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Static problem:

min
x∈X

{
f(x) = E[F (x, ξ)]

}
,

where X ⊂ Rn, F : Rn × Rd → R and ξ is an d-

dimensional random vector. It is assumed that

for any x ∈ X and ξ ∈ Ξ the objective value

F (x, ξ) and the (sub)gradient ∇xF (x, ξ) can be

computed.

In case of two-stage linear stochastic program-

ming with recourse, X = {x ∈ Rn+ : Ax = b}
and F (x, ξ) is the first stage cost c>x plus the

optimal value of the second stage problem

min
y∈Rm

q>y s.t. Tx+Wy = h, y ≥ 0,

with ξ formed from random components of

q, T,W, h.
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A standard approach to solving such stochas-

tic programs is to discretize distribution P of

ξ, i.e., to construct scenarios ξk, k = 1, ...,K,

with assigned probabilities pk > 0, and hence

to approximate E[F (x, ξ)] by
∑K
k=1 pkF (x, ξk).

In the two-stage linear case this leads to the

linear program

min
x,y1,...,yK

c>x+
∑K
k=1 pkq

>
k yk

s.t. Tkx+Wkyk = hk, k = 1, ...,K,
Ax = b, x ≥ 0, yk ≥ 0, k = 1, ...,K.

In order to have an accurate approximation of

the ‘true’ distribution P the number K of re-

quired scenarios typically growths exponentially

with dimension d.
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Computational complexity of solving two-stage

linear stochastic programs (deterministic point

of view): the approximate solutions, with a

sufficiently high accuracy, of linear two-stage

stochastic programs with fixed recourse are #P -

hard even if the random problem data is gov-

erned by independent uniform distributions (Dyer

and Stougie, 2006, Hanasusanto, Kuhn and

Wiesemann, 2016).
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Sample complexity of solving stochastic pro-

grams

Generate a sample ξj, j = 1, ..., N , of ran-

dom vector ξ and approximate the expecta-

tion E[F (x, ξ)] by the respective sample aver-

age. This leads to the following so-called Sam-

ple Average Approximation (SAA) of the ‘true’

problem

min
x∈X

f̂N(x) =
1

N

N∑
j=1

F (x, ξj)

 .
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Large Deviations type bounds. Suppose that:

ε > δ ≥ 0, the set X is of finite diameter D,

there is a constant σ > 0 such that

Mx′,x(t) ≤ exp{σ2t2/2}, t ∈ R, x′, x ∈ X,

where Mx′,x(t) is the moment generating func-

tion of the random variable F (x′, ξ)− F (x, ξ)−
E[F (x′, ξ)−F (x, ξ)], there exists κ(ξ) such that

its moment generating function is finite valued

in a neighborhood of zero and∣∣∣F (x′, ξ)−F (x, ξ)
∣∣∣ ≤ κ(ξ)‖x′−x‖, x′, x ∈ X and a.e. ξ.
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Then for L = E[κ(ξ)] and sample size

N ≥
8σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
2

α

)]
,

we are guaranteed that Pr
(
ŜδN ⊂ S

ε
)
≥ 1 − α.

Here ŜδN and Sε are the sets of δ-optimal and

ε-optimal solutions of the SAA and true prob-

lems respectively.
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Stochastic Approximation (SA) approach.

Suppose that the problem is convex, i.e., the

feasible set X is convex and F (·, ξ) is convex

for a.e. ξ. Classical SA algorithm

xj+1 = ΠX(xj − γjG(xj, ξ
j)),

where G(x, ξ) ∈ ∂xF (x, ξ) is a calculated (sub)gradient,

ΠX is the orthogonal (Euclidean) projection

onto X and γj = θ/j. Theoretical bound (as-

suming f(·) is strongly convex and differen-

tiable)

E[f(xj)− v0] = O(j−1),

for an optimal choice of constant θ (recall that

v0 is the optimal value of the true problem).

