Multi-Stage Stochastic Optimization for Clean Energy Transition
<

Mixing Time Blocks and
Price/Resource Decomposition Methods
Application to Long Term Battery Management

P. Carpentier — J.-P. Chancelier — M. De Lara — T. Rigaut

ENSTA Paris — ENPC ParisTech — Efficacity

€4 ®
ENSTA &5 efficacit:

ParisTech

BIRS-CMO Workshop 19w5091, 22-27 September 2019

1/41



Battery management involves
short time control and long term renewal,
hence two time scales

» When to renew a battery (long term decision)?

» How to optimally control the battery (short time decision)?
— impact on aging?

[ I -

10,512,000 = 7300 x 1440
N ;N ~~

stages days minutes
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We will decompose the battery management problem
according to control /renewal scales

Vi — Va1 — Va2
1 day 1 day 1 day

renewal?
renewal?
renewal?
renewal?
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» Under what assumptions is there a Bellman Equation day by day?

» How to compute the one day Bellman operator,
which involves an optimization problem at minute time scale?
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Outline of the presentation

Background on two time scales decomposition
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We introduce notations for two time scales
Time is described by to indices (d,m) € T

T ={0,...,D} x {0,..., M} U{(D +1,0)}

1. Battery charge/discharge, decision every minute m € {0,..., M}
of every day d € {0,...,D}
— Minutes in day d are (d,0), (d,1),..., (d, M)

2. Renewal of the battery, decision every day d € {0,...,D + 1}
— Start of days are (0,0),..., (d +1,0),..., (D+1,0)

3. Compatibility between days: ((d, M +1) = (d +1,0))

T is a totally ordered set when equipped with the lexicographical order

(dym)<(d',m') < (d<d)V(d=d Am<m)
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Bellman Operators and Dynamic Programming

We introduce Bellman functions V; for t € T,
solution of the Bellman or dynamic programming equation with history

> Bellman operator at time t: ¢ € LY (Hyt1,H¢41) and by € Hy,

(Bt+1:t<ﬂ)(ht): igqu/ @(he, ur, Wei1)pres1(he, dweir)
UeSle JWe iy

» Bellman equations

Vr=J,
Vi=Bii1:4Vey1, for teT

— State reduction at times (d,0) for d € {0,...,D + 1}
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Graphical representation of state reduction

» The triplet (6;,0¢, f4,0):(d+1,0)) is a state reduction
across ((d,0):(d + 1,0)) if the following diagram is commutative

T,
Ha,0) X H(g,1):(a,M+1) — Hg41,0)

00 |Ia 0(d+1,0)

f(d,0):(d+1,0
X(a,0) X Hia,1):(a,p41) ——— k(az+1 0)

» Compatibility with kernels p € {1,..., M}

P(d,p—1):(d,p)
Ha0y X Hig1):(ap_1) ——3 AW (gp)

0,0 |la

X(a,00 X H(a,1):(a,p-1)
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Application of Time Blocks Dynamic Programming

We will now present an application
to a two time-scales optimization problem

> optimize long-term investment decisions (slow time-scale)
— here the renewal of batteries in an energy system

» but the optimal long-term decisions highly depend
on short-term operating decisions (fast time-scale)
— here the way the battery is operated in real-time.
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We will decompose the scales (day and minutes)
\7(d,0) A \7(d+1,o) — \7(d+2,0)
1day 1 day 1 day

renewal?
renewal?
renewal?
renewal?

iabieyd
iabieyd
iabieyd
iabieyd
iabieyd
iabieyd
iabieyd
iabieyo
iabueyo
iabueyo
iabueyd
iabueyd
iabueyd
iabueyd
iabieyd
iabueyd
iabieyd
iabieyd

)
=
o

Q
[

~

We propose numerical schemes that provide upper and lower bounds on

the family of reduced value functions {\7(d70) d b
=0, ...,

» Assuming between days independence assumption
enables time scale decomposition

» Within a day, the fast time scale uncertainties can be dependent,
and we will resort to other decomposition principles:
resource/price decomposition techniques to solve day by day
problems.
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Outline of the presentation

