Multi-Stage Stochastic Optimization for Clean Energy Transition

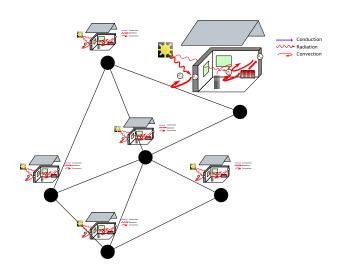
An Overview of Decomposition/Coordination Methods for Multistage Stochastic Optimization Problems

P. Carpentier — J.-P. Chancelier — M. De Lara

ENSTA Paris — ENPC ParisTech

BIRS-CMO Workshop 19w5091, 22-27 September 2019

Motivation



Lecture outline

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods

Scenario decomposition methods Spatial (price/resource) decomposition methods

Time decomposition methods

Outline of the presentation

Decomposition and coordination

A brief insight into three decomposition methods

Outline of the presentation

Decomposition and coordination

The three dimensions of stochastic optimization problems

A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Temporal, scenario and spatial structures in multistage stochastic optimization problems

In multistage stochastic optimization problems, we consider that the control variable

$$\mathbf{U}_t^i(\omega)$$

is indexed by

- ▶ Time/stages $t \in \mathbb{T}$ (= $\{0, ..., T-1\}$)
- ► Scenarios $\omega \in \Omega$
- ▶ Space/units/agents $i \in \mathbb{I}$ (= $\{1, ..., N\}$)

The letter *U* comes from the Russian word *upravlenie* for control

Let us fix problem and notations

$$\min_{\mathbf{U},\mathbf{X}} \overline{\mathbb{E}\Big(\sum_{i\in\mathbb{I}}\sum_{t\in\mathbb{T}} L_t^i(\mathbf{X}_t^i,\mathbf{U}_t^i,\mathbf{W}_{t+1})\Big)} \quad \text{ subject to }$$

dynamics constraints

$$\underbrace{\mathbf{X}_{t+1}^{i}}_{\text{state}} = g_t^{i}(\mathbf{X}_t^{i}, \mathbf{U}_t^{i}, \quad \underbrace{\mathbf{W}_{t+1}}_{\text{uncertainty}}) \;, \;\; \mathbf{X}_0^{i} = g_{\text{-1}}^{i}(\mathbf{W}_0)$$

measurability constraints (nonanticipativity of the control \mathbf{U}_t^i)

$$\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0, \dots, \mathbf{W}_t) \iff \mathbf{U}_t^i = \mathbb{E}(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t)$$

spatially coupling constraints

$$\sum_{i \in \mathbb{I}} \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

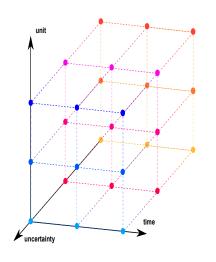
Outline of the presentation

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

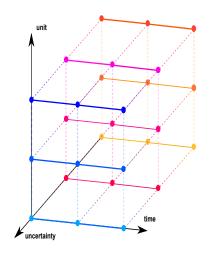
A brief insight into three decomposition methods
Scenario decomposition methods
Spatial (price/resource) decomposition methods
Time decomposition methods

Couplings for stochastic problems



$$\min \quad \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big)\Big)$$

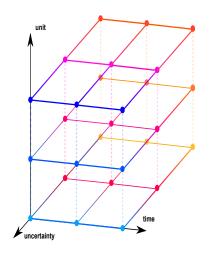
Couplings for stochastic problems: in time



$$\min \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big)\Big)$$

s.t.
$$\mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

Couplings for stochastic problems: in uncertainty

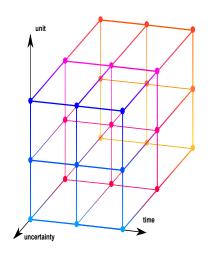


$$\min \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}ig(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}ig)\Big)$$

s.t.
$$\mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

$$\mathbf{U}_t^i = \mathbb{E} ig(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t ig)$$

Couplings for stochastic problems: in space



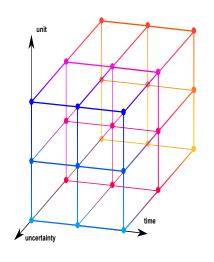
$$\min \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}ig(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}ig)\Big)$$

s.t.
$$\mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

$$\mathbf{U}_t^i = \mathbb{E} \left(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t \right)$$

$$\sum_i \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

Can we decouple stochastic optimization problems?



