Risk-Averse Control of Partially Observable Systems

Andrzej Ruszczyński

Multi-Stage Stochastic Optimization for Clean Energy Transition Oaxaca, September, 2019

Risk Models with Variable Probability Measures

- ${\mathfrak X}$ Polish space with Borel σ -algebra ${\mathfrak B}({\mathfrak X})$
- $\mathcal{P}(\mathcal{X})$ the set of probability measures on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$.
- $\mathbb{B}(\mathcal{X})$ the space of all real-valued bounded measurable functions on \mathcal{X} .
- Probabilistic Model: a pair $[Z, P] \in \mathbb{B}(X) \times \mathcal{P}(X)$.

A measurable functional $\rho: \mathbb{B}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ is called a *risk form*

- (i) It is monotonic, if $V \leq W$ implies $\rho[V, P] \leq \rho[W, P]$ for all $P \in \mathcal{P}(X)$;
- (ii) It is normalized if $\rho[0, P] = 0$ for all $P \in \mathcal{P}(X)$;
- (iii) It is translation equivariant if $\rho[a\mathbb{1} + V, P] = a + \rho[V, P]$ for all $a \in \mathbb{R}$;
- (iv) It is positively homogeneous, if $\rho[\beta V, P] = \beta \rho[V, P]$ for all $\beta \in \mathbb{R}_+$;
- (v) It has the support property, if $\rho[\mathbb{1}_{\operatorname{supp}(P)}V,P]=\rho[V,P]$.

Examples

Bilinear form (the expected value)

$$\mathbb{E}[Z, P] = \int_{\mathcal{X}} Z(x) P(dx) = \mathbb{E}_{P}[Z]$$

Mean-semideviation

$$\rho[Z,P] = \mathbb{E}_P[Z] + \kappa \Big[\mathbb{E}_P \Big[\big(\max(0,Z - \mathbb{E}_P[Z]) \big)^p \Big] \Big]^{\frac{1}{p}}$$
 where $p \ge 1$, $\kappa \in [0,1]$.

Inverse risk measure

$$\rho[Z, P] = \min_{\eta \in \mathbb{R}} \left\{ \eta + \kappa \left[\mathbb{E}_P \left[\left(\max(0, Z - \eta) \right)^p \right] \right]^{\frac{1}{p}} \right\}$$

where $p \ge 1$, $\kappa > 1$.

All law invariant risk measures may be cast as risk forms

Preliminaries 1

State Consistency

If a risk form $\rho[Z,P]$ has the the normalization, translation equivariance, and support properties then for every $Z \in \mathcal{B}(\mathcal{X})$ and every $x \in \mathcal{X}$

$$\rho[Z,\delta_x]=Z(x)$$

A probabilistic model [Z, P] is smaller than a probabilistic model [Z', P'] in the increasing convex order, written $[Z, P] \leq [Z', P']$, if for all $\eta \in \mathbb{R}$

$$\int_{\mathcal{X}} \left[Z(x) - \eta \right]_{+} P(dx) \le \int_{\mathcal{X}} \left[Z'(x) - \eta \right]_{+} P'(dx).$$

A risk form $\rho[Z, P]$ is consistent with the increasing convex order, if

$$[Z, P] \leq [Z', P'] \implies \rho[Z, P] \leq \rho[Z', P'].$$

Preliminaries 2

A risk form $\rho[Z,P]$ is comonotonically convex, if for all comonotonic functions $Z,V\in \mathbb{B}(\mathcal{X})$, all $P\in \mathcal{P}(\mathcal{X})$, and all $\lambda\in[0,1]$,

$$\rho[\lambda Z + (1 - \lambda)V, P] \le \lambda \rho[Z, P] + (1 - \lambda)\rho[V, P].$$

With every stochastic model [Z, P] we associate its distribution function,

$$F[Z, P](t) = P[Z \le t], \quad t \in \mathbb{R},$$

and its quantile function

$$\Phi[Z, P](p) = \inf \{ \eta : P[Z \le \eta] \ge p \}, \quad p \in (0, 1].$$

Duality

 ${\cal M}$ – the set of countably additive finite measures on (0,1]

The conjugate functional $\rho^*:\mathcal{M}\to\mathbb{R}\cup\{+\infty\}$

$$\rho^*(\mu) = \sup_{[Z,P] \in \mathcal{B}(\mathcal{X}) \times \mathcal{P}(\mathcal{X})} \left\{ \int_0^1 \Phi[Z,P](p) \ \mu(dp) - \rho[Z,P] \right\}.$$