Mixing time blocks and price/resource decompositions
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Outline of the presentation

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
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Physical model: a home with load, solar panels and storage

BE

s _
~ - = Bt —
B 2 )
EE
[

Two time scales uncertainties
> E. . Uncertain demand
> Ec‘,gym: Uncertain solar electricity
» P5: Uncertain storage cost

Two time scales controls
> Ecﬁm: National grid import
> E"fm: Storage charge/discharge
» R,: Storage renewal
Two time scales states
> B, Storage state of charge
> H, ,: Storage health
» C,: Storage capacity
Balance equation:
Ef,.+ES,=ES +Ei,
Battery dynamic:

_ _ 1B B+
By mi1 = Bym— 5 Efmt 550<Edn
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Two time scales dynamics: aging and renewal model

» At the end of every day d, we can buy a new battery at cost Pg xR,

R,, ifR,>0

Storage capacity: C;,; = {C otherwise
d K

> A new battery can make a maximum number of cycles Nc(R,):

2x Ne(R,)x R,, if R;>0

Storage health: H =
& d+1,0 {Hd‘l\/l s otherwise

Hd,m is the amount of exchangeable energy day d, minute m
H =H, Lps- EBt
d,m+1 — Tldm — 0d d,m — PcEd.m

» A new battery is empty

BxR,, ifR,>0

B otherwise

Storage state of charge: B, | , = {
d,M >
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We build a non standard SOC problem

» Objective to be minimized

D M—1

b B L s

E(Z (Pd X Ry + z Pém X (Egm+ Egmi1— E3 mia )))
d=0 T~V m=0’~~

renewal price national grid energy consumption

» Controls
B B B
Uy=(Ejo- - Egpm - Egm—1,Rg)

» Uncertainties
ES

S S d,M
w, = Ed,l Ed,m Ed,Mfl EL

d — EL 9yt EL 9ty EL ) d‘M

d,1 d,m d,M—1 Pb

Xy = Bd,o and X, = fd(Xd, u,, Wd)
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Two time scales stochastic optimal control problem

D
P: V= min E (Z La(Xy, Uy, W) + K(XD-H)) )
XO:D+1’ UO:D d=0

st Xy = fa(Xy, Uy, W)
Uy=(Uggo-o Uy Uy )

Two time scales because of the nonanticipativity constraint
written every minute!

» Intraday time stages: M = 24 x 60 = 1440 minutes
» Daily time stages: D = 365 % 20 = 7300 days
» D x M = 10,512,000 stages!
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We write a Bellman equation with daily time blocks

Daily Independence Assumption
{Wy} 4o, p is a sequence of independent random variables

We set \7(D+170) = K and

Vig,0)(x) = L min E [Ld(xv Ug, Wy) + \7(d+1,0)(xd+1)]

d+1:Yd
st Xg1 = fa(x, Ug, Wy)
o(Ug,m) C o(Wa,0.m)

where Wd,O:m = (Wd.Oa ceey Wd,m)
is possibly made of non independent random variables within a day

Proposition

Under Daily Independence Assumption, \7(070) is the value of problem P

Independence assumption at the day scale
is the key to enable stochastic kernels reduction (commutative diagram)
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We introduce price/resource daily decompositions

We present two efficient daily decomposition algorithms
to compute upper and lower bounds

of the daily value functions {\7(‘1,0)}
d=0,...,.D

1. resource (targets) decomposition gives an upper bound

X

d+1

=X 3 fd(X) Ud7 Wd):X
resource decomposition

2. price (weights) decomposition gives a lower bound

\<)\d ’Xd+1 — fd(X, Ud’ Wd)>1

price decomposition
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Outline of the presentation

Mixing time blocks and price/resource decompositions

Intraday time block and resource decomposition algorithm
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Decomposing by imposing targets

1 day

1 day

1 day

élemausd

ilemaual

ilemaual

ilemaual

charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?

charge?
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Stochastic target decomposition

We introduce the stochastic target intraday problem

O, (%0: X11) = min ]E{Ld(x, u,, Wd)]
d

s.t fd(X, Ud’ Wd) — Xd+1
U(Ud,m) C U(Wd,O:m)

