Singularities of Rational Inner Functions in

by Bickel, Passre, Sola

Ging Kise
Washingto Univesty
st. Lo.is
geknse@wustl.edu

Body of talk draws from 3 papers of Bicker, Pasioe, Sola:
(1) Derivatives of rational inner functions: geometry of singularities and in tegrability at the boundary. PLMS 2018
(2) Level carve portraits of rational inner functions. Annali della Scuola Narmale Superiove di Pisa
(3) Singularities of rational inner functions in higher dimensions.
To appear in Amer. J. Math.

Rational Inner Functions....

- Generalize finite Blaschke products
- Are interesting in their own right because of
- Connections to operator theory
- Connections to stable polynomids
- Singularities!

Rational $^{\text {Inner F Functions (RIF) }}$
$\phi(z)=\frac{q(z)}{p(z)}$ rational/, analytic on

$$
0^{d}=\left\{\left(z_{1}, \ldots, z_{d}\right):\left|z_{1}\right|, \ldots,\left|z_{d}\right|<1\right\}
$$

$\cdot|\phi(z)|<1$ for $z \in \mathbb{D}^{d}$

- $|\phi(z)|=1$ for ce. $z \in \mathbb{T}^{d}$

$$
\mathbb{T}^{d}=\left\{\left(z_{1},, z_{d}\right):\left(z_{1}\right), \ldots,\left(z_{d} \mid=1\right\}\right.
$$

RIF equivalent to....
Real rational Prick functions
$f: H^{d} \rightarrow H$, f rational,

In one dimension,

- RIF are Blaschke products

$$
\phi(z)=c \prod_{j=1}^{N} \frac{z-a_{j}}{1-\overline{a_{j}} z} \quad a_{j} \in \mathbb{D}, \quad c \in \mathbb{Z}
$$

- Real rational Pick functions

$$
f(z)=\frac{A(z)}{B(z)}
$$

A, B real rooted $w /$ interlacing roots (+ normalization)

In higher dimensions,
RIF: $\phi=\tilde{P} / p$

$$
\begin{aligned}
& \cdot p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right], p(z) \neq 0 \quad z \in \mathbb{D}^{d} \quad \text { (Radin-Stoat) } \\
& \text { - } \tilde{p}(z)=z_{1}^{n_{1}} \ldots z_{d}^{n} \frac{p}{p\left(1 / z_{1}, \ldots, 1 / \sqrt[z]{2}\right)} \\
& \cdot \\
& \operatorname{gcd}(p, \tilde{p})=1
\end{aligned}
$$

$\Rightarrow p$ is a stable polynomial
Even better it is atoral.

In higher dimensions,
Real rational Pick functions

$$
f=\frac{A}{B}: \mathbb{H}^{d} \rightarrow \mathbb{H}
$$

\leftrightarrows

$$
\begin{aligned}
& A, B \in \mathbb{R}\left[z_{1}, \ldots, z_{d}\right] \\
& A(z), B(z) \neq\left. 0 \quad z \in H\right|^{d} \cup(-H 1)^{d}
\end{aligned}
$$

\Rightarrow "Real stable polynomials"
${ }^{C}$. Multivarialle notion of "real-rootid"
-Multivariable notion of "interlacing"

Why study RIFs?

$$
\begin{aligned}
& \text { - Ang amplct Fin } D^{d} \rightarrow D
\end{aligned}
$$

$$
\begin{aligned}
& \text { OnedTm woride RIFF } \\
& \text { cond }
\end{aligned}
$$

Operator-related
function theory
Given RIF $\phi: \mathbb{D}^{2} \rightarrow \mathbb{D}$
There exists unitary matrix $U=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
such that

$$
\begin{gathered}
\phi(z)=A+B \Delta(z)(I-D \Delta(z)) C \\
\Delta(z)=\binom{z_{1} I_{n_{1}}}{z_{2} I_{n_{2}}} .
\end{gathered}
$$

This is equivalent to a sum of squares form 6 .