This algorithm is very sensitive to choice of θ.
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Robust SA approach (B. Polyak, 1990, Ne-

mirovski). Constant step size variant: fixed

in advance sample size (number of iterations)

N and step size γj ≡ γ, j = 1, ..., N : x̃N =
1
N

∑N
j=1 xj. Theoretical bound

E[f(x̃N)− v0] ≤
D2
X

2γN
+
γM2

2
,

where DX = maxx∈X ‖x−x1‖2 and M2 = maxx∈X E‖G(x, ξ)‖22.
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For optimal (up to factor θ) γ = θDX
M
√
N

we have

E
[
f(x̃N)− v0

]
≤
DXM

2θ
√
N

+
θDXM

2
√
N
≤
κDXM√

N
,

where κ = max{θ, θ−1}. By Markov inequality

it follows that

Pr
{
f(x̃N)− v0 > ε

}
≤
κDXM

ε
√
N

,

and hence to the sample size estimate N ≥
κ2D2

XM
2

ε2α2 .
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Multistage stochastic programming. Let ξt be

a random (stochastic) process. Denote ξ[t] :=

(ξ1, .., ξt) the history of the process ξt up to

time t. The values of the decision vector xt,

chosen at stage t, may depend on the informa-

tion ξ[t] available up to time t, but not on the

future observations. The decision process has

the form

decision(x0) observation(ξ1) decision(x1) 
... observation(ξT ) decision(xT ).

Risk neutral T -stage stochastic programming

problem:

min
x1,x2(·),...,xT (·)

f1(x1) + E
[∑T

t=2 ft (xt, ξt)
]

s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T.

In linear case, ft(xt, ξt) := c>t xt and

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, ..., T.
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Optimization is performed over feasible poli-

cies (also called decision rules). A policy is a

sequence of (measurable) functions xt = xt(ξ[t]),

t = 1, ..., T . Each xt(ξ[t]) is a function of the

data process up to time t, this ensures the

nonanticipative property of a considered pol-

icy.

If the number of realizations (scenarios) of the

process ξt is finite, then the above (linear)

problem can be written as one large (linear)

programming problem.
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For T = 3, under certain regularity conditions,

for ε > 0 and α ∈ (0,1), and the sample sizes

N1 and N2 satisfying

O(1)
[(
D1L1
ε

)n1
exp

{
− O(1)N1ε

2

σ2
1

}
+
(
D2L2
ε

)n2
exp

{
−O(1)N2ε

2

σ2
2

} ]
≤ α,

we have that any first-stage ε/2-optimal solu-

tion of the SAA problem is an ε-optimal first-

stage solution of the true problem with proba-

bility at least 1− α.
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In particular, suppose that N1 = N2 and take

L := max{L1, L2}, D := max{D1, D2}, σ2 :=

max{σ2
1, σ

2
2} and n := max{n1, n2}. Then the

required sample size N1 = N2:

N1 ≥
O(1)σ2

ε2

[
n log

(
O(1)DL

ε

)
+ log

(
1

α

)]
,

with total number of scenarios N = N2
1 (Shapiro,

2006).
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If we measure computational complexity, of the

”true” problem, in terms of the number of sce-

narios required to approximate true distribution

of the random data process with a reasonable

accuracy, the conclusion is rather pessimistic.

In order for the optimal value and solutions

of the SAA problem to converge to their true

counterparts all sample sizes N2, ..., NT should

tend to infinity. Furthermore, available esti-

mates of the sample sizes required for a first

stage solution of the SAA problem to be ε-

optimal for the true problem, with a given con-

fidence (probability), sums up to a number of

scenarios which grows as O(ε−2(T−1)) with de-

crease of the error level ε > 0.
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This indicates that from the point of view of

the number of scenarios, complexity of multi-

stage programming problems grows exponen-

tially with increase of the number of stages.
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Dynamic programming equations. Going re-

cursively backwards in time. At stage T con-

sider

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

fT (xT , ξT ).