Proposition
Under Daily Independence Assumption, V; := V(4 o) satisfies

Valx) = xeL°(fTJifrjﬂD;xd+1)(¢(d’:) b6 X) + E[Vd“(x)])

sto(X)Co(W,)
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Relaxed stochastic targets decomposition
We introduce a relaxed target intraday problem
¢(d,2)(Xd7 XdJrl) = n&in ]E[Ld(x, Ud’ Wd):|
d

s.t fd(X7 Ud7 Wd) > Xd+l
U(Ud,m) C J( Wd,O:m)

A relaxed daily value function

Vo2 0) =y pouin (602 (6 X) + E[Vigar (X))

sto(X)Co(W,)

Because of relaxation, we have \7(d,2) < \7d
but V(4,>) is hard to compute due to the stochastic targets
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Relaxed deterministic targets decomposition

Now we can define value functions with deterministic targets:

Vigz 0 (x) = min. (#1206 X) + Vignz..(X))

Monotonicity Assumption
The daily value functions Vj are nonincreasing

Theorem
Under Monotonicity Assumption

> Viaz) = Va
> Vid.> x40 = Vid,>) = Va

There are efficient ways to compute the upper bounds v(d,z,xdﬂ)
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Numerical efficiency of deterministic targets decomposition

Easy to compute by dynamic programming

Vid,> x4.0)(X) = Xf&?ﬂ ( Pea,>)(x, X) +\7(d+1,2,xd+1)(x))

Hard to compute

It is challenging to compute qb(d_z)(x,X)
for each couple (x, X) and each day d but

» We can exploit periodicity of the problem, e.g ¢4 >) = ¢(0,>)
> In some cases ¢(q,>)(x, X) = d(g>)(x — X, 0)
» We can parallelize the computation of ¢4 >) on day d

» We can use any suitable method to solve the multistage intraday
problems ¢4~y (SDP, scenario tree based SP, ...)
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Outline of the presentation

Mixing time blocks and price/resource decompositions

Intraday time block and price decomposition algorithm
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Decomposing by sending weights

1 day

1 day

1 day

élemausd

ilemaual

ilemaual

charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
charge?
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charge?
charge?
charge?
charge?
charge?
charge?
charge?

charge?
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Stochastic weights decomposition

We introduce the dualized intraday problems
Wid,x) (Xd, Agi1) = min E[Ld(Xdy Ug, W) + (A1, fa(xa, Ug, Wd)>]
d

s.t O'(Ud,m) C O'(Wd,O:m)

Stochastic weights daily value function

Vid, ) (xd) = sup WY(d,x) (Xds Ady1) — (EV(dJrlA,*)) (Ads1)
Ay 1 ELUQF Pihgyr)

s.t U(Ad+1) C O'(Xd+1)
where (Ev)*()\dﬂ) = sup g X) —E[V(X)]

XELP(Q,F,PiXg41)
is the Fenchel transform of EV
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Deterministic weights decomposition

We define value functions with deterministic weights

Vid ) (Xa) = sup  Pd,»)(Xds A1) = V(g1,um)(Ad1)
Ad+1€NG11

By weak duality and restriction, we get

Vidom) < Vigw) < Va
———

weak duality

Theorem N
If ri(dom(q/;(d7*)(xd, ) — dom(]EVd+1(-))) # () and P is convex,
then we have _

Vidsg) < Vidyw) = Va

There are efficient ways to compute the lower bounds V4 , )
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Numerical efficiency of deterministic weights decomposition

Easy to compute by dynamic programming

Vidm)(Xd) = sup  ¥(d,x)(Xd, Adt+1) = V(gi1,4.5) (Ad+1)
Ad4+1 ENg 1 N~ ——
Hard to compute

It is challenging to compute ¢4 ,)(x, A) for each couple (x, \) and each
day d but

» Under Monotonicity Assumption,
we can restrict to positive weights A > 0

» We can exploit periodicity of the problem vy ) = 10,
» We can parallelize the computation of ¢4 ) on day d

29 / 41



Outline of the presentation

Mixing time blocks and price/resource decompositions

Producing minute scale policies
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Back to daily intraday problems with final costs