- Agger
- Kummert
- Gle-Wermer
- Geronimo - Weardenan
- Ball-Solskyy Vimikov Write $\phi=\tilde{p} / p$, then
(Sos) $\left.|p(z)|^{2}-|\tilde{p}(z)|^{2}=\left(1-|z|^{2}\right) \sum_{j=1}^{n}\left|A_{j}-(z)\right|^{2}+\left(1-(z)^{2}\right)\right) \sum_{i=1}^{n}\left|B_{j}(z)\right|^{2}$

RIF in several variables can have boundary singularities....
(1) $\phi=\frac{2 z_{1} z_{2}-z_{1}-z_{2}}{2-z_{1}-z_{2}}$
$(1,1)$
($1,1,1$)
(2) $\phi=\frac{3 z_{1} z_{2} z_{3}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}}{3-z_{1}-z_{2}-z_{3}}$
(3) $\phi=\frac{2 z_{1} z_{2} z_{3}-z_{1} z_{2}-z_{3}}{2-z_{1} z_{2}-z_{3}} \quad\left(e^{i \theta}, e^{i x}, 1\right)$

Why study singularities of RIF?

- Case studies for boundary regularity See e.g. "Carathéodory theorem..." of bounded analytic functions.

Agler, M^{c} Carthy, Young 2012

- Case studies for boundary regularity for more general rational/ functions (think analytic combinatorics)
- Boundary zeros of stable polynomials
- Uniqueness of SOS formula
(SoS) $|p(z)|^{2}-|\tilde{p}(z)|^{2}=\left(1-|z,|^{2}\right) \sum_{j=1}^{n}\left|\theta_{i}(z)\right|^{2}+\left(1-\left.\left(z_{z}\right)\left|\sum_{j=1}^{n}\right| B_{j}(z)\right|^{2}\right.$ governed by boundary zeros of p.
More zeros on $\pi^{2} \Rightarrow$ Fewer SoS choices.
- "Polynomials with no zeros on the bidisk"
" Integrability and regularity of rational functions" (by me)
- Extreme points of real rational Pick functions
"Extreme points and saturated polynomials" (by me)

Flow to study singularities of RIF

- Boundary regularity - non-tangential limits
- Boundary level sets *
- Derivative integrability:
for which $\phi \in[1, \infty)$ is

$$
\frac{\partial \phi}{\partial z_{j}} \in L^{\varphi}\left(\pi^{d}\right)
$$

- Classification of numerator ideals:

$$
\begin{aligned}
& I_{p}^{2}=\left\{q \in \mathbb{C}\left[z_{\left.1,-z_{d}\right]}\right]: q / p \in L^{2}\left(\mathbb{T}^{d}\right)\right\} \\
& I_{p}^{\infty}=\left\{q \in \mathbb{C}\left[z_{l, m}, z_{d}\right]: q / p \in L^{\infty}\left(\mathbb{T}^{d}\right)\right\}
\end{aligned}
$$

Derivative integrability in two dimensions
$T_{h_{m}}\left(B_{P S}{ }^{1} 18,1 / 19\right)$ Let $\phi=\frac{\tilde{\rho}}{\rho}: \mathbb{D}^{2} \rightarrow \mathbb{D}$ be an RIF.
There is a

associated to P such that for $1 \leq P<\infty$:
$\frac{\partial \phi}{\partial z_{1}} \in L^{8}\left(T^{2}\right)$ iff $\frac{\partial \phi}{\partial z_{2}} \in L^{p}\left(T^{2}\right)$ inf $p<1+\frac{1}{K}$

Contact order
Two interpretations:

- Fastest rate branches of $Z_{\tilde{P}}$ approach \mathbb{J}^{2} : Say $\tilde{p}(1,1)=0$

Suppose $\tilde{p}(\xi, \omega(\xi))=0$

$$
1-|w(\rho)| \approx|s-1|^{K} \quad s \in \pi
$$

- Highest order of bunching of boundary level sets

$$
\begin{aligned}
& \phi=\lambda_{1} \\
& \phi=\lambda_{2} \\
& \phi=\lambda_{3}
\end{aligned}
$$

Example: $\phi=\frac{2 z_{1} z_{2}-z_{1}-z_{2}}{2-z_{1}-z_{2}}=\tilde{p} / p$
(1) $\mathcal{Z}_{\tilde{p}} \rightarrow z_{2}=\frac{z_{1}}{2 z_{1}-1}$

$$
\begin{aligned}
& \text { Near } z_{1}=1,1-\left(z_{2}\right)^{2}=\frac{\left.\mid 2 z_{2}-1\right)^{2}-\left|z_{1}\right|^{2}}{12 z_{1}-\left.1\right|^{2}} \\
& \approx\left\|-z_{1}\right\|^{2} \Rightarrow k=2
\end{aligned}
$$

(2) Boundary level sets, $\quad \phi=1, \quad \phi=-1$

$$
\phi=\lambda
$$

Bunch together with order 2.