At stages t = T − 1, ...,2, consider

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

ft(xt, ξt)+E
[
Qt+1(xt, ξ[t+1])

∣∣∣ξ[t]

]
︸ ︷︷ ︸

Qt+1(xt,ξ[t])

.

At the first stage solve:

Min
x1∈X1

f1(x1) + E[Q2(x1, ξ1)].

If the random process is stagewise indepen-

dent, i.e., ξt+1 is independent of ξ[t], then Qt+1(xt) =

E[Qt+1(xt, ξt+1)] does not depend on ξ[t], and

an optimal policy x̄t = x̄t(x̄t−1, ξt) is

x̄t ∈ arg min
{
xt ∈ Xt(x̄t−1, ξt) : ft(xt, ξt) +Qt+1(xt)

}
.
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Periodical infinite horizon multistage programs

Consider infinite horizon problem with discount

factor γ ∈ (0,1)

min
π∈Π

f1(x1) + E
[∑∞

t=2 γ
t−1ft (xt, ξt)

]
,

where Π is a set of policies satisfying the fea-

sibility constraints

xt ∈ Xt, Btxt−1 +Atxt = bt.
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Suppose that the data process ξt is stagewise

independent, and the problem has periodic struc-

ture with period m ∈ N:

• The random vectors ξt and ξt+m have the

same distribution, with support Ξ ⊂ Rd, for

t ≥ 2 (recall that ξ1 is deterministic).

• The functions bt(·), Bt(·), At(·) and ft(·, ·)
have period m, i.e., are the same for t = τ

and t = τ + m, t = 2, ..., and the sets Xt are

nonempty and Xt = Xt+m for all t.
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Under these assumptions the value functions

Qt(·) and Qt+m(·) of the dynamic equations

are the same for all t ≥ 2. This leads to the

following periodical variant of Bellman equa-

tions for the value functions Q2(·), ...,Qm+1(·):

Qτ(xτ−1) = E[Qτ(xτ−1, ξτ)],

Qτ(xτ−1, ξτ) = inf
xτ∈Xτ

{
fτ(xτ , ξτ) + γQτ+1(xτ) :

Bτxτ−1 +Aτxτ = bτ
}
,

for τ = 2, ...,m + 1, and Qm+2 replaced by Q2

for τ = m + 1. Consequently for t ≥ m + 2

the corresponding value functions are defined

recursively as Qt(·, ξt) = Qt−m(·, ξt), and hence

Qt(·) = Qt−m(·).
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In order to show that Bellman equations have

a solution the standard approach is to show

that the corresponding operator is a contrac-

tion mapping and hence has a unique fixed

point. That is, suppose for the sake of sim-

plicity that the period length m = 1 (in that

case we remove the subscript t from the data).

Bellman equation takes the form

Q(x) = E[Q(x, ξ)],

Q(x, ξ) = inf
x′∈X

{
f(x′, ξ) + γQ(x′) : B(ξ)x+A(ξ)x′ = b(ξ)

}
.
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Let B(X ) be the space of bounded functions g :

X → R with the sup-norm ‖g‖ = supx∈X |g(x)|.
Consider mapping T : B(X )→ B(X ) defined as

T(g)(x) = E[Ψg(x, ξ)],

Ψg(x, ξ) = inf
x′∈X

{
f(x′, ξ) + γg(x′) : B(ξ)x+A(ξ)x′ = b(ξ)

}
.

Then Q(·) is a solution of Bellman equation if

Q is a fixed point of T. The mapping T is a

contraction mapping, i.e.,

‖T(g)− T(g′)‖ ≤ γ‖g − g′‖, ∀g, g′ ∈ B(X ).

This can be extended to period m ≥ 1, and

also to risk verse problems with expectation

operator E replaced by a coherent law invariant

risk measure % with the respective conditional

analogues.