We obtained two bounds
Vidsg) < Vo < Vig,>x,.0)
Now we can solve all intraday problems with a final cost

min B [La(x, Uy, W) + Vi (Xy,)
Xd+1Yq

st Xyyq = fa(x, Uy, Wy)
U(Ud,m) - U( Wd,O:m)

with Vi1 = Vig,>x,.0) of Var1 = Vg «E)
We obtain one targets and one weights minute scale policies
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Outline of the presentation

Numerical results
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We present numerical results associated to two use cases

Common data: load/production from a house with solar panels

1. Managing a given battery charge and health on 5 days
to compare our algorithms to references on a “small” instance

2. Managing batteries purchases, charge and health on 7300 days
to show that targets decomposition scales

Net production data
% 015
010 1 V1
|
2 I A
A

005

El«
9L l _
~ - — c
~ E° 2 H
A —> — 000
Eli
I

2
2

Hours
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Application 1
Managing charge and aging of a battery

vvyyvVyy

=

We control a battery
capacity ¢g = 13 kWh
ho,0 = 100 kWh of exchangeable energy (4 cycles remaining)
over D =5 days or D x M = 7200 minutes
with 1 day periodicity

We compare 4 algorithms
Stochastic dynamic programming (that is, SDP alone)
Stochastic dual dynamic programming (that is, SDDP alone)
Targets decomposition (+ SDDP for intraday problems)
Weights decomposition (+ SDP for intraday problems)
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Decomposition algorithms + S(D)DP
provide tighter bounds than S(D)DP alone

We know that
\ 7sddp \/ \ 7sdp
> Vd <Vy < Vd

> \7(d.,*,IE) < Vy < V(d,z,xm)

We observe that V5P < Vi, o < Vig>x, ) < V5P
Day 3

Value (euros)

E] 7
Exchangeable energy (kWh)

We beat SDP and SDDP (that cannot fully handle 7200 stages)
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Computation times and convergence

| SDP Weights SDDP  Targets
Total time (with parallelization) | 22.5 min 5.0 min 3.6 min  0.41 min
Gap (200 x M=~ 0.91 % 0.32 % 0.90% 0.28%

mc—+v

The Gap is between Monte Carlo simulation (upper bound)
and value functions at time 0

» Decomposition algorithms display smaller gaps
» Targets decompositon + SDDP is faster than SDDP
» Weights decomposition + SDP is faster than SDP
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Application 2
Managing batteries purchases, charge and aging

» 20 years, 10,512,000 minutes, 1 day periodicity
> Battery capacity between 0 and 20 kWh
» Scenarios for batteries prices

Li ion battery cost synthetic scenarios

euros/kWh

2010 215

2020 2025

2030
Years

SDP and SDDP fail to solve such a problem over 10,512,000 stages!
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Target decomposed SDDP can handle
10,512, 000 stages problems

Computing daily value functions by dynamic programming takes 45 min

Viaz () = min (90,2 (x, X) +Vigi1.2 20 (X))

X€Xqt1
Computing ¢(q,>) ( ) with SDDP takes 60 min

Complexity: 45 min + D x 60 min
» Periodicity: 45 min + N x 60 min with N << D
» Parallelization: 45 min 4+ 60 min
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Does it pay to control aging?

We draw one battery prices scenario and one solar/demand scenario over
10,512,000 minutes and simulate the policy of targets algorithm

Comparison of batteries health during 20 years

so10* -

tocaroconel We make a simulation
of 10,512,000 decisions

in 45 minutes

6010 -
aniot -

2010*
ok j U

0 B 10 15 20

Time (Years)

> Without aging control: 3 battery purchases

Health (kWh)

We compare to a policy that
does not control aging

» With aging control: 2 battery purchases

It pays to control aging with targets decomposition!
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Outline of the presentation

Conclusion
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Conclusion

1. We have solved problems with millions of time steps
using targets decomposed SDDP

2. We have designed control strategies
for sizing/charging/aging/investment of batteries

3. We have used our algorithms to improve results
obtained with algorithms that are
sensitive to the number of time steps (SDP, SDDP)
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