Plighter Dimensions
The (BP S'20) Let $\phi=\tilde{P}_{p}: \mathbb{D}^{d} \rightarrow \mathbb{D}$ be an RIF.
Let $\delta(\phi, \rho)=\operatorname{dist}\left(Z_{\tilde{p} \cap}(\xi \rho \xi \times \mathbb{D}), T^{d}\right)$ for $\xi \in \mathbb{T}^{d-1}$
Set

$$
\Omega_{x}=\left\{\zeta \in \mathbb{T}^{d-1}: \delta(\phi, s)<\frac{1}{x}\right\}
$$

$T_{h m}\left(\right.$ BPS $\left.^{1} 18,1 / 9\right)$ Let $\phi \cdot \frac{P}{P}: \mathbb{D}^{2} \rightarrow \mathbb{D}$ be an RIF. There is a numerical geometric in variant $K^{>0}$ associated to $Z_{\tilde{p}}$ (called contact order) such that for $1 \leqslant \rho<\infty$:
$\frac{\partial \phi}{\partial z_{1}} \in L^{8}\left(T^{2}\right)$ iff

$$
\frac{\partial \phi}{\partial z_{2}} \in L^{\varphi}\left(\bar{\square}^{2}\right) \text { inf }
$$

$$
p<1+\frac{1}{k}
$$

Then, for $1<p<\infty$

$$
\frac{\partial \phi}{\partial z_{d}} \in L^{P}\left(\pi^{d}\right) \text { iff } \int_{1}^{\infty}|\Omega x| x^{8-2} d x<\infty
$$

Let's see how this theorem $\Rightarrow d=2$ theorem

Contact order $K \Rightarrow$
\exists point (WLOG) $(1,1)$ where $p(1,1)=0$
and
a branch of $Z_{\tilde{p}}$, say $z_{2}=\psi\left(z_{1}\right)$
where $\quad 1-\left|\psi\left(z_{1}\right)\right| \approx\left|1-z_{1}\right|^{K} \approx \theta^{k}$

$$
\begin{gathered}
\delta(\phi, 5) \approx|1-5|^{k} \\
\Omega_{x}=\{5: \delta<1 / x\} \\
\geq\left\{5:|1-5|^{k} \approx \frac{1}{x}\right\} \\
\left|\Omega_{x}\right| \approx x^{-1 / k}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial z d} \in L^{8}\left(\Pi^{d}\right) \text { iff } \\
& \infty>\int_{1}^{\infty}|\Omega x| x^{8-2} d x \approx \int_{1}^{\infty} x^{8-2-1 / k} d x \text { iff }-8+2+\frac{1}{k}>1 \text { iff } 1+\frac{1}{k}>8
\end{aligned}
$$

Fligker Dimensions
The (BP S'20) Let $\phi=\tilde{p}_{p}: \mathbb{D}^{d} \rightarrow \mathbb{D}$
bo an RIF.
Let $\delta(\phi, s)=\operatorname{dist}\left(Z_{\tilde{p} \sim}\left(\{\xi 5 \times \mathbb{D}), T^{d}\right)\right.$ for $\xi \in \mathbb{T}^{d-1}$
Set $\Omega_{x}=\left\{\zeta \in \mathbb{T}^{d-1}: \delta(\phi, 5)<\frac{1}{x}\right\}$
Then, for $1<\rho<\infty$

$$
\frac{\partial \phi}{\partial z_{d}} \in L^{P}\left(T^{d}\right) \text { iff } \int_{1}^{\infty}|\Omega x| x^{p-2} d x<\infty
$$

Lemma: Let $b(z)$ be a finite
Blaschke product with zeros

$$
\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{D}
$$

Then, for $1 \leqslant 8<\infty$

$$
\int_{\Pi}\left|b^{\prime}(z)\right|^{P}|d z| \approx \min \left(1-\left|\alpha_{j}\right|\right)^{1-p}
$$