Suppose \mathcal{X} is uncountable. If a risk form $\rho: \mathcal{B}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ is normalized, translation equivariant, comonotonically convex, and consistent with the increasing convex order, then a uniquely defined closed convex set

 $\mathcal{D}_{\rho} \subseteq \big\{ \mu \in \mathcal{M} : \mu(0,\cdot] \text{ is nondecreasing and convex on } (0,1], \ \mu(0,1]=1 \big\}$ exists, such that for all $[Z,P] \in \mathcal{B}(\mathcal{X}) \times \mathcal{P}(\mathcal{X})$

$$\rho[Z, P] = \sup_{\mu \in \mathcal{D}_{\rho}} \left\{ \int_{0}^{1} \Phi[Z, P](p) \ \mu(dp) - \rho^{*}(\mu) \right\}$$

If the risk form is positively homogeneneous, then $\rho^*(\mu) \equiv 0$.

Kusuoka Representation

The Average Value at Risk at level $\alpha \in [0,1]$ of a probabilistic model [Z,P]:

$$\begin{split} \mathsf{AVaR}_{\alpha}[Z,P] &= \begin{cases} \frac{1}{\alpha} \int_{1-\alpha}^1 \varPhi[Z,P](p) \; dp & \text{if } \alpha \in (0,1), \\ \varPhi[Z,P](1) & \text{if } \alpha = 0 \\ \mathbb{E}[Z,P] & \text{if } \alpha = 1 \end{cases} \\ &= \inf_{\eta} \left\{ \eta + \frac{1}{\alpha} \mathbb{E}_{P} \big[(Z-\eta)_{+} \big] \right\} \qquad (\text{for } \alpha > 0) \end{split}$$

Suppose the conditions of the Duality Theorem are satisfied and the risk form $\rho[\cdot,\cdot]$ is positively homogeneous. Then a convex subset Λ_ρ of the set of probability measures on [0,1] exists, such that for all [Z,P]

$$\rho[Z, P] = \sup_{\lambda \in \Lambda_{\rho}} \int_{0}^{1} \mathsf{AVaR}_{s}[Z, P] \ \lambda(ds).$$

Conditional Risk Operator

Two Polish spaces $\mathcal X$ and $\mathcal Y$ and their Borel σ -algebras $\mathcal B(\mathcal X)$ and $\mathcal B(\mathcal Y)$

Every $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ can be disintegrated into its marginal $P_{\mathcal{X}} \in \mathcal{P}(\mathcal{X})$ and a transition kernel $P_{\mathcal{Y}|\mathcal{X}}: \mathcal{X} \to \mathcal{P}(\mathcal{Y})$ as follows: $P(dx, dy) = P_{\mathcal{X}}(dx) P_{\mathcal{Y}|\mathcal{X}}(dy|x)$.

Let $\mathcal{Q}(\mathcal{Y}|\mathcal{X})$ be the space of all kernels $Q: \mathcal{X} \to \mathcal{P}(\mathcal{Y})$. For any $\lambda \in \mathcal{P}(\mathcal{X})$ and and any $Q \in \mathcal{Q}(\mathcal{Y}|\mathcal{X})$, the composition $P = \lambda \otimes Q$ defined as $P(dx, dy) = \lambda(dx)Q(dy|x)$ is an element of $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$

Suppose the risk form $\rho: \mathbb{B}(\mathcal{X} \times \mathcal{Y}) \times \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \to \mathbb{R}$ is monotonic, translation equivariant, and normalized. Then it induces a conditional risk operator $\rho_{\mathcal{Y}|\mathcal{X}}: \mathbb{B}(\mathcal{X} \times \mathcal{Y}) \times \mathcal{Q}(\mathcal{Y}|\mathcal{X}) \to \mathbb{B}(\mathcal{X})$ defined as follows:

$$\rho_{Y|X}[Z, Q](x) = \rho[Z, \delta_x \otimes Q], \quad x \in \mathcal{X}$$

Conditional Risk Forms

Conditional risk operator

$$\rho y|_{\mathcal{X}}[Z,Q](x) = \rho[Z,\delta_x \otimes Q], \quad x \in \mathcal{X}$$

If the risk form ρ has the support property, we can define the conditional risk forms $\rho_{\mathcal{Y}|_{\mathcal{X}}}: \mathcal{B}(\mathcal{Y}) \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}$, $x \in \mathcal{X}$, as follows:

$$\rho y_{|X}[Z(x,\cdot), Q(x)] = \rho y_{|X}[Z, Q](x), \quad x \in \mathcal{X}.$$

If the risk form $\rho[\cdot,\cdot]$ is monotonic (normalized, translation equivariant), then, for every $x\in\mathcal{X}$, the conditional risk form $\rho y_{|x}$ is monotonic (normalized, translation equivariant).