21



Curse of dimensionality of dynamic program-

ming

One of the main difficulties in solving the dy-

namic programming equations (of the SAA prob-

lem) is how to represent the cost-to-go func-

tions in a computationally feasible way.

For dimension of xt say greater than 3 and

large number of stages it is practically impos-

sible to solve the dynamic programming equa-

tions with high accuracy. Several alternatives

were suggested in recent literature.
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Approximate dynamic programming

Basic idea is to approximate the cost-to-go

functions by a class of computationally man-

ageable functions. Since functions Qt(·) are

convex it is natural to approximate these func-

tions by piecewise linear functions given by max-

imum of cutting hyperplanes.
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Stochastic Dual Dynamic Programming (SDDP)

method (Pereira and Pinto, 1991). For trial

decisions x̄t, t = 1, ..., T − 1, at the backward

step of the SDDP algorithm, piecewise linear

approximations Qt(·) of the cost-to-go func-

tions Qt(·) are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt+Qt+1(xt) s.t. Bjt x̄t−1+A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward

in time t = T, ...,1.

Denote by v0 and v̂N the respective optimal

values of the true and SAA problems.
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By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N
of the SAA problem.

We also have that

v0 ≥ E[v̂N ].

Therefore on average v̂N is also a lower bound

for the optimal value of the true problem.
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The approximate cost-to-go functions Q2, ...,QT
and a feasible first stage solution x̄1 define a

feasible policy. That is for a realization (sam-

ple path) ξ1, ..., ξT of the data process, x̄t =

x̄t(ξ[t]) are computed recursively in t = 2, ..., T

as a solution of

Min
xt≥0

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt = bt.

In the forward step of the SDDP algorithm M

sample paths (scenarios) are generated and the

corresponding x̄t, t = 2, ..., T , are used as trial

points in the next iteration of the backward

step.

Note that the functions Q2, ...,QT and x̄1 define

a feasible policy also for the true problem.
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Convergence of the SDDP algorithm

It is possible to show that, under mild regularity

conditions, the SDDP algorithm converges as

the number of iterations go to infinity. That

is, the computed optimal values and generated

policies converge w.p.1 to their counterparts

of the considered SAA problem. However, the

convergence can be very slow and one should

take such mathematical proofs very cautiously.

Moreover, it should be remembered that the

SAA problem is just an approximation of the

“true” problem. It is possible to show that, in

a certain probabilistic sense, the SAA problem

converges to the “true” problem as all sample

sizes Nt, t = 2, ..., T , tend to infinity.
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Stopping criteria

The policy value E
[∑T

t=1 c
T
t x̄t(ξ[t])

]
can be es-

timated in the forward step of the algorithm.

That is, let ξi2, ..., ξ
i
T , i = 1, ...,M , be sample

paths (scenarios) generated at a current itera-

tion of the forward step, and

ϑi :=
T∑
t=1

(cit)
Tx̄it, i = 1, ...,M,

be the corresponding cost values. Then E[ϑi] =

E
[∑T

t=1 c
T
t x̄t(ξ

i
[t])

]
, and hence

ϑ̄ =
1

M

M∑
i=1

ϑi

gives an unbiased estimate of the policy value.
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Also

σ̂2 =
1

M − 1

M∑
i=1

(ϑi − ϑ̄)2

estimates variance of the sample ϑ1, ..., ϑM . Hence

ϑ̄+ zασ̂/
√
M

gives an upper bound for the policy value with

confidence of about 100(1 − α)%. Here zα is

the corresponding critical value.

