J.E. Pascoe's Noncommutative Free Universal Monodromy Theorem \& Applications

Kelly Bickel
Bucknell University
Lewisburg, PA

Multivariable Operator Theory and Function Spaces in Several Variables
The Casa Matemática Oaxaca (Online)
August 2, 2021

NC Monodromy Theorem \& Applications

(1) One-Variable Motivation
(2) Noncommutative Free Setup
(3) A Noncommutative Free Monodromy Theorem
(4) Main Application: Pluriharmonic Conjugates

Analytic Extensions

Let $D, \Omega \subseteq \mathbb{C}$ be domains with D strictly contained in Ω.

Question: If f is analytic on D, under what conditions does f extend to be analytic on Ω ?

Analytic Continuation Along Curves

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a curve and f an analytic function defined on an open disk D containing $\gamma(0)$

An analytic continuation of (f, D) along γ is a collection of pairs $\left(f_{t}, D_{t}\right)$ for $t \in(0,1)$ such that

- $f_{0}=f$ and $D_{0}=D$
- Each D_{t} is an open disk centered at $\gamma(t)$ and f_{t} is analytic on D_{t}
- For each t, there is an $\epsilon>0$ such that if $\left|t-t^{\prime}\right|<\epsilon, \gamma\left(t^{\prime}\right) \in D_{t}$ and $f_{t}=f_{t^{\prime}}$ on $D_{t} \cap D_{t^{\prime}}$.

Example

Ex. Let $f(z)=\log (z)=\log |z|+i \operatorname{Arg}(z)$, near $z=1$ where $\operatorname{Arg}(z) \in[-\pi, \pi)$

- $\gamma_{1}(t)=e^{i \pi t}$, for $t \in[0,1]$
- $f_{1}(z):=\log |z|+\operatorname{iarg}(z)$ with $\arg (z) \in[-\pi / 2,3 \pi / 2)$.
- $\gamma_{2}(t)=e^{-i \pi t}$, for $t \in[0,1]$
- $f_{2}(z):=\log |z|+i \arg (z)$ with $\arg (z) \in[-3 \pi / 2, \pi / 2)$

Monodromy Theorem

Two curves $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow \Omega$ are fixed endpoint homotopic if

$$
\gamma_{0}(0)=a=\gamma_{1}(0) \text { and } \gamma_{0}(1)=b=\gamma_{1}(1)
$$

and if there is a continuous function $\Gamma(t, s):[0,1] \times[0,1] \rightarrow \Omega$ such that

$$
\Gamma(t, 0)=\gamma_{0}(t), \quad \Gamma(t, 1)=\gamma_{1}(t), \quad \Gamma(0, s)=a, \quad \Gamma(1, s)=b .
$$

Monodromy Theorem \#1

Let f be analytic on $D \subseteq \Omega$ and assume that f analytically continues along each curve $\gamma \subseteq \Omega$ that begins in D.
If $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow \Omega$ are fixed endpoint homotopic curves starting in D, then the analytic continuations of f along γ_{0}, γ_{1} agree in a neighborhood of $\gamma_{j}(1)$.

Monodromy Theorem \#2

Let Ω be simply connected, let f be analytic on $D \subseteq \Omega$, and assume that f analytically continues along each curve $\gamma \subseteq \Omega$ that begins in D.
Then there is an analytic function $F: \Omega \rightarrow \mathbb{C}$ that agrees with f on D.

Simply Connected is Required Here

Ex. Let $f(z)=\log (z)=\log |z|+\operatorname{iArg}(z)$, in a neighborhood of $z=1$ where $\operatorname{Arg}(z) \in[-\pi, \pi)$

- f analytically continues along each curve in $\mathbb{C} \backslash\{0\}$.
- f does not extend to a globally analytic function F on $\mathbb{C} \backslash\{0\}$.
- The analytic continuations of f along different curves do not have to agree.

NC Monodromy Theorem \& Applications

(1) One-Variable Motivation
(2) Noncommutative Free Setup
(3) A Noncommutative Free Monodromy Theorem

4 Main Application: Pluriharmonic Conjugates

Free Sets

For fixed $d \in \mathbb{N}$, the matrix universe \mathcal{M}^{d} (for this talk) is the collection of all d-tuples of matrices of the same size:

$$
\mathcal{M}^{d}:=\bigcup_{n=1}^{\infty} M_{n}(\mathbb{C})^{d}
$$

A free set $D \subseteq \mathcal{M}^{d}$ is set that satisfies the following

- $X, Y \in D$ implies $X \oplus Y \in D$
- $X \in D$ and V unitary implies $V X V^{*} \in D$.