Conditional Consistency and Risk Disintegration

A risk form $\rho: \mathcal{B}(\mathcal{X} \times \mathcal{Y}) \times \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \to \mathbb{R}$ is conditionally consistent if for all $Z, Z' \in \mathcal{B}(\mathcal{X} \times \mathcal{Y})$ and all $Q, Q' \in \mathcal{Q}(\mathcal{Y}|\mathcal{X})$ the inequality

$$\rho y_{|\mathcal{X}}[Z,Q] \leq \rho y_{|\mathcal{X}}[Z',Q']$$

implies that $\rho[Z,\lambda\otimes Q]\leq \rho[Z',\lambda\otimes Q'],\ \forall\ \lambda\in\mathcal{P}(\mathcal{X}).$

Marginal Risk Form

Suppose $\rho: \mathbb{B}(\mathcal{X} \times \mathcal{Y}) \times \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \to \mathbb{R}$ is monotonic, normalized, translation equivariant, has the support property, and is conditionally consistent. Then a marginal risk form $\rho_{\mathcal{X}}: \mathbb{B}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ exists, such that for all $[Z, P] \in \mathbb{B}(\mathcal{X} \times \mathcal{Y}) \times \mathcal{P}(\mathcal{X} \times \mathcal{Y})$:

$$\rho[Z, P] = \rho_{\mathcal{X}} [\rho_{\mathcal{Y}|\mathcal{X}}[Z, P_{\mathcal{Y}|\mathcal{X}}], P_{\mathcal{X}}]$$

It is monotonic, normalized, translation equivariant, and has the support property.

Controlled Two-Stage System. Functional Formulation

Control Spaces - \mathcal{U}_1 (stage 1) and \mathcal{U}_2 (stage 2). Random Data - X observed after first stage, Y - never observed.

After choosing $u_1 \in \mathcal{U}_1$, observation of X is made, and we choose control $u_2 \in U_2(X, u_1) \subset U_2$ to minimize the risk of $c(X, Y, u_1, u_2)$. The risk is measured by the form $\rho[\cdot, \cdot]$.

Functional Perspective

We represent u_2 it as a decision rule : $u_2 = \pi(x)$, $x \in \mathcal{X}$. The overall cost is:

$$Z^{u_1,\pi}(x,y) = c(x,y,u_1,\pi(x)), \quad (x,y) \in \mathcal{X} \times \mathcal{Y}.$$

The problem takes on the form

$$\min_{u_1,\pi} \rho \big[Z^{u_1,\pi}, P \big]$$
s.t. $u_1 \in U_1$,
$$\pi(\cdot) \lessdot U_2(\cdot, u_1) \quad (\pi \text{ is a selection of } U_2)$$

Controlled Two-Stage System. Hierarchical Formulation

Let the following assumptions be satisfied:

- (i) The risk form ρ is monotonic, normalized, translation equivariant, has the support property, and is conditionally consistent;
- (ii) The multifunction U_2 is upper-semicontinuous and has nonempty and compact values;
- (iii) The function *c* is uniformly bounded, measurable, and lower-semicontinuous with respect to its second argument.

Then the functional problem is equivalent to the two-stage problem:

$$\min_{u_1 \in U_1} \rho_{\mathbf{X}} [V(\cdot, u_1), P_{\mathbf{X}}],$$

where $V(\cdot, \cdot)$ is the optimal value of the second stage problem:

$$V(x, u_1) = \min_{u_2 \in U_2(x, u_1)} \rho y_{|x} [c(x, \cdot, u_1, u_2), P_{y|X}(x)], \quad x \in X, \quad u_1 \in U_1.$$

Controlled Observation Distribution

After a control $u_1 \in U_1 \subset \mathcal{U}_1$ is chosen, the distribution of the observation X depends on Y and u_1 via a controlled kernel $K: \mathcal{Y} \times \mathcal{U}_1 \to \mathcal{P}(\mathcal{X})$.

