... Z7) = pt(Zt) + pe,7(0, Zty1,.... Z7), VYZe€ZsT
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Risk Filters and their Time Consistency

A risk filter {Pt,T}t=1 + is a sequence of conditional risk evaluators
pt,T - L, T — St.

We have index risk filters by policy 7, because 7 affects the measure P™
History: HF = (X1, XJ, ..., XT), ht = (x1, x2, ..., X¢)

A family of risk filters {PfT}]:jl 1 is stochastically conditionally time

consistent if for any w, 7’ € I1, forany 1 <t < T, for all h; € X?, all
(Z¢y....Z1) € Z¢,7 and all (W, ..., WT) € Z¢ 1, the conditions

Zt = Wt
(P71, 7(Ze1 - Z7) | HT = he) = (0Tp 1, 7 (Wes1, . ... Wr) | HF = hy)

imply )
p]tT,T(Zt, Zt+1’ ) ZT)(ht) = p]tT,T(Wt’ Wt+15 D) WT)(ht)

The relation < is the conditional stochastic order



Bayes Operator

Belief State: Conditional distribution of Y; given initial distribution & and
history g = (&1, x1, U1, X2, ..., Up—1, X¢)

[E:(g)](A) = P[Yr€Algd, VAeB®), t=1...T

Conditional distribution of the observable part:
PXiss € Bl geud = [ [QX 0, u0](B) dZ(e0),

where QX (xt, yt, ut) is the marginal of Q:(xt, yt, us) on the space X

Transition of the belief state - Bayes operator

Ei+1(8t+1) = T'e(xe, Zt(gt). Uty Xe+1)

Example: ¥ = {y',...,y"} and Q:(x,y, u) has density g:(x, y'|x, y, u)
Y g yR I Xy ) E
Dl=1 =1 Gyt I Xyl u) & |

[Fe(x, & u XD ]y D) =




Markov Risk Filters

Policies w = (71, ..., w7) with decision rules m+(h:) € Us(xy)

Markov Policy
For all hy, h, € X1, if x¢ = x} and &; = &}, then
mi(he) = ﬂt(h/t) = m(xt, §¢)

Policy value function:

Vf(ht) = PZT(Ct(Xt, Yi.me(He)), ..o e (X7, YTJTT(HT)))(ht)

A family of risk filters {p’t’T}fjf + is Markov if for all Markov policies

mell, forall hy = (x1,...,x¢) and by = (x{,...,x;) in Xt such that
x¢ = x; and & = &}, we have

vi(hy) = th:[(h/t) = v{ (xt,&r)

NOtatIOﬂ: ,Ot(Ct(Xt, Yt, Ut) = rt(Xt,Et, Ut)



Structure of Markov Risk Filters

A family of risk filters {p’trT}fjl + is normalized, translation-invariant,

stochastically conditionally time consistent, decomposable, and Markov
if and only if transition risk mappings exist:

O’t:{(Xt,Et,Qf(ht)):ﬂEH, htext}X'V—>[R’, t=1T—1,

(i) o¢(x,§&,,+) is normalized and strongly monotonic with respect to
stochastic dominance

(ii) forall w € IT, forall t = 1,..., T — 1, and for all h; € X,

V;T(ht) = re(xe, &, e (he)) + Ut(Xt,ft, Q?(ht), Vf+1(ht, ))

Evaluation of a Markov policy 7:
Vi (xe, E¢) = re(xe, E, me(xe, Er)) + 1%

Ut(Xt»éta Qf(Xt,Et),X/ = Vf+1(X/» Ft(Xt,St,ﬂt(Xt,Et)’X/)))
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Examples of Transition Risk Mappings

Average Value at Risk

. 1 / /
o(x,E,m,v) = L’rgﬂré {77 + 20D /x (v(x) - n)+ m(dx )}

where a(x, ) € [@min, @max] C (0, 1].

Mean—Semideviation of Order p

1

E.mv) = / dx’ ’ N_E,, p dx’ p
o gimv) = [ vy mia) w6 [ (v0) = Bnlv);, mi)
Eplv]

where k(x, &) € [0,1].