Free Sets

For fixed $d \in \mathbb{N}$, the matrix universe \mathcal{M}^{d} (for this talk) is the collection of all d-tuples of matrices of the same size:

$$
\mathcal{M}^{d}:=\bigcup_{n=1}^{\infty} M_{n}(\mathbb{C})^{d}
$$

A free set $D \subseteq \mathcal{M}^{d}$ is set that satisfies the following

- $X, Y \in D$ implies $X \oplus Y \in D$
- $X \in D$ and V unitary implies $V X V^{*} \in D$.

Examples:

- $D=\mathcal{M}^{d}$
- $\mathbb{A}=\left\{X \in \mathcal{M}^{1}:\|X\|,\left\|X^{-1}\right\|<2\right\}$
- Free sets can be built from polynomial inequalities:

$$
S=\left\{\left(X_{1}, X_{2}\right) \in \mathcal{M}^{2}:\left\|X_{1}^{2}+2 X_{2} X_{1}-X_{2} X_{1}\right\|<1\right\}
$$

A free set $D \subseteq \mathcal{M}^{d}$ is a noncommutative domain if for each n, $D_{n}:=D \cap M_{n}(\mathbb{C})^{d}$ is both open and connected.

Free Functions

$f: D \rightarrow \mathcal{M}^{\tilde{d}}$ is a free function if f

- $X \in D_{n}$ implies $f(X) \in M_{n}(\mathbb{C})^{\tilde{d}}$.
- If $X, Y \in D$, then $f(X \oplus Y)=f(X) \oplus f(Y)$.
- If $X, S^{-1} X S \in D$, then $f\left(S^{-1} X S\right)=S^{-1} f(X) S$.

Free Functions

$f: D \rightarrow \mathcal{M}^{\tilde{d}}$ is a free function if f

- $X \in D_{n}$ implies $f(X) \in M_{n}(\mathbb{C})^{\tilde{d}}$.
- If $X, Y \in D$, then $f(X \oplus Y)=f(X) \oplus f(Y)$.
- If $X, S^{-1} X S \in D$, then $f\left(S^{-1} X S\right)=S^{-1} f(X) S$.

Examples

- Non-commutative polynomials $p \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$,

$$
p\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}-X_{2} X_{1}+2 X_{2} X_{3} X_{1} .
$$

- Noncommutative rational functions,

$$
f\left(X_{1}, X_{2}\right)=\left(I-X_{2}\left(X_{1}^{2}-X_{2} X_{1}\right)^{-1}\right)^{-1}
$$

Analyticity

- A free function f is analytic if each $f_{n}:=\left.f\right|_{D_{n}}$ is analytic.
- f is analytic if each f_{n} is continuous (if each f_{n} is locally bounded), e.g. Helton-Klep-Mccullough, 2011.

NC Monodromy Theorem \& Applications

(1) One-Variable Motivation
(2) Noncommutative Free Setup
(3) A Noncommutative Free Monodromy Theorem

4 Main Application: Pluriharmonic Conjugates

Monodromy Theorem

Let D, Ω be noncommutative domains in \mathcal{M}^{d} with $D \subsetneq \Omega$.
γ is a curve in an NC domain Ω if γ is a standard curve in $\Omega_{n}:=\left.\Omega\right|_{\Omega \cap M_{n}(\mathbb{C})^{d}}$ for some n, i.e. $\gamma:[0,1] \rightarrow \Omega_{n}$ for some n.

Main Theorem (Pascoe 2020)

Let f be a free analytic function on D and assume that f analytically continues along each curve $\gamma \subset \Omega$ that begins in D.
Then there is a free analytic function F on Ω that agrees with f on D .

Critical Point: Ω does not need to be simply connected!
Three Proofs

- "Free" Proof
- "Disk Bounding" Proof
- "Sphere Embedding" Proof

Preliminaries

Main Theorem (Pascoe 2020)

Let f be a free analytic function on D and assume that f analytically continues along each curve $\gamma \subset \Omega$ that begins in D.
Then there is a free analytic function F on Ω that agrees with f on D .

Preliminary Observations

Let γ_{1}, γ_{2} be curves in Ω_{n} starting in D_{n} and $\hat{\gamma}=\left[\begin{array}{ll}\gamma_{1} & \\ & \gamma_{2}\end{array}\right]$ in $\Omega_{2 n}$.
Let F_{1}, F_{2}, \hat{F} denote the analytic continuations of f along the curves $\gamma_{1}, \gamma_{2}, \hat{\gamma}$.