Let P_Y be the marginal distribution of Y. After the first decision u_1 will be chosen, the joint distribution of (Y, X) will become

$$M(u_1) = P_{\mathcal{Y}} \otimes K(\cdot, u_1),$$

that is, $M(dy, dx|u_1) = Py(dy)K(dx|y, u_1)$. Therefore, denoting the second stage decision by $u_2 = \pi(x)$, our problem is

$$\min_{u_1,\pi} \rho [Z^{u_1,\pi}, M(u_1)],$$
s.t. $u_1 \in U_1$,
$$\pi(\cdot) \lessdot U_2(\cdot, u_1).$$

Two-Stage Formulation

Marginal distribution of the observation: $M_{\mathcal{X}}(u_1) = \int_{\mathcal{Y}} K(y, u_1) P_{\mathcal{Y}}(dy)$

Disintegration: $M(u_1) = M_{\mathcal{X}}(u_1) \otimes \Gamma(u_1)$

The transition kernel Γ is the Bayes operator.

Under the same assumptions as in the uncontrolled observation case, the problem is equivalent to the two-stage problem:

$$\min_{u_1 \in U_1} \rho_{\mathcal{X}} \big[V(\cdot, u_1), \frac{M_{\mathcal{X}}(u_1)}{n} \big],$$

where $V(\cdot, \cdot)$ is the optimal value of the second stage problem:

$$V(x, u_1) = \min_{u_2 \in U_2(x, u_1)} \rho y_{|x|} [c(x, \cdot, u_1, u_2), \Gamma(x, u_1)], \quad x \in \mathcal{X}, \quad u_1 \in U_1.$$

Partially Observable Discrete-Time Models

- Markov Process: $\{X_t, Y_t\}_{t=1,...,T}$ on the Borel state space $\mathcal{X} \times \mathcal{Y}$
- The process $\{X_t\}$ is observable, while $\{Y_t\}$ is not observable
- Control sets: $U_t: \mathcal{X} \Rightarrow \mathcal{U}, t = 1, ..., T$
- Transition kernel: $\mathbb{P}[(X_{t+1}, Y_{t+1}) \in C \mid x_t, y_t, u_t] = Q_t(x_t, y_t, u_t)(C)$
- Costs: $Z_t = c_t(X_t, Y_t, U_t), t = 1, ..., T$

Two relevant filtrations

- $\{\mathcal{F}_t^{X,Y}\}$ defined by the full state process $\{X_t, Y_t\}$
- $\{\mathcal{F}_t^X\}$ defined by the observed process $\{X_t\}$

Space of costs: $Z_t = \{ Z : \Omega \to \mathbb{R} \mid Z \text{ is } \mathcal{F}_t^{X,Y} \text{-measurable and bounded} \}$

Classical Problem:

$$\min \ \mathbb{E}\left\{c_1(X_1, Y_1, U_1) + c_2(X_2, Y_2, U_2) + \dots + c_T(X_T, Y_T, U_T)\right\}$$

Partially Observable Discrete-Time Models

- Markov Process: $\{X_t, Y_t\}_{t=1,...,T}$ on the Borel state space $\mathcal{X} \times \mathcal{Y}$
- The process $\{X_t\}$ is observable, while $\{Y_t\}$ is not observable
- Control sets: $U_t: \mathcal{X} \Rightarrow \mathcal{U}, t = 1, ..., T$
- Transition kernel: $\mathbb{P}[(X_{t+1}, Y_{t+1}) \in C \mid x_t, y_t, u_t] = Q_t(x_t, y_t, u_t)(C)$
- Costs: $Z_t = c_t(X_t, Y_t, U_t), t = 1, ..., T$

Two relevant filtrations

- $\{\mathcal{F}_t^{X,Y}\}$ defined by the full state process $\{X_t, Y_t\}$
- $\{\mathcal{F}_t^X\}$ defined by the observed process $\{X_t\}$

Space of costs: $Z_t = \{ Z : \Omega \to \mathbb{R} \mid Z \text{ is } \mathcal{F}_t^{X,Y} \text{-measurable and bounded} \}$

Risk-Averse Problem:

$$\min \ \rho_{1,T} \big\{ c_1(X_1, Y_1, U_1), c_2(X_2, Y_2, U_2), \dots, c_T(X_T, Y_T, U_T) \big\}$$

Dynamic Risk Measures

Probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs) Z_1, Z_2, \ldots, Z_T Spaces: \mathcal{Z}_t of \mathcal{F}_t -measurable functions and $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$

Dynamic Risk Measure

A sequence of conditional risk measures $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$, $t=1,\ldots,T$. Monotonicity condition:

$$\rho_{t,T}(Z) \leq \rho_{t,T}(W)$$
 for all $Z, W \in \mathcal{Z}_{t,T}$ such that $Z \leq W$

Local property: For all $A \in \mathcal{F}_t$

$$\rho_{t,T}(\mathbb{I}_A Z) = \mathbb{I}_A \rho_{t,T}(Z)$$

Conditional Risk Evaluators

Space of observable random variables:

$$\mathcal{S}_t = \left\{ S : \Omega o \mathbb{R} \ \middle| \ S \ \text{is} \ \mathcal{F}_t^X \text{-measurable and bounded} \right\}, \quad t = 1, \dots, T$$