Proof of Theorem:

$$
\begin{aligned}
\int_{\mathbb{L}}\left|\frac{\partial \phi}{\partial z_{z}}\left(\xi, z_{d}\right)\right|^{p} & =\int_{\Pi} d-1 \\
& \left.\approx \int_{\pi} d\left|\frac{\partial \phi}{\partial z_{d}}\left(\xi, z_{d}\right)\right|^{p}\left|d z_{d}\right|\right) d \sigma(\xi) \\
& \approx \int_{0}^{\infty} \mid\{\xi, \xi)^{1-p} d \sigma(\xi) \\
& \left.\left.\approx \delta_{1}^{-1}\right\rangle x\right\} \mid x^{p-2} \\
& \left|\Omega_{x}\right| x^{p-2} d x
\end{aligned}
$$

Derivative Integrability $\quad \phi: \mathbb{D}^{d} \rightarrow \mathbb{D}$

- $d=2$: Determined by single numerical/ invariant
- Same for all variables
- Boundary level sets consist locally of (unions of) analytic curves
- "Kuching" of branches determines K.
- d>2: - Not clear how geometry relates
- Different integrability for different vars.
- Boundary level sets can have several dimensional components and need not break up into smooth pieces.

Example: $\phi=\tilde{P} / p$ with different derivative integrability for different variables

$$
\begin{aligned}
& \phi=\frac{\frac{1}{2}+z_{3} \phi_{1}}{1+\frac{1}{2} z_{3} \phi_{1}} \\
& P(z)=\frac{\left(2-z_{1}-z_{2}\right)+\frac{1}{2} z_{3}\left(2 z_{1} z_{2}-z_{1}-z_{2}\right)}{p_{1}} \\
& =p_{1}\left(1+\frac{1}{2} z_{3} \phi_{1}\right) \quad \phi_{1}=\tilde{p}_{1} / p_{1} \\
& \tilde{p}(z)=\frac{1}{2} p_{1}+z_{3} \tilde{p}_{1} \\
& \frac{\partial \phi}{\partial z_{3}} \text { bonded so } \in L^{8}\left(\mathbb{T}^{3}\right) \\
& \Rightarrow \frac{\partial \phi}{\partial z_{1}}, \frac{\partial \phi}{\partial z_{2}} \text { have same } \\
& \text { integrability as } \phi_{1} \text {. } \\
& \in L^{8}\left(\pi^{3}\right) \text { for } p<3 / 2 \\
& Z_{\tilde{p}} \cap\left(\pi^{2} \times \mathbb{D}\right) \\
& =\left\{z_{3}=-\frac{1}{2} \frac{1}{\phi_{1}}\right\} \cup\left\{\left(1,1, z_{3}\right): z_{3} \in \mathbb{D}\right\}
\end{aligned}
$$

Example: $\phi=\frac{3 z_{1} z_{2} z_{3}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}}{3-z_{1}-z_{2}-z_{3}}$

$$
\frac{\partial \phi}{\partial z_{j}} \in L^{p}\left(\pi^{3}\right) \text { iff } p<2 \text {. }
$$

Boundary
Level surfaces
smooth except for

$$
\phi=-1
$$

Mary other examples
Example: \exists degree $(2,1,1)$ RIF $\phi=\tilde{P} / p$ such that

- $I_{p} \cap \mathbb{Z}^{3}$ consists of 3 curves
- Boundary level sets contain 2 vertical lines and a surface with a variable singularity
(a) $\mathcal{Z}_{p} \cap \mathbb{T}^{3}$ and a generic discontinuous $\mathcal{C}_{\lambda}(\lambda=\exp (3 i \pi / 4))$ with vertical lines.

Example:
\exists degree $(2,1,1)$ RIF $\phi=\tilde{p} / p$

- $Z_{p} \cap \mathbb{T}^{3}=$ two carves
- Boundary level sets $\left(\tilde{p}-\lambda_{p}=0\right)$ all contain vertical line $\{(1,1)\} \times \pi$ and a surface with singularity.
- $\frac{\partial \phi}{\partial z_{2}} \in L^{8}\left(\Pi^{3}\right)$ if $p<5 / 4$
- Integrability of $\frac{\partial \phi}{\partial z_{3}}$ unknown.

(a) $\mathcal{Z}_{p} \cap \mathbb{T}^{3}$ and a generic discontinuous \mathcal{C}_{λ}.

Main Problem:
Develop a coherent description of

- $Z_{\tilde{p}}$ near a boundary zero
- Boundary level sets of ϕ

Do singularities of RIF interface with operator-related function theory?

IMuchas Gracias!