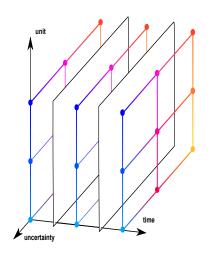
$$\min \mathbb{E}\Big(\sum_i \sum_t L_t^i ig(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}ig)\Big)$$

s.t.
$$\mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

$$\mathbf{U}_t^i = \mathbb{E} ig(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t ig)$$

$$\sum_i \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

Sequential decomposition in time

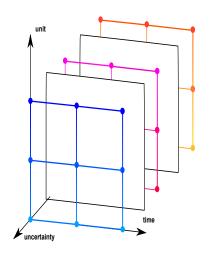


$$\min \mathbb{E}\left(\sum_{i}\sum_{t}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})\right)$$
s.t.
$$\mathbf{X}_{t+1}^{i} = g_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})$$

$$\mathbf{U}_{t}^{i} = \mathbb{E}\left(\mathbf{U}_{t}^{i} \mid \mathbf{W}_{0},\ldots,\mathbf{W}_{t}\right)$$

$$\sum_{i}\Theta_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i}) = 0$$
Dynamic Programming (DP)
$$\text{Bellman (56)}$$

Parallel decomposition in uncertainty/scenarios



$$\min \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})\Big)$$

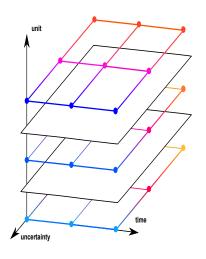
$$\text{s.t. } \mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

$$\mathbf{U}_t^i = \mathbb{E}(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t)$$

$$\sum_{i} \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

 $\sum_{i} \Theta_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}) = 0$ Progressive Hedging Rockafellar-Wets (91)

Parallel decomposition in space/units



$$\min \mathbb{E}\Big(\sum_{i}\sum_{t}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})\Big)$$

s.t.
$$\mathbf{X}_{t+1}^i = g_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1})$$

$$\mathbf{U}_t^i = \mathbb{E} ig(\mathbf{U}_t^i \mid \mathbf{W}_0, \dots, \mathbf{W}_t ig)$$

$$\sum \Theta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i) = 0$$

Price and Resource Decompositions

Decomposition-coordination: divide and conquer

- ► Temporal decomposition
 - A state is an information summary
 - ► Time coordination realized through Dynamic Programming, by value functions (of the state)
 - ► Hard nonanticipativity constraints
- Scenario decomposition
 - Along each scenario, subproblems are deterministic (powerful algorithms)
 - Scenario coordination realized through Progressive Hedging, by updating nonanticipativity multipliers
 - Soft nonanticipativity constraints
- Spatial decomposition
 - By prices (multipliers of the spatial coupling constraint)
 - By resources (splitting the spatial coupling constraint)

Outline of the presentation

Decomposition and coordination

A brief insight into three decomposition methods

Outline of the presentation

Decomposition and coordination

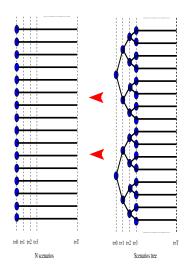
The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods Scenario decomposition methods

Spatial (price/resource) decomposition methods Time decomposition methods

Moving from tree to fan (and scenarios)

Equivalent formulations of the nonanticipativity constraints



► On a (scenario) tree, the nonanticipativity constraints

$$\sigma(\mathbf{U}_t) \subset \sigma(\mathbf{W}_0, \dots, \mathbf{W}_t)$$

are "hardwired"

 On a fan, the nonanticipativity constraints write as linear equality constraints

$$\mathbf{U}_t = \mathbb{E} ig(\mathbf{U}_t \mid \mathbf{W}_0, \dots, \mathbf{W}_t ig)$$

Progressive Hedging stands as a scenario decomposition method

Rockafellar-Wets (91) dualize the nonanticipativity constraints

$$\mathbf{U}_t = \mathbb{E} \left(\mathbf{U}_t \mid \mathbf{W}_0, \dots, \mathbf{W}_t
ight)$$

- When the criterion is strongly convex, one uses a Lagrangian relaxation (algorithm "à la Uzawa") to obtain a scenario decomposition
- When the criterion is linear, Rockafellar-Wets (91) propose to use an augmented Lagrangian, and obtain the Progressive Hedging algorithm

