Multi-Stage Stochastic Optimization for Clean Energy Transition
o
An Overview of
Decomposition/Coordination Methods
for Multistage Stochastic Optimization Problems

P. Carpentier — J.-P. Chancelier — M. De Lara

ENSTA Paris — ENPC ParisTech

ENSTA
@ 1w eanis

ParisTech

BIRS-CMO Workshop 19wb091, 22-27 September 2019

1/39



Motivation

sy Conduction
AN~ Radiation
~= Convection

2/ 39



Lecture outline

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Summary and research agenda

3/ 39



Outline of the presentation

Decomposition and coordination
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Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
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Temporal, scenario and spatial structures in
multistage stochastic optimization problems

In multistage stochastic optimization problems,
we consider that the control variable

Ui(w)
is indexed by
» Time/stages t € T (={0,..., T —1})
» Scenarios w € (2
» Space/units/agents i € I (= {1,...,N})

The letter U comes from the Russian word upravlenie for control
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Let us fix problem and notations
additive costs

rlmjwin E(Z Z Li(XE, Ui,Wt+1)) subject to

X -
i€l teT

dynamics constraints

2+1 = gt!(xgrv U;ta Wf+1 ) ’ Xb = g—il(WO)
~—~— ——

state uncertainty
measurability constraints (nonanticipativity of the control U%)
o(U}) Co(Wo,...,W,) < U, =E(U} | Wo,...,W,)

spatially coupling constraints

> eiXi,up) =0

i€l
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Outline of the presentation

Decomposition and coordination

A bird's eye view of decomposition methods: the cube
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Couplings for stochastic problems

1

unit . ' e min E(ZZLQ(XQ,UQ,W&H))

uncertainty
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Couplings for stochastic problems: in time

i — minE(ZZ Li(XE, U';,wm))
t

A i

Tt st Xiy = gl(XL UL W)

/uncerfainty
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Couplings for stochastic problems: in uncertainty

minE (3037 L(XE UL W) )
i t

st Xiyp = g{(X}, Up, Wepa)

U, =E(U} | Wo,...,W,)

uncertainty
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Couplings for stochastic problems: in space

minE(ZZ Li(X], U£7Wt+1)>
i t
s.t. X;'.“+1 = gj_{(xlta Ult7 Wt+1)

U; =E(U} | Wo,...,W,)

D OUXLU) =0

/uncerfainty
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Can we decouple stochastic optimization problems?

minE (3037 L(XE UL W) )
t

s.t. X£+1 = gl{(xia U27Wt+1)
U =E (U} | Wo,...,W,)

D OUXL U =0

/uncerfainty
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Sequential decomposition in time

7

/|

/|

/|/

/|

NN

minE(Z Y Li(Xi, Ui, th))
t

st Xi1 = g¢(X, Uy, Wer)
U =E(U} | Wo,...,W,)
> OHX, Uy =0

Dynarhic Programming (DP)
Bellman (56)
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Parallel decomposition in uncertainty/scenarios
i minE<ZZLQ(XQ,UQ,Wt+1)>
i t

1 5.t. Xé—i—l = gti(xia U{:; W:1)

T
R Ui =E(Ul | Wo,...,W,)
T
- > eiX|,ui) =0
A— | l ) -
T Progressive Hedging
/tu:certainty ’\4‘\) ROCkafe”ar-Wets (91)
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Parallel decomposition in space/units

minE(ZZ Li(X], UQ7Wt+1)>
i t
st. Xigg = gt (X}, UL W)
U; =E(U} | Wo,...,W,)
> etXi, Uy =0

i,
Price and Resource
Decompositions

uncertainty
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Decomposition-coordination: divide and conquer

» Temporal decomposition

» A state is an information summary

» Time coordination realized through Dynamic Programming,
by value functions (of the state)
» Hard nonanticipativity constraints

» Scenario decomposition

» Along each scenario, subproblems are deterministic
(powerful algorithms)

» Scenario coordination realized through Progressive Hedging,
by updating nonanticipativity multipliers
> Soft nonanticipativity constraints
» Spatial decomposition
» By prices (multipliers of the spatial coupling constraint)
> By resources (splitting the spatial coupling constraint)
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Outline of the presentation

A brief insight into three decomposition methods
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Outline of the presentation

A brief insight into three decomposition methods
Scenario decomposition methods
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Moving from tree to fan (and scenarios)

Equivalent formulations of the nonanticipativity constraints

» On a (scenario) tree,
the nonanticipativity constraints

<« o(U¢) C o(Wo, ..., W,)

are “hardwired”

< » On a fan,
i the nonanticipativity constraints
write as linear equality constraints

10 =1 1= 1) S} el @S T Ut = ]E(Ut ! WO, o« e 7Wt)
Nscenarios Scenarios tree
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Progressive Hedging stands as
a scenario decomposition method