Entropic Mapping

o(x,&,m,v) =

V(j» " (En|e9+]). yix®) >0 |
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Dynamic Programming

Risk-averse optimal control problem:
min pT r{a (X1, 1. U1). &2(X2, Yo, Ua), ... cr (X7, YT, UT)}

Theorem
If the risk measure is Markovian (+ general conditions), then the optimal
solution is given by the dynamic programming equations:

vi(x, §) = er‘ﬂin( )rT(X, E.u), xeX, Ee€P(X)
ueUT(x

vy (x,8) = ) r‘r&lr} ){rt(x, €, u) +

€ U(x

O't(X, E,/y KX(x,y, u) E(dy), x' — Vi (X Te(x, €, u, x’)))},
xeX, EcP), t=T-1,...1

Optimal Markov policy 1= {m1,..., 7T} - the minimizers above
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Risk-Averse Clinical Trials (Darinka Dentcheva and Curtis McGinity)

@ Instages t = 1,..., T successive patients are given drugs (cytotoxic
agents), to which severe toxic response (even death) is possible

@ Probability of toxic response (x:+1 = 1) depends on the unknown
optimal dose ™ and the administered dose (control) u;:

Flue,m = 1+ (e

@ The “belief state” &;, the conditional probability distribution of the
unknown optimal dose, is the current state of the system

@ The state evolves according to Bayes operator, depending on the
response of the patient: for n € ¥ (the range of doses)

F(ut,n)§e(n) if toxic (xe+1 = 1)
Err1(n) ~ . .
(1 — F(us, n)) E:(n) if not toxic (x¢41 = 0)
o Cost per stage: ¢:(n, us) = ye|lus — 1 (other forms possible)

Medical ethics naturally motivates risk-averse control
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Total Cost Models

Find the best policy m = (71,...,7T) to determine doses u; = m¢(&;)

Expected Value Model

T+1
];neipsz”[ ; yelue - n*l]

yT+1 Is the weight of the final recommendation ut41

Risk-Averse Model

. m *
min br —
nenpl.r+1|:{yt| = |}t=1"”’T+1:|

Two sources of risk

@ Unknown state n* (only belief state &; available at time t)

@ Unknown evolution of {£;} due to random responses of patients

v
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Dynamic Programming Equations

@ All memory is carried by the belief state &;

@ For each &; and uy, only two next states are possible,
corresponding to x;41 =0 or 1

Simplified equation

ve(§) = min {rt(s, u) +o(&, /y Px' = 1ly, u] £(dy), viia (Te(x. 6, u, -)))}

Examples:
re(§,u) = E¢[|lu—nl]

o(E.p.p()) = EE[X/?{%ﬁ}‘p(X/)]

Any law invariant risk measure on the space of functions on U (for r)
or on U x {0, 1} (in the case of o) can be used here.
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Limited Lookahead Policies

At each time t, assume that this is the last test before the final
recommendation, and solve the two-stage problem

Risk-Neutral

nlitn Eét{yt“’t — 0l + Y41 Eresponse[mjﬂ E§t+1|ut+1 - 7)|]%

Risk-Averse

rr)lin ]E&{yﬂut — 7| + Ye41 max [min E5t+1|ut+1 — r)|]%
t

response L u;41

T+1

Vi1 = Z Y= (weight of the future)
t=t+1
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Simulation Results for Expected Value and Risk-Averse Policies

Distribution of Dosage

04
T=20 Risk-Averse Lookahead
nt=26
0.3
Expected Value Lookahead
02
0.1
OO L L L L L L L L L L L L L L L L T L
1.0 15 20 25 * 30 35 4.0

N1
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Machine Deterioration (with Jingnan Fan)

We consider the problem of minimizing costs of a machine in T periods.

Unobserved state: y; € {1,2}, with 1 being the “good” and 2 the “bad” state
Observed state: x; - cost incurred in the previous period
Control: u; € {0, 1}, with 0 meaning “continue”, and 1 meaning “replace”

The dynamics of Y is Markovian, with the transition matrices Kl

o _(1—-p p m_(l—-p p
“ _(0 1) “ _(1—/3 P)

Distribution of costs:

P[Xt+1§C‘yt=i,ut=0]=/

C
f(x)dx, i=1,2
o0

C
fix)dx, i=12
o0

P[Xt-i-lfc‘yt:iaut:l]:/
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Value and Policy Monotonicity

Belief state: & € [0, 1] - conditional probability of the “good” state
The optimal value functions: v (x,§) =x+wf(), t=1,..., T +1

Dynamic programming equations
w(£) = min {R +o(h.xX =X +wi,1-p);
o(Eh + 1= B X > X + wi (FE X))}

with the final stage value wy_,(-) = 0.

If ;1 is non-increasing, then the functions w{ (-) are non-increasing and
thresholds g€y €[0,1], t =1,..., T exist, such that the policy

S 0 if & > E&;,
C L ifE <gr,

is optimal
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Numerical Illustration

Cost distributions f; and f: uniform with [ fi(x) dx <[] f(x) dx
Transition risk mapping: mean—semideviation

18000

(== Risk Neutral
16000 [0 Risk Averse

14000

12000

10000

8000

6000

4000

2000

0
o 200 400 600 800 1000 1200 1400 1600 1800

Empirical distribution of the total cost for the risk-neutral model (blue)
and the risk-averse model (orange)
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