A mapping $\rho_{t,T}: \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T \to \mathcal{S}_t$ is a conditional risk evaluator

(i) It is monotonic if $Z_s \leq W_s$ for all $s=t,\ldots,T$, implies that

$$\rho_{t,T}(Z_t,\ldots,Z_T) \leq \rho_{t,T}(W_t,\ldots,W_T)$$

- (ii) It is normalized if $\rho_{t,T}(0,\ldots,0)=0$;
- (iii) It is translation equivariant if $\forall (Z_t, \dots, Z_T) \in \mathcal{S}_t \times \mathcal{Z}_{t+1} \times \dots \times \mathcal{Z}_T$, $\rho_{t,T}(Z_t, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T);$
- (iv) It is decomposable if a mapping $\rho_t: \mathcal{Z}_t \to \mathcal{S}_t$ exists such that:

$$\rho_t(Z_t) = Z_t, \quad \forall Z_t \in \mathcal{S}_t,$$

$$\rho_{t,T}(Z_t, \dots, Z_T) = \rho_t(Z_t) + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T), \quad \forall Z \in \mathcal{Z}_{t,T}$$

Risk Filters and their Time Consistency

A risk filter $\{\rho_{t,T}\}_{t=1}$ is a sequence of conditional risk evaluators $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{S}_{t}$

We have index risk filters by policy π , because π affects the measure P^{π} History: $H_t^{\pi} = (X_1, X_2^{\pi}, \dots, X_t^{\pi}), h_t = (x_1, x_2, \dots, x_t)$

A family of risk filters $\{\rho_{t,T}^{\pi}\}_{t=1,\ldots,T}^{\pi\in H}$ is stochastically conditionally time consistent if for any $\pi, \pi' \in \Pi$, for any $1 \le t < T$, for all $h_t \in \mathcal{X}^t$, all $(Z_t,\ldots,Z_T)\in\mathcal{Z}_{t,T}$ and all $(W_t,\ldots,W_T)\in\mathcal{Z}_{t,T}$, the conditions

$$Z_t = W_t$$

$$\left(\rho_{t+1,T}^{\pi}(Z_{t+1},\ldots,Z_{T})\mid H_{t}^{\pi}=h_{t}\right) \leq_{\mathrm{st}} \left(\rho_{t+1,T}^{\pi'}(W_{t+1},\ldots,W_{T})\mid H_{t}^{\pi'}=h_{t}\right)$$

imply

$$\rho_{t,T}^{\pi}(Z_t, Z_{t+1}, \dots, Z_T)(h_t) \leq \rho_{t,T}^{\pi'}(W_t, W_{t+1}, \dots, W_T)(h_t)$$

The relation \leq_{st} is the conditional stochastic order

Bayes Operator

Belief State: Conditional distribution of Y_t given initial distribution ξ_1 and history $g_t = (\xi_1, x_1, u_1, x_2, \dots, u_{t-1}, x_t)$

$$[\Xi_t(g_t)](A) = \mathbb{P}[Y_t \in A \mid g_t], \quad \forall A \in \mathcal{B}(\mathcal{Y}), \quad t = 1, \dots, T$$

Conditional distribution of the observable part:

$$\mathbb{P}\left[X_{t+1} \in B \mid g_t, u_t\right] = \int_{\mathcal{Y}} \left[Q_t^X(x_t, \cdot, u_t)\right](B) \; d\mathcal{Z}_t(g_t),$$

where $Q_t^X(x_t, y_t, u_t)$ is the marginal of $Q_t(x_t, y_t, u_t)$ on the space \mathcal{X}

Transition of the belief state - Bayes operator

$$\Xi_{t+1}(g_{t+1}) = \Gamma_t(x_t, \Xi_t(g_t), u_t, x_{t+1})$$

Example: $\mathcal{Y} = \{y^1, \dots, y^n\}$ and $Q_t(x, y, u)$ has density $q_t(x', y'|x, y, u)$

$$\left[\Gamma_t(x,\xi,u,x')\right](\{y^k\}) = \frac{\sum_{i=1}^n q_t(x',y^k \mid x,y^i,u)\,\xi^i}{\sum_{\ell=1}^n \sum_{i=1}^n q_t(x',y^\ell \mid x,y^i,u)\,\xi^i}$$