Rockafellar-Wets (91) dualize the nonanticipativity constraints

Ut:E(Ut ‘ WOv"-:Wt)

» When the criterion is strongly convex,
one uses a Lagrangian relaxation (algorithm “a la Uzawa")
to obtain a scenario decomposition

» When the criterion is linear, Rockafellar-Wets (91)
propose to use an augmented Lagrangian,
and obtain the Progressive Hedging algorithm
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Data: step p > 0, initial multipliers {)\go)}seg and mean first

decision E(O);
Result: optimal first decision u;
repeat

forall scenarios s € S do

Solve the deterministic minimization problem for
scenario s,
with a penalization +)\£k) <u§k+1) —ﬁ(k)),

and obtain optimal first decision ugkﬂ);

Update the mean first decisions
a1 — Zﬂsugk—&-l) :
seS

Update the multiplier by

until ung) — D ges wslugf”rl) =0, Vs€eS,

A =AW 4 p () —glk)y s es;
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Outline of the presentation

A brief insight into three decomposition methods

Spatial (price/resource) decomposition methods
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We consider an additive model

Consider the following minimization problem

i bject t —0= v
uEZ/erdnCUJ(u) subject to  O(u) 0€

for which exists a decomposition of the space U = Ut x ... xuN,

so that u € U writes u = (ul,...,uN) with v’ € U, and also
> Upg = UL x--x U Uz cUu
> J(u) = JHub)+ -+ JV(WN) ueu
> O(u) = O ut) +--- +ON(N) ueu
Then the problem displays the following additive structure
N N
min Z Ji(u")  subject to Z O'(u')—6=0
utellyy =1 i-1

uNEZ/l:Id
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Additive model — Price decomposition

N
min ZJ (u") subject to Z@i(ui)—H:O

u€eEU, ad —1
=

1. Form the Lagrangian of the problem
We assume that a saddle point exists,
so that solving the I{Initial problem is equivalent to

max min (Ji(ui) + (X, @i(ui)>> —(\,0)

AEV u€lpng 4
i=1

2. Solve this problem by the Uzawa algorithm

u" k) € argmin (W) + (AW OI(W)) , i=1. N
viel!

A(k+1) — 3 (k) +p(ZN:ei(ui,(k+l)> _ 9>
i=1
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Additive model — Price decomposition I
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Additive model — Resource allocation

N N
i Ji(u")  subject t O'(u)—0=0
urgblfgd 2 (u") subject to ,z_; (u")

1. Write the constraint in a equivalent manner by introducing

new variables v = (v!,..., v/) (the so-called “allocation”)

N N
Z@i(ui)—0:0 & O'(u)—vi=0 and Zv’:e
i=1 i=1
and minimize the criterion w.r.t. v and v

N . . . - . .
min Z( min J'(u') st. ©'(u')—v' = 0) s.t. Z vi=140

N i i
veV i u'eu! i—1
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Additive model — Resource allocation [

N N
min, 2 ( IngZ{nI Ji(u') st. ©'(v) — v = 0) s.t. ; vi=260
Gi(v))
N I N
vnewr}v 2 G'(v') st ; vi=140

2. Solve the last problem using a projected gradient method
G'(vK)) = min J'(u') s.t. O'(u) = v =0 ~s A(KHD

u' EU’

yilk1) — (k) 4 p< (k+1) _ Z)\J (k+1) >
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Additive model — Resource allocation 1
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Preparing Pierre Carpentier’s talk
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We can also use price/resource decomposition
to bound a minimization problem

Vi = Z Ji(u
ulell,, uNGUNd
ad j=1

st. (©Y(uh),---,0NwWM)) es

coupling constraint

u' € U’ be a local decision variable

Ji: U — R, i€ [L,N] be a local objective function

©': U — C' be a local constraint mapping

>
>
> U’ be a subset of the local decision set U’
>
> Sbeasubsetof C=C! x---xCN

We denote by S¢ the polar cone of S
°={peC|{p,r)<0, VreSs}
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Price and resource local value functions
For each i € [1, N],

» for any price p' € (C')*, we define the local price value

Volp] = inf J'(u)+ (p'.©'(u)

inf
e,
> for any resource r' € C', we define the local resource value

Vil = inf Ji(u) st. ©(u)=1r

u'el! ,

Proposition (upper and lower bounds for optimal value)
» For any admissible price p = (p*,--- ,pN) € S°

> For any admissible resource r = (r*,--- ,rV) € S

N N
D Vel < Vg < Y Volr]
i=1 i=1
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Outline of the presentation

A brief insight into three decomposition methods

Time decomposition methods
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Brief literature review on dynamic programming