Data: step $\rho > 0$, initial multipliers $\left\{\lambda_s^{(0)}\right\}_{s \in \mathbb{S}}$ and mean first decision $\overline{\mathbf{u}}^{(0)}$;

Result: optimal first decision **u**;

repeat | forall scenarios $s \in \mathbb{S}$ do

Solve the deterministic minimization problem for scenario s, with a penalization $+\lambda_s^{(k)}\left(\mathbf{u}_s^{(k+1)}-\overline{\mathbf{u}}^{(k)}\right)$,

 \lfloor and obtain optimal first decision $\mathbf{u}_s^{(k+1)}$; Update the mean first decisions

$$\overline{\mathbf{u}}^{(k+1)} = \sum_{s} \pi_s \mathbf{u}_s^{(k+1)}$$
 ;

Update the multiplier by

$$\lambda_{s}^{(k+1)} = \lambda_{s}^{(k)} + \rho (\mathbf{u}_{s}^{(k+1)} - \overline{\mathbf{u}}^{(k+1)}) \;,\;\; orall s \in \mathbb{S} \;;$$

until $\mathbf{u}_s^{(k+1)} - \sum_{s' \in \mathbb{S}} \pi_{s'} \mathbf{u}_{s'}^{(k+1)} = 0$, $\forall s \in \mathbb{S}$;

Outline of the presentation

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods

Scenario decomposition methods

Spatial (price/resource) decomposition methods

Time decomposition methods

We consider an additive model

Consider the following minimization problem

$$\min_{u \in \mathcal{U}_{\mathrm{ad}} \subset \mathcal{U}} J(u)$$
 subject to $\Theta(u) - \theta = 0 \in \mathcal{V}$

for which exists a decomposition of the space $\mathcal{U} = \mathcal{U}^1 \times \ldots \times \mathcal{U}^N$, so that $u \in \mathcal{U}$ writes $u = (u^1, \dots, u^N)$ with $u^i \in \mathcal{U}^i$, and also

$$\blacktriangleright \ \ \mathcal{U}_{\mathrm{ad}} \ = \ \ \mathcal{U}_{\mathrm{ad}}^1 \ \times \cdots \times \ \ \mathcal{U}_{\mathrm{ad}}^N \qquad \qquad \mathcal{U}_{\mathrm{ad}}^i \subset \mathcal{U}^i$$

$$J(u) = J^1(u^1) + \cdots + J^N(u^N)$$
 $u^i \in \mathcal{U}^i$

Then the problem displays the following additive structure

the problem displays the following additive structure
$$\min_{\substack{u^1 \in \mathcal{U}_{\mathrm{ad}}^1 \\ \vdots \\ u^N \in \mathcal{U}_{\mathrm{ad}}^N}} \sum_{i=1}^N J^i(u^i) \quad \text{subject to} \quad \sum_{i=1}^N \Theta^i(u^i) - \theta = 0$$

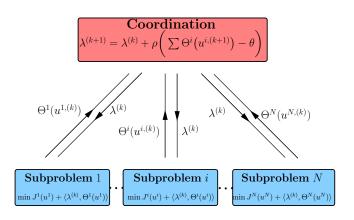
$$\min_{u \in \mathcal{U}_{\mathrm{ad}}} \sum_{i=1}^{N} J^i(u^i) \quad \text{subject to} \quad \sum_{i=1}^{N} \Theta^i(u^i) - \theta = 0$$

Form the Lagrangian of the problem
 We assume that a saddle point exists,
 so that solving the initial problem is equivalent to

$$\max_{\lambda \in \mathcal{V}} \min_{u \in \mathcal{U}_{\text{ad}}} \sum_{i=1}^{N} \left(J^{i}(u^{i}) + \left\langle \lambda, \Theta^{i}(u^{i}) \right\rangle \right) - \left\langle \lambda, \theta \right\rangle$$