Markov Risk Filters

Policies $\pi = (\pi_1, \dots, \pi_T)$ with decision rules $\pi_t(h_t) \in U_t(x_t)$

Markov Policy

For all $h_t, h_t' \in \mathcal{X}^t$, if $x_t = x_t'$ and $\xi_t = \xi_t'$, then $\pi_t(h_t) = \pi_t(h_t') = \pi_t(x_t, \xi_t)$

Policy value function:

$$v_t^{\pi}(h_t) = \rho_{t,T}^{\pi} \big(c_t(X_t, Y_t, \pi_t(H_t)), \dots, c_T(X_T, Y_T, \pi_T(H_T)) \big) (h_t)$$

A family of risk filters $\{\rho_{t,T}^{\pi}\}_{t=1,\ldots,T}^{\pi\in\Pi}$ is Markov if for all Markov policies $\pi\in\Pi$, for all $h_t=(x_1,\ldots,x_t)$ and $h'_t=(x'_1,\ldots,x'_t)$ in \mathcal{X}^t such that $x_t=x'_t$ and $\xi_t=\xi'_t$, we have

$$v_t^{\pi}(h_t) = v_t^{\pi}(h_t') = v_t^{\pi}(x_t, \xi_t)$$

Notation: $\rho_t(c_t(X_t, Y_t, u_t) = r_t(X_t, \xi_t, u_t)$

Structure of Markov Risk Filters

A family of risk filters $\{\rho_{t,T}^\pi\}_{t=1,\dots,T}^{\pi\in\Pi}$ is normalized, translation-invariant, stochastically conditionally time consistent, decomposable, and Markov if and only if transition risk mappings exist:

$$\sigma_t: \{(x_t, \xi_t, Q_t^{\pi}(h_t)) : \pi \in \Pi, h_t \in \mathcal{X}^t\} \times \mathcal{V} \to \mathbb{R}, \quad t = 1 \dots T - 1,$$

- (i) $\sigma_t(x, \xi, \cdot, \cdot)$ is normalized and strongly monotonic with respect to stochastic dominance
- (ii) for all $\pi \in \Pi$, for all $t = 1, \ldots, T-1$, and for all $h_t \in \mathcal{X}^t$,

$$v_t^{\pi}(h_t) = r_t(x_t, \xi_t, \pi_t(h_t)) + \sigma_t(x_t, \xi_t, Q_t^{\pi}(h_t), v_{t+1}^{\pi}(h_t, \cdot))$$

Evaluation of a Markov policy π :

$$v_{t}^{\pi}(x_{t}, \xi_{t}) = r_{t}(x_{t}, \xi_{t}, \pi_{t}(x_{t}, \xi_{t})) + \sigma_{t}(x_{t}, \xi_{t}, Q_{t}^{\pi}(x_{t}, \xi_{t}), x' \mapsto v_{t+1}^{\pi}(x', \overbrace{\Gamma_{t}(x_{t}, \xi_{t}, \pi_{t}(x_{t}, \xi_{t}), x')}))$$

Examples of Transition Risk Mappings

Average Value at Risk

$$\sigma(x,\xi,m,\nu) = \min_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{\alpha(x,\xi)} \int_{\mathcal{X}} \left(\nu(x') - \eta \right)_{+} m(dx') \right\}$$

where $\alpha(x, \xi) \in [\alpha_{\min}, \alpha_{\max}] \subset (0, 1]$.

Mean-Semideviation of Order p

$$\sigma(x,\xi,m,v) = \underbrace{\int_{\mathcal{X}} v(x') \ m(dx')}_{\mathbb{E}_m[v]} + \kappa(x,\xi) \Big(\int_{\mathcal{X}} \Big(v(x') - \mathbb{E}_m[v] \Big)_+^p \ m(dx') \Big)^{\frac{1}{p}}$$

where $\kappa(x, \xi) \in [0, 1]$.

Entropic Mapping

$$\sigma(x,\xi,m,\nu) = \frac{1}{\nu(x,\xi)} \ln \left(\mathbb{E}_m \left[e^{\gamma(x,\xi) \nu(x')} \right] \right), \quad \gamma(x,\xi) > 0$$

Dynamic Programming

Risk-averse optimal control problem:

$$\min_{\pi} \rho_{1,T}^{\pi} \left\{ c_1(X_1, Y_1, U_1), c_2(X_2, Y_2, U_2), \dots, c_T(X_T, Y_T, U_T) \right\}$$