At the same time this gives an upper bound for

the optimal value of the corresponding multi-

stage problem, SAA or the “true” problem de-

pending from what data process the random

scenarios were generated.
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The Brazilian hydro power operation plan-

ning problem

The Brazilian power system generation is hy-

dro dominated (about 75% of the installed ca-

pacity) and characterized by large reservoirs

presenting multi-year regulation capability, ar-

ranged in complex cascades over several river

basins. The hydro plants use store water in

the reservoirs to produce energy in the future,

replacing fuel costs from the thermal units.
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Since the water inflows depend on rainfalls, the

amount of future inflows is uncertain and can-

not be predicted with a high accuracy. The

purpose of hydrothermal system operation plan-

ning is to define an operation strategy which,

for each stage of the planning period, given

the system state at the beginning of the stage,

produces generation targets for each plant.
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The Brazilian hydro power operation planning

problem is a multistage, large scale (more than

200 power plants, of which 141 are hydro plants),

stochastic optimization problem. On a high

level, planning is for 5 years on monthly ba-

sis together with 5 additional years to smooth

out the end of horizon effect. This results

in 120-stage stochastic programming problem.

Four energy equivalent reservoirs are consid-

ered, one in each one of the four intercon-

nected main regions, SE, S, N and NE. The

resulting policy obtained with the aggregate

representation can be further refined, so as

to provide decisions for each of the hydro and

thermal power plants.

32



Existing  Future 

Load Center 
Total Circuits 
Watershed 
Hydroplant 

± 3,400 km 

± 
3

,4
0

0
 k

m
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Comparison of the classical SDDP and the new

variant of SDDP (with period m = 12), with

the lower bound, the confidence interval of pol-

icy values and the optimality gap for the dis-

cretization problem

classical SDDP new SDDP

#iter.
LB

($m)
CI

($m)
gap

LB
($m)

CI
($m)

gap

100 6.34 7.09 7.60 19.79% 6.22 6.94 7.44 19.59%
200 6.59 7.01 7.50 13.87% 6.48 6.87 7.36 13.59%
300 6.69 6.98 7.48 11.76% 6.58 6.86 7.34 11.59%
400 6.74 6.97 7.46 10.69% 6.63 6.83 7.31 10.22%
500 6.78 6.95 7.44 9.8% 6.67 6.82 7.30 9.49%
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Stored energy (in average value and 0.9 quan-

tile) by new SDDP (on the left) and classical

SDDP (on the right) for the SAA discretization

problem (on the above) and the true problem

(on the bottom) for the risk neutral case with

discount factor 0.8
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Individual stage costs (in average value and 0.9

quantile) by new SDDP (on the left) and clas-

sical SDDP (on the right) for the SAA dis-

cretization problem (on the above) and the

true problem (on the bottom) for the risk neu-

tral case with discount factor 0.9906
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Typical example of behavior of the lower and

upper bounds produced by the SDDP algo-

rithm for an SAA problem (Shapiro, Tekaya,

Paulo da Costa, Pereira, 2013).

8 state variables, 120 stages, 1 cut per itera-

tion



Theoretical analysis and numerical experiments

indicate that computational complexity of the

SDDP algorithm grows fast with increase of

the number of state variables. The optimality

gap jumped from 4% to 20% when the num-

ber of state variables was increased from 4 to

8 as a result of considering an autoregressive

model.

Sensitivity to initial conditions

Individual stage costs for the risk neutral ap-

proach in two cases: all the reservoirs start at

25% or at 75% of the maximum capacity. The

yellow curve denotes the 75% initial reservoir

level and the dark green denotes the 25% initial

level.
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Variability of SAA problems

Table shows the 95% confidence interval for

the lower bound and average policy value at

iteration 3000 over a sample of 20 SAA prob-

lems. Each of the policy value observations

was computed using 2000 scenarios. The last

2 columns of the table shows the range divided

by the average of the lower bound (where the

range is the difference between the maximum

and minimum observation) and the standard

deviation divided by the average value. This

problem has relatively low variability (approx.

4%) for both of the lower bound and the av-

erage policy value.

95% C.I. left Average
95%

C.I. right
range

average
sdev.

average
(×109) (×109) (×109)

Lower bound 22.290 22.695 23.100 15.92% 4.07%
Average policy 27.333 27.836 28.339 17.05% 4.12%

SAA variability for risk neutral SDDP
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Risk averse approach

How to control risk, i.e., to reduce chances

of extreme costs, at every stage of the time

process.