- $F_{1}\left(\gamma_{1}(t)\right) \in M_{n}(\mathbb{C})^{\tilde{d}}$
- $\hat{F}(\hat{\gamma}(t))=\left[\begin{array}{ll}F_{1}\left(\gamma_{1}(t)\right) & \\ & F_{2}\left(\gamma_{2}(t)\right)\end{array}\right]$
- If $S \in G L_{n}(\mathbb{C})$, then $F_{1}\left(S \gamma_{1}(t) S^{-1}\right)=S F_{1}\left(\gamma_{1}(t)\right) S^{-1}$

Basic Proof Idea

Summary. Analytic continuations are graded, respect direct sums, respect similarities.

Vague Key Goal: Show that analytic continuations along different curves agree with each other, so F can be globally defined on Ω.

Set-up for all proofs

Let $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \Omega_{n}$ satisfy

- $\gamma_{1}(0)=a=\gamma_{2}(0) \in D_{n}$
- $\gamma_{1}(1)=b=\gamma_{2}(1) \in \Omega_{n}$

Let F_{1}, F_{2} be the analytic continuations of f along γ_{1}, γ_{2}
Key Goal: Show that $F_{1}(b)=F_{2}(b)$.

"Free" Proof

Define the curve: $\quad \hat{\gamma}(t)=\left[\begin{array}{ll}\gamma_{1}(t) & \\ & \gamma_{2}(t)\end{array}\right]$.
Let F denote the formula for the analytic continuation of f along $\hat{\gamma}$.

"Free" Proof

Define the curve: $\quad \hat{\gamma}(t)=\left[\begin{array}{ll}\gamma_{1}(t) & \\ & \gamma_{2}(t)\end{array}\right]$.
Let F denote the formula for the analytic continuation of f along $\hat{\gamma}$.
Choose $\epsilon>0$, so that F also gives an analytic continuation of f along
$\gamma(t)=\left[\begin{array}{cc}\gamma_{1}(t) & \epsilon \frac{\gamma_{1}(t)-\gamma_{2}(t)}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ & \gamma_{2}\end{array}\right]=\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]^{-1} \hat{\gamma}(t)\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]$

"Free" Proof

Define the curve: $\quad \hat{\gamma}(t)=\left[\begin{array}{ll}\gamma_{1}(t) & \\ & \gamma_{2}(t)\end{array}\right]$.
Let F denote the formula for the analytic continuation of f along $\hat{\gamma}$.
Choose $\epsilon>0$, so that F also gives an analytic continuation of f along
$\gamma(t)=\left[\begin{array}{cc}\gamma_{1}(t) & \epsilon \frac{\gamma_{1}(t)-\gamma_{2}(t)}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ \gamma_{2}\end{array}\right]=\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]^{-1} \hat{\gamma}(t)\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]$
Then

$$
\begin{aligned}
F(\gamma(t)) & =\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right]^{-1} F(\hat{\gamma}(t))\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
F_{1}\left(\gamma_{1}(t)\right) & \\
& F_{2}\left(\gamma_{2}(t)\right)
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
F_{1}\left(\gamma_{1}(t)\right) & \epsilon \frac{F_{1}\left(\gamma_{1}(t)\right)-F_{2}\left(\gamma_{2}(t)\right)}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
F_{2}\left(\gamma_{2}(t)\right)
\end{array}\right] .
\end{aligned}
$$

"Free" Proof

Define the curve: $\quad \hat{\gamma}(t)=\left[\begin{array}{ll}\gamma_{1}(t) & \\ & \gamma_{2}(t)\end{array}\right]$.
Let F denote the formula for the analytic continuation of f along $\hat{\gamma}$.
Choose $\epsilon>0$, so that F also gives an analytic continuation of f along
$\gamma(t)=\left[\begin{array}{cc}\gamma_{1}(t) & \epsilon \frac{\gamma_{1}(t)-\gamma_{2}(t)}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ \gamma_{2}\end{array}\right]=\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]^{-1} \hat{\gamma}(t)\left[\begin{array}{cc}1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\ 0 & 1\end{array}\right]$
Then

$$
\begin{aligned}
F(\gamma(t)) & =\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right]^{-1} F(\hat{\gamma}(t))\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
F_{1}\left(\gamma_{1}(t)\right) & F_{2}\left(\gamma_{2}(t)\right)
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{\epsilon}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
F_{1}\left(\gamma_{1}(t)\right) & \epsilon \frac{F_{1}\left(\gamma_{1}(t)\right)-F_{2}\left(\gamma_{2}(t)\right)}{\left\|\gamma_{1}(t)-\gamma_{2}(t)\right\|^{1 / 2}} \\
F_{2}\left(\gamma_{2}(t)\right)
\end{array}\right] .
\end{aligned}
$$

Letting $t \rightarrow 1$ shows $F_{1}(b)=F_{2}(b)$ since otherwise, $F(\gamma(1))$ is undefined.