Theorem

If the risk measure is Markovian (+ general conditions), then the optimal solution is given by the dynamic programming equations:

$$\begin{aligned} v_T^*(x,\xi) &= \min_{u \in \mathcal{U}_T(x)} r_T(x,\xi,u), \quad x \in \mathcal{X}, \quad \xi \in \mathcal{P}(\mathcal{X}) \\ v_t^*(x,\xi) &= \min_{u \in \mathcal{U}_t(x)} \left\{ r_t(x,\xi,u) + \\ \sigma_t \Big(x,\xi, \int_{\mathcal{Y}} K_t^X(x,y,u) \, \xi(dy), x' \mapsto v_{t+1}^* \big(x', \Gamma_t(x,\xi,u,x') \big) \Big) \right\}, \\ x &\in \mathcal{X}, \quad \xi \in \mathcal{P}(\mathcal{Y}), \quad t = T-1, \dots, 1 \end{aligned}$$

Optimal Markov policy $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$ - the minimizers above

Risk-Averse Clinical Trials (Darinka Dentcheva and Curtis McGinity)

- In stages t = 1, ..., T successive patients are given drugs (cytotoxic agents), to which severe toxic response (even death) is possible
- Probability of toxic response $(x_{t+1} = 1)$ depends on the unknown optimal dose η^* and the administered dose (control) u_t :

$$F(u_t, \eta) = \frac{1}{1 + e^{-\varphi(u_t, \eta)}}$$

- The "belief state" ξ_t , the conditional probability distribution of the unknown optimal dose, is the current state of the system
- The state evolves according to Bayes operator, depending on the response of the patient: for $\eta \in \mathcal{Y}$ (the range of doses)

$$\xi_{t+1}(\eta) \sim \begin{cases} F(u_t, \eta) \, \xi_t(\eta) & \text{if toxic } (x_{t+1} = 1) \\ \left(1 - F(u_t, \eta)\right) \xi_t(\eta) & \text{if not toxic } (x_{t+1} = 0) \end{cases}$$

• Cost per stage: $c_t(\eta, u_t) = \gamma_t |u_t - \eta|$ (other forms possible)

Medical ethics naturally motivates risk-averse control

Total Cost Models

Find the best policy $\pi = (\pi_1, \dots, \pi_T)$ to determine doses $u_t = \pi_t(\xi_t)$

Expected Value Model

$$\min_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{T+1} \gamma_t |u_t - \eta^*| \right]$$

 γ_{T+1} is the weight of the final recommendation u_{T+1}

Risk-Averse Model

$$\min_{\pi \in \Pi} \rho_{1,T+1}^{\pi} \left[\left\{ \gamma_t | u_t - \eta^* | \right\}_{t=1,\dots,T+1} \right]$$

Two sources of risk

- Unknown state η^* (only belief state ξ_t available at time t)
- Unknown evolution of $\{\xi_t\}$ due to random responses of patients

Dynamic Programming Equations

- All memory is carried by the belief state ξ_t
- For each ξ_t and u_t , only two next states are possible, corresponding to $x_{t+1} = 0$ or 1

Simplified equation

$$v_t(\xi) = \min_{u} \left\{ r_t(\xi, u) + \sigma\left(\xi, \int_{\mathcal{Y}} \mathbb{P}[x' = 1|y, u] \, \xi(dy), v_{t+1}^* \left(\Gamma_t(x, \xi, u, \cdot)\right)\right) \right\}$$

Examples:

$$\begin{split} r_t(\xi, u) &= \mathbb{E}_{\xi} \big[|u - \eta| \big] \\ \sigma \big(\xi, p, \varphi(\cdot) \big) &= \mathbb{E}_{\xi} \big[\max_{x' \in \{0, 1\}} \varphi(x') \big] \end{split}$$

Any law invariant risk measure on the space of functions on U (for r_t) or on $U \times \{0, 1\}$ (in the case of σ_t) can be used here.

Limited Lookahead Policies

At each time t, assume that this is the last test before the final recommendation, and solve the two-stage problem

Risk-Neutral

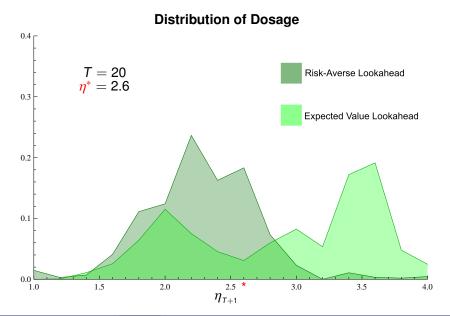
$$\min_{u_t} \mathbb{E}_{\xi_t} \left\{ \gamma_t | u_t - \eta| + \overline{\gamma}_{t+1} \mathbb{E}_{\text{response}} \left[\min_{u_{t+1}} \mathbb{E}_{\xi_{t+1}} | u_{t+1} - \eta| \right] \right\}$$