2. Solve this problem by the Uzawa algorithm

$$\begin{split} u^{i,(k+1)} &\in \operatorname*{arg\,min}_{u^i \in \mathcal{U}_{\mathrm{ad}}^i} J^i(u^i) + \left\langle \lambda^{(k)} \right., \, \Theta^i(u^i) \right\rangle \,, \quad i = 1 \dots, N \\ \lambda^{(k+1)} &= \lambda^{(k)} + \rho \bigg(\sum_{i=1}^N \Theta^i \Big(u^{i,(k+1)} \Big) - \theta \bigg) \end{split}$$



$$\min_{u \in \mathcal{U}_{\text{ad}}} \sum_{i=1}^{N} J^{i}(u^{i}) \quad \text{subject to} \quad \sum_{i=1}^{N} \Theta^{i}(u^{i}) - \theta = 0$$

1. Write the constraint in a equivalent manner by introducing new variables $v = (v^1, ..., v^N)$ (the so-called "allocation")

$$\sum_{i=1}^N \Theta^i(u^i) - \theta = 0 \quad \Leftrightarrow \quad \Theta^i(u^i) - v^i = 0 \text{ and } \sum_{i=1}^N v^i = \theta$$

and minimize the criterion w.r.t. u and v

$$\min_{\mathbf{v} \in \mathcal{V}^N} \sum_{i=1}^N \left(\min_{u^i \in \mathcal{U}_{\mathrm{ad}}^i} J^i(u^i) \text{ s.t. } \Theta^i(u^i) - \mathbf{v}^i = 0 \right) \text{ s.t. } \sum_{i=1}^N \mathbf{v}^i = \theta$$

Additive model — Resource allocation

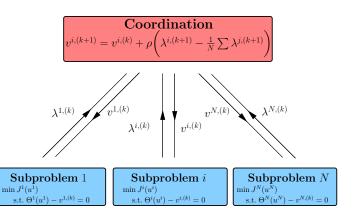
П

$$\begin{split} \min_{v \in \mathcal{V}^N} \sum_{i=1}^N \left(\underbrace{\min_{u^i \in \mathcal{U}^i_{\mathrm{ad}}} J^i(u^i) \text{ s.t. } \Theta^i(u^i) - v^i = 0}_{G^i(v^i)} \right) \text{ s.t. } \sum_{i=1}^N v^i = \theta \\ \min_{v \in \mathcal{V}^N} \sum_{i=1}^N G^i(v^i) \text{ s.t. } \sum_{i=1}^N v^i = \theta \end{split}$$

2. Solve the last problem using a projected gradient method

$$G^{i}(v^{i,(k)}) = \min_{u^{i} \in \mathcal{U}_{ad}^{i}} J^{i}(u^{i}) \text{ s.t. } \Theta^{i}(u^{i}) - v^{i,(k)} = 0 \quad \rightsquigarrow \quad \lambda^{i,(k+1)}$$
$$v^{i,(k+1)} = v^{i,(k)} + \rho \left(\lambda^{i,(k+1)} - \frac{1}{N} \sum_{j=1}^{N} \lambda^{j,(k+1)}\right)$$

Ш



Preparing Pierre Carpentier's talk

We can also use price/resource decomposition to bound a minimization problem

$$V_0^{\star} = \inf_{u^1 \in \mathbb{U}_{\mathrm{ad}}^1, \dots, u^N \in \mathbb{U}_{\mathrm{ad}}^N} \sum_{i=1}^N J^i(u^i)$$
s.t.
$$\underbrace{\left(\Theta^1(u^1), \dots, \Theta^N(u^N)\right) \in S}_{\text{coupling constraint}}$$

- $ightharpoonup u^i \in \mathbb{U}^i$ be a local decision variable
- ▶ $J^i: \mathbb{U}^i \to \mathbb{R}, i \in \llbracket 1, N \rrbracket$ be a local objective function
- $lackbox{} \mathbb{U}_{\mathrm{ad}}^i$ be a subset of the local decision set \mathbb{U}^i
- $ightharpoonup \Theta^i: \mathbb{U}^i o \mathcal{C}^i$ be a local constraint mapping
- ▶ S be a subset of $C = C^1 \times \cdots \times C^N$

We denote by S^o the polar cone of S

$$S^{o} = \left\{ p \in \mathcal{C}^{\star} \mid \left\langle p, r \right\rangle \leq 0, \ \forall r \in S \right\}$$

Price and resource local value functions

For each $i \in [1, N]$,

• for any price $p^i \in (C^i)^*$, we define the local price value

$$\underline{V}_0^i[p^i] = \inf_{u^i \in \mathbb{U}_{\mathrm{ad}}^i} J^i(u^i) + \left\langle p^i, \Theta^i(u^i) \right\rangle$$