"Disk Bounding Proof"

Define curves

$$
\hat{\gamma}(t)=\left[\begin{array}{ll}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right] \quad \text { and } \quad \gamma(t)=\left[\begin{array}{ll}
\gamma_{2}(t) & \\
& \gamma_{1}(t)
\end{array}\right] .
$$

"Disk Bounding Proof"

Define curves

$$
\hat{\gamma}(t)=\left[\begin{array}{ll}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right] \quad \text { and } \quad \gamma(t)=\left[\begin{array}{ll}
\gamma_{2}(t) & \\
& \gamma_{1}(t)
\end{array}\right] .
$$

Define $\Gamma:[0,1] \times[0,1] \rightarrow \Omega_{2 n}$ by

$$
\Gamma(t, s)=\left[\begin{array}{cc}
\cos (s \pi / 2) & \sin (s \pi / 2) \\
-\sin (s \pi / 2) & \cos (s \pi / 2)
\end{array}\right]\left[\begin{array}{ll}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right]\left[\begin{array}{cc}
\cos (s \pi / 2) & -\sin (s \pi / 2) \\
\sin (s \pi / 2) & \cos (s \pi / 2)
\end{array}\right] .
$$

Then $\gamma, \hat{\gamma}$ are fixed endpoint homotopic since:

$$
\Gamma(t, 0)=\hat{\gamma}(t), \quad \Gamma(t, 1)=\gamma(t), \quad \Gamma(0, s)=a l, \quad \Gamma(1, s)=b l
$$

"Disk Bounding Proof"

Define curves

$$
\hat{\gamma}(t)=\left[\begin{array}{ll}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right] \quad \text { and } \quad \gamma(t)=\left[\begin{array}{ll}
\gamma_{2}(t) & \\
& \gamma_{1}(t)
\end{array}\right] .
$$

Define $\Gamma:[0,1] \times[0,1] \rightarrow \Omega_{2 n}$ by

$$
\Gamma(t, s)=\left[\begin{array}{cc}
\cos (s \pi / 2) & \sin (s \pi / 2) \\
-\sin (s \pi / 2) & \cos (s \pi / 2)
\end{array}\right]\left[\begin{array}{cc}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right]\left[\begin{array}{cc}
\cos (s \pi / 2) & -\sin (s \pi / 2) \\
\sin (s \pi / 2) & \cos (s \pi / 2)
\end{array}\right] .
$$

Then $\gamma, \hat{\gamma}$ are fixed endpoint homotopic since:

$$
\Gamma(t, 0)=\hat{\gamma}(t), \quad \Gamma(t, 1)=\gamma(t), \quad \Gamma(0, s)=a l, \quad \Gamma(1, s)=b l .
$$

The standard (multivariable) Monodromy Theorem implies: the analytic continuations of f along $\gamma, \hat{\gamma}$ must agree near $t=1$, so

$$
\left[\begin{array}{ll}
F_{1}\left(\gamma_{1}(1)\right) & \\
& F_{2}\left(\gamma_{2}(1)\right)
\end{array}\right]=\left[\begin{array}{ll}
F_{2}\left(\gamma_{2}(1)\right) & \\
& F_{1}\left(\gamma_{1}(1)\right)
\end{array}\right]
$$

or equivalently, $F_{1}(b)=F_{2}(b)$.

Sphere Embedding

Define $\mathcal{G} \subseteq \Omega_{2 n}$ by
$\mathcal{G}:=\left\{\left[\begin{array}{cc}c & d \\ -d & c\end{array}\right]\left[\begin{array}{ll}\gamma_{1}(t) & \\ & \gamma_{2}(t)\end{array}\right]\left[\begin{array}{cc}c & -d \\ d & c\end{array}\right]: c, d \in \mathbb{R}, c^{2}+d^{2}=1, t \in[0,1]\right\}$.