Risk-Averse

$$\min_{u_t} \mathbb{E}_{\xi_t} \left\{ \gamma_t | u_t - \eta| + \overline{\gamma}_{t+1} \max_{\text{response}} \left[\min_{u_{t+1}} \mathbb{E}_{\xi_{t+1}} | u_{t+1} - \eta| \right] \right\}$$

$$\overline{\gamma}_{t+1} = \sum_{\tau=t+1}^{T+1} \gamma_{\tau}$$
 (weight of the future)

Simulation Results for Expected Value and Risk-Averse Policies



We consider the problem of minimizing costs of a machine in $\ensuremath{\mathcal{T}}$ periods.

Unobserved state: $y_t \in \{1, 2\}$, with 1 being the "good" and 2 the "bad" state Observed state: x_t - cost incurred in the previous period Control: $u_t \in \{0, 1\}$, with 0 meaning "continue", and 1 meaning "replace"

The dynamics of Y is Markovian, with the transition matrices $K^{[u]}$:

$$\mathcal{K}^{[0]} = \begin{pmatrix} 1-\rho & \rho \\ 0 & 1 \end{pmatrix} \quad \mathcal{K}^{[1]} = \begin{pmatrix} 1-\rho & \rho \\ 1-\rho & \rho \end{pmatrix}$$

Distribution of costs:

$$\mathbb{P}[x_{t+1} \le C \mid y_t = i, u_t = 0] = \int_{-\infty}^{C} f_i(x) \, dx, \quad i = 1, 2$$

$$\mathbb{P}[x_{t+1} \le C \mid y_t = i, u_t = 1] = \int_{-\infty}^{C} f_1(x) \, dx, \quad i = 1, 2$$

Value and Policy Monotonicity

Belief state: $\xi_i \in [0, 1]$ - conditional probability of the "good" state The optimal value functions: $v_t^*(x, \xi) = x + w_t^*(\xi), t = 1, ..., T + 1$

Dynamic programming equations

$$\begin{split} w_t^*(\xi) &= \min \Big\{ R + \sigma \big(f_1, x' \mapsto x' + w_{t+1}^* (1-p) \big); \\ & \sigma \big(\xi f_1 + (1-\xi) f_2, x' \mapsto x' + w_{t+1}^* (\varGamma(\xi, x')) \big) \Big\}, \end{split}$$

with the final stage value $w_{T+1}^*(\cdot) = 0$.

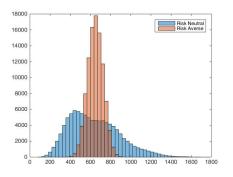
If $\frac{f_1}{f_2}$ is non-increasing, then the functions $w_t^*(\cdot)$ are non-increasing and thresholds $\xi_t^* \in [0,1], \ t=1,\ldots, T$ exist, such that the policy

$$u_t^* = \begin{cases} 0 & \text{if } \xi_t > \xi_t^*, \\ 1 & \text{if } \xi_t \le \xi_t^*, \end{cases}$$

is optimal

Numerical Illustration

Cost distributions f_1 and f_2 : uniform with $\int_0^{\eta} f_1(x) dx \leq \int_0^{\eta} f_2(x) dx$ Transition risk mapping: mean–semideviation



Empirical distribution of the total cost for the risk-neutral model (blue) and the risk-averse model (orange)

References

- D. Dentcheva, A. Ruszczyński: Risk Forms: Representation, Disintegration, and Application to Partially Observable Two-Stage Systems, Mathematical Programming, Series B, 2019, OnLine First.
- D. Dentcheva and A. Ruszczyński, Risk preferences on the space of quantile functions, *Mathematical Programming, Series B* 148 (2014), No. 1-2, 181–200.
- J. Fan and A. Ruszczyński, Risk measurement and risk-averse control of partially observable discrete-time Markov systems, Mathematical Methods of Operations Research, 2018, 1–24.
- C. McGinity, D. Dentcheva and A. Ruszczyński, Risk-averse approximate dynamic programming for partially observable systems with application to clinical trials, in preparation
- A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes, Mathematical Programming, Series B 125 (2010) 235–261
- Ö. Çavuş and A. Ruszczyński, Computational methods for risk-averse undiscounted transient Markov models, Operations Research, 62 (2), 2014, 401–417.
- Ö. Çavuş and A. Ruszczyński, Risk-averse control of undiscounted transient Markov models, SIAM J. on Control and Optimization, 52(6), 2014, 3935–3966.