Bellman Puterman Bertsekas Evstignev Witsenhausen
Schreve (standard form)
1957 1994 1996 1976 1973
State X X X - (w, Ul:tfl)
Dynamics f()(7 U, W) P:x’ f(X, U, W) = Xt = (thl, Ut)
Uncertainties Indep. - P (Q,]‘—) (Q,]‘—)
Cost Zt Zt Zz j(w, U) Jj(w, U)
Controls ~v(X) v(X) v(H) | ~(X)~v(H) | F¢-meas. ~(x¢) Zt-meas.
History - (X, U,...)t (W7 U,‘..)t - Xt
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We introduce the history

» The timeline is
Wo ~ Ug ~> Wi ~ UL~ ...~ WT_1 ~ UT_1 ~ WT

» and the history is

history uncertainty control uncertainty
’77\ _ = ~ =~ =
t _( wo , Uo w1 ,U]_,...,Ut_]_,Wt)
t—1
EH =Wox [[( Us x Wen )
s=0

control space  uncertainty space
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History is the largest state

The history follows the dynamics
history h:
ht‘+1 — (W07 UO; Wl; U]_, ) ut717 Wt, ut7 Wt+1)
= (hta Ug 5 Wit )
~ S—~—

control uncertainty
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We formulate a sequence of minimization problems
over increasing history spaces

» Once given
» a criterion j : Hy — R
> a sequence of stochastic kernels py.riq : Hy — A(Wiyq)

» we define, for any history h;, a minimization problem

criterion
. YN y /
Vilh) = inf T gl (e )
T —N

YeT-1 €EMeT1
— controlled stochastic kernel
history feedbacks
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There is a Bellman equation involving
value functions over increasing history spaces
without white noise assumption

Vr=j
Vt = Bt+1:t Vt+1

with

(B'tJrl:tSD)(ht)ZuigufJ . ©(he, g, wer1)pes1(he, dwegr)
=t t+1
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Preparing Jean-Philippe Chancelier's talk
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Towards state reduction by time blocks

» History h; is itself a canonical state variable,
which lives in the history space
H; = Wo x [1°25(Us x Wsy1)
> However the size of this canonical state increases with t,
which is a nasty feature for dynamic programming
> We will now
» introduce “state” spaces X;
» and then reduce the history with a mapping 0, : H, — X,
> to obtain a compressed “state” variable 8,(h:) = x; € X;
» but only at some specified times 0 = tg < t; < - - <ty =T
P As an application, we will handle
stochastic independence between time blocks
but possible dependence within time blocks
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State reduction graphically

The triplet (0,, 6;, f,.+) is a state reduction across (r:t) if

» the following diagram, for the dynamics, commutes

H, x Hyq1:¢ L H,

0, 1, 04

it
Xo X Hyyr — Xy

» the following diagrams, for the stochastic kernels, commute

H, x Hyq1:6-1 LN A(Wy)
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Bellman operator across (r:t)

By.p - LO (H,, 3,) — L2 (Hy, 3;) is defined by
Br:t = Bt—l—l:t ©--+0 Br:r—l )

where the one time step operators Bs.s_1 are

(Bs:s—ISO)(hs—l) = inf / @(hs—1, Us—1, Ws)ps—1:s(hs—1, dws)
Wi

Us—lelUs—l

35 /39



State reduction and Dynamic Programming
Denoting by 67 : L (X,,X,) — L9 (H,, H,)
the operator defined by
9?(@) =@r0b,, Vo, € LE)}—(XM Xr),
there exists a reduced Bellman operator across (r:t) such that
9? © gr:t =Bto 0;( )

that is, the following diagram is commutative

Br:t

]Lg- (HT7 CH:T) — ]Lg- (Htv :H:t)

07 o;

LI (X, X,) & LI (Xy, X¢)
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Outline of the presentation

Summary and research agenda
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We have sketched three main decomposition methods
in multistage stochastic optimization

> time: Dynamic Programming
P scenario: Progressive Hedging

» space: decomposition by prices or by resources

Numerical walls are well-known
» in dynamic programming,
the bottleneck is the dimension of the state

» in stochastic programming,
the bottleneck is the number of stages
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Here is our research agenda for stochastic decomposition

» Designing risk criteria compatible with decomposition
» Combining different decomposition methods
» time: Dynamic Programming
» scenario: Progressive Hedging
» space: decomposition by prices or by resources
P to produce blends and tackle large scale energy applications
» time blocks + prices/resources
(talk of Jean-Philippe Chancelier)

» dynamic programming across time blocks
+ prices/resources decomposition by time block
> application to two time scales battery management

» time + space
(talk of Pierre Carpentier)

» nodal decomposition by prices or by resources
+ dynamic programming within node
> application to large scale microgrid management
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