 \blacktriangleright for any resource $r^i \in \mathcal{C}^i$, we define the local resource value

$$\overline{V}_0^i[r^i] = \inf_{u^i \in \mathbb{U}_{\mathrm{ad}}^i} J^i(u^i)$$
 s.t. $\Theta^i(u^i) = r^i$

Proposition (upper and lower bounds for optimal value)

- ► For any admissible price $p = (p^1, \dots, p^N) \in S^o$
- For any admissible resource $r = (r^1, \dots, r^N) \in S$

$$\sum_{i=1}^{N} \underline{V}_0^i[p^i] \leq V_0^{\star} \leq \sum_{i=1}^{N} \overline{V}_0^i[r^i]$$

Outline of the presentation

Decomposition and coordination

The three dimensions of stochastic optimization problems A bird's eye view of decomposition methods: the cube

A brief insight into three decomposition methods

Scenario decomposition methods Spatial (price/resource) decomposition methods

Time decomposition methods

Brief literature review on dynamic programming

	Bellman	Puterman	Bertsekas	Evstignev	Witsenhausen
			Schreve		(standard form)
	1957	1994	1996	1976	1973
State	X	X	X	_	$(\omega, U_{1:t-1})$
Dynamics	f(X, U, W)	$P_{x,x'}^u$	f(X, U, W)	-	$X_t = (X_{t-1}, U_t)$
Uncertainties	Indep.	_	ρ	(Ω, \mathcal{F})	(Ω, \mathcal{F})
Cost	\sum_{t}	\sum_t	\sum_t	$j(\omega, U)$	$j(\omega, U)$
Controls	$\gamma(X)$	$\gamma(X) \gamma(H)$	$\gamma(X) \gamma(H)$	\mathcal{F}_t -meas.	$\gamma(x_t)~\mathcal{I}_t$ -meas.
History	1	$(X, U, \ldots)_t$	$(W, U, \ldots)_t$	_	X_t

We introduce the history

The timeline is

$$w_0 \rightsquigarrow u_0 \rightsquigarrow w_1 \rightsquigarrow u_1 \rightsquigarrow \dots \rightsquigarrow w_{T-1} \rightsquigarrow u_{T-1} \rightsquigarrow w_T$$

▶ and the history is

History is the largest state

The history follows the dynamics

$$h_{t+1} = (\overbrace{w_0, u_0, w_1, u_1, \dots, u_{t-1}, w_t}^{\text{history } h_t}, u_t, w_{t+1})$$

$$= (h_t, \underbrace{u_t}_{\text{control uncertainty}})$$

We formulate a sequence of minimization problems over increasing history spaces

- Once given
 - ightharpoonup a criterion $j: \mathbb{H}_T \to \mathbb{R}$
 - lacktriangle a sequence of stochastic kernels $ho_{t:t+1}:\mathbb{H}_t o\Delta(\mathbb{W}_{t+1})$
- \triangleright we define, for any history h_t , a minimization problem

$$V_t(h_t) = \inf_{\substack{\gamma_{t:T-1} \in \Gamma_{t:T-1} \\ ext{history feedbacks}}} \int_{\mathbb{H}_T} \overbrace{j(h_T')}^{ ext{criterion}} \underbrace{\varrho_{t:T}^{\gamma}(h_t, \mathrm{d}h_T')}_{ ext{controlled stochastic kerne}}$$

There is a Bellman equation involving value functions over increasing history spaces without white noise assumption

$$egin{aligned} V_{\mathcal{T}} &= j \ V_t &= \mathcal{B}_{t+1:t} V_{t+1} \end{aligned}$$

with

$$(\mathcal{B}_{t+1:t}\varphi)(h_t) = \inf_{u_t \in \mathbb{U}_t} \int_{\mathbb{W}_{t+1}} \varphi(h_t, u_t, w_{t+1}) \rho_{t:t+1}(h_t, dw_{t+1})$$