Value-at-Risk of a random outcome (variable)

Z at level α ∈ (0,1):

V@Rα(Z) = inf{t : FZ(t) ≥ 1− α},

where FZ(t) = Pr(Z ≤ t) is the cdf of Z. That

is, V@Rα(Z) is the (1 − α)-quantile of the dis-

tribution of Z.
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Note that V@Rα(Z) ≤ c is equivalent to Pr(Z >

c) ≤ α. Therefore it could be a natural ap-

proach to impose constraints (chance constraints)

of V@Rα(Z) ≤ c for Z = cost, chosen constant

c and significance level α at every stage of the

process.
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There are two problems with such approach. It

is difficult to handle chance constraints numer-

ically and could lead to infeasibility problems.

Average Value-at-Risk (also called Conditional

Value-at-Risk)

AV@Rα(Z) = inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained

at

t∗ = V@Rα(Z). If the cdf FZ(z) is continuous,

then

AV@Rα(Z) = E
[
Z|Z ≥ V@Rα(Z)

]
.
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It follows that AV@Rα(Z) ≥ V@Rα(Z). There-

fore the constraint AV@Rα(Z) ≤ c is a conser-

vative approximation of the chance constraint

V@Rα(Z) ≤ c.
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In the problem of minimizing expected cost

E[Z] subject to the constraint AV@Rα(Z) ≤ c,

we impose an infinite penalty for violating this

constraint. This could result in infeasibility of

the obtained problem. Instead we can impose

a finite penalty and consider problem of min-

imization of E[Z] + κAV@Rα(Z) for some con-

stant κ > 0. Note that this is equivalent to

minimization of ρ(Z), where

ρ(Z) = (1− λ)E[Z] + λAV@Rα(Z)

for λ ∈ (0,1) and κ = λ
1−λ.
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This leads to the following (nested) formula-

tion of risk averse multistage problem.

Min
A1x1=b1,x1≥0

cT1x1 + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2≥0

cT2x2 + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1≥0

cTT−1xT−1

+ρT |ξ[T−1]
[ inf
BTxT−1+ATxT=bT

xT≥0

cTTxT ]
]]
,

with

ρt|ξ[t]
(·) := (1− λ)E|ξ[t]

[·] + λAV@Rα|ξ[t]
(·)

being conditional analogue of ρ(·).
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We can write the risk averse multistage pro-

gramming problem as

Min
x1,x2(·),...,xT (·)

ρ̄
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where Ft(xt, ξt) = cTt xt and

Xt(xt−1, ξt) = {xt : Btxt−1 +Atxt = bt, xt ≥ 0}.

ρ̄(Z1 + ...+ ZT ) = ρ|ξ1

(
ρ|ξ[2]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
))

= Z1 + ρ|ξ1

(
Z2 + ρ|ξ[2]

(
+ · · · ρ|ξ[T−1]

(ZT )
))

is the corresponding composite risk measure.

The optimization is performed over (nonantic-

ipative) policies x1, x2(ξ[2]), ..., xT (ξ[T ]) satisfy-

ing the feasibility constraints.
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With some modifications the SDDP algorithm

can be applied to the above multistage prob-

lem.

Remarks Unfortunately there is no easy way for

evaluating value of the risk objective of gener-

ated policies, and hence constructing a cor-

responding upper bound. Some suggestions

were made in the recent literature. However,

in larger problems the optimality gap (between

the upper and lower bounds) never approaches

zero in any realistic time. Therefore stop-

ping criteria based on stabilization of the lower

bound (and may be optimal solutions) could be

reasonable. Also it should be remembered that

there is no intuitive interpretation for the risk

objective ρ̄(cost) of the total cost. Rather the

goal is to control risk at every stage of the

process.
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