Preparing Jean-Philippe Chancelier's talk

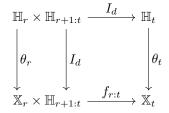
Towards state reduction by time blocks

- ► History h_t is itself a canonical state variable, which lives in the history space $\mathbb{H}_t = \mathbb{W}_0 \times \prod_{s=0}^{t-1} (\mathbb{U}_s \times \mathbb{W}_{s+1})$
- ► However the size of this canonical state increases with *t*, which is a nasty feature for dynamic programming
- ► We will now
 - ▶ introduce "state" spaces X_t
 - lacktriangle and then reduce the history with a mapping $heta_r: \mathbb{H}_r o \mathbb{X}_r$
 - lacktriangledown to obtain a compressed "state" variable $heta_t(h_t) = x_t \in \mathbb{X}_t$
 - **but only at some specified times** $0 = t_0 < t_1 < \cdots < t_N = T$
- As an application, we will handle stochastic independence between time blocks but possible dependence within time blocks

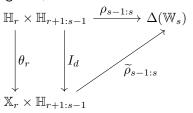
State reduction graphically

The triplet $(\theta_r, \theta_t, f_{r:t})$ is a state reduction across (r:t) if

▶ the following diagram, for the dynamics, commutes



the following diagrams, for the stochastic kernels, commute



Bellman operator across (r:t)

$$\mathcal{B}_{r:t}: \mathbb{L}^0_+(\mathbb{H}_r, \mathcal{H}_r) \to \mathbb{L}^0_+(\mathbb{H}_t, \mathcal{H}_t)$$
 is defined by

$$\mathcal{B}_{r:t} = \mathcal{B}_{t+1:t} \circ \cdots \circ \mathcal{B}_{r:r-1}$$
,

where the one time step operators $\mathcal{B}_{s:s-1}$ are

$$(\mathcal{B}_{s:s-1}\varphi)(h_{s-1}) = \inf_{u_{s-1} \in \mathbb{U}_{s-1}} \int_{\mathbb{W}_s} \varphi(h_{s-1}, u_{s-1}, w_s) \rho_{s-1:s}(h_{s-1}, dw_s)$$

State reduction and Dynamic Programming

Denoting by $\theta_r^\star: \mathbb{L}^0_+(\mathbb{X}_r, \mathcal{X}_r) \to \mathbb{L}^0_+(\mathbb{H}_r, \mathcal{H}_r)$ the operator defined by

$$\theta_r^{\star}(\widetilde{\varphi}_r) = \widetilde{\varphi}_r \circ \theta_r \; , \; \forall \widetilde{\varphi}_r \in \mathbb{L}^0_+(\mathbb{X}_r, \mathfrak{X}_r) \; ,$$

there exists a reduced Bellman operator across (r:t) such that

$$\theta_t^{\star} \circ \widetilde{\mathcal{B}}_{r:t} = \mathcal{B}_{r:t} \circ \theta_r^{\star} ,$$

that is, the following diagram is commutative

$$\mathbb{L}_{+}^{0}(\mathbb{H}_{r}, \mathcal{H}_{r}) \xrightarrow{\mathcal{B}_{r:t}} \mathbb{L}_{+}^{0}(\mathbb{H}_{t}, \mathcal{H}_{t})$$

$$\theta_{r}^{\star} \qquad \qquad \theta_{t}^{\star} \qquad \qquad \theta_{t}^{\star} \qquad \qquad \theta_{t}^{\star} \qquad \qquad \\
\mathbb{L}_{+}^{0}(\mathbb{X}_{r}, \mathcal{X}_{r}) \xrightarrow{\widetilde{\mathcal{B}}_{r:t}} \mathbb{L}_{+}^{0}(\mathbb{X}_{t}, \mathcal{X}_{t})$$

Outline of the presentation

Decomposition and coordination

A brief insight into three decomposition methods

We have sketched three main decomposition methods in multistage stochastic optimization

- ▶ time: Dynamic Programming
- scenario: Progressive Hedging
- space: decomposition by prices or by resources

Numerical walls are well-known

- in dynamic programming, the bottleneck is the dimension of the state
- in stochastic programming, the bottleneck is the number of stages

Here is our research agenda for stochastic decomposition

- Designing risk criteria compatible with decomposition
- Combining different decomposition methods
 - time: Dynamic Programming
 - scenario: Progressive Hedging
 - **space**: decomposition by prices or by resources
- to produce blends and tackle large scale energy applications
 - time blocks + prices/resources (talk of Jean-Philippe Chancelier)
 - dynamic programming across time blocks
 + prices/resources decomposition by time block
 - application to two time scales battery management
 - time + space (talk of Pierre Carpentier)
 - nodal decomposition by prices or by resources
 + dynamic programming within node
 - application to large scale microgrid management