Sphere Embedding

Define $\mathcal{G} \subseteq \Omega_{2 n}$ by

$$
\mathcal{G}:=\left\{\left[\begin{array}{cc}
c & d \\
-d & c
\end{array}\right]\left[\begin{array}{cc}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right]\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]: c, d \in \mathbb{R}, c^{2}+d^{2}=1, t \in[0,1]\right\} .
$$

One can show $\mathcal{G} \cong S^{2}$, which is simply connected. As

$$
\hat{\gamma}(t)=\left[\begin{array}{ll}
\gamma_{1}(t) & \\
& \gamma_{2}(t)
\end{array}\right] \quad \text { and } \quad \gamma(t)=\left[\begin{array}{ll}
\gamma_{2}(t) & \\
& \gamma_{1}(t)
\end{array}\right]
$$

are curves in \mathcal{G}, the classical Monodromy Theorem implies that the analytic continuations of f along those curves must agree at the final endpoint and so, $F_{1}(b)=F_{2}(b)$.

NC Monodromy Theorem \& Applications

(1) One-Variable Motivation
(2) Noncommutative Free Setup
(3) A Noncommutative Free Monodromy Theorem

4 Main Application: Pluriharmonic Conjugates

Pluriharmonic Functions

Commutative Case

If Ω is domain in \mathbb{C}^{d}, then $u: \Omega \rightarrow \mathbb{R}$ is pluriharmonic if for all $a \in \Omega, b \in \mathbb{C}^{d}$,

$$
\left.\Delta_{z} u(a+b z)\right|_{z=0}=\left.\left(\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(a+b z)\right)\right|_{z=0}=0 .
$$

If Ω is simply connected, $u=\operatorname{Re}(f)$ for some f analytic on Ω.

Pluriharmonic Functions

Commutative Case

If Ω is domain in \mathbb{C}^{d}, then $u: \Omega \rightarrow \mathbb{R}$ is pluriharmonic if for all $a \in \Omega, b \in \mathbb{C}^{d}$,

$$
\left.\Delta_{z} u(a+b z)\right|_{z=0}=\left.\left(\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(a+b z)\right)\right|_{z=0}=0 .
$$

If Ω is simply connected, $u=\operatorname{Re}(f)$ for some f analytic on Ω.

Noncommutative Case

A self-adjoint valued u is free pluriharmonic on an NC domain Ω if

- $X \in \Omega_{n}$ implies $u(X) \in M_{n}(\mathbb{C})$.
- $X, Y \in \Omega$, implies $u(X \oplus Y)=u(X) \oplus u(Y)$.
- V unitary, $X \in \Omega$ implies $u\left(V^{*} X V\right)=V^{*} u(X) V$.
- for all $A \in \Omega_{n}, B \in M_{n}(\mathbb{C})^{d}$,

$$
\left.\Delta_{z} u(A+B z)\right|_{z=0}=\left.\left(\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(A+B z)\right)\right|_{z=0}=0 .
$$

Pluriharmonic Conjugates

Corollary, Pascoe 2020

If u is a pluriharmonic free function defined on a noncommutative domain Ω, then there is a free analytic function F on Ω with $u=\operatorname{Re}(F)$.

Pluriharmonic Conjugates

Corollary, Pascoe 2020

If u is a pluriharmonic free function defined on a noncommutative domain Ω, then there is a free analytic function F on Ω with $u=\operatorname{Re}(F)$.

Proof Idea.

- Solve the related PDE $(u=\operatorname{Re}(f))$ in a neighborhood of each point in Ω.
- Patch the solutions together using the Monodromy theorem.

Critical Point: $\boldsymbol{\Omega}$ does not need to be simply connected!

Question: What other PDEs are important in the non-commutative setting?

Intuition Check

Annulus: $A=\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<2\right\}$.

- $u(z)=\log |z|$ is harmonic on A.
- u is not the real part of an analytic function defined globally on A.

Intuition Check

Annulus: $A=\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<2\right\}$.

- $u(z)=\log |z|$ is harmonic on A.
- u is not the real part of an analytic function defined globally on A.

Noncommutative Annulus: $\mathbb{A}=\left\{Z \in \mathcal{M}^{1}:\|Z\|,\left\|Z^{-1}\right\|<2\right\}$.

- $u(Z):=\log |Z|=\frac{1}{2} \log \left(Z^{*} Z\right)$ is a well defined (real free) function on \mathbb{A}.
- u is not pluriharmonic:

$$
\left.\Delta_{z} u\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+z\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)\right|_{z=0}=\left[\begin{array}{cc}
-\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right] .
$$

Intuition Check

Annulus: $A=\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<2\right\}$.

- $u(z)=\log |z|$ is harmonic on A.
- u is not the real part of an analytic function defined globally on A.

Noncommutative Annulus: $\mathbb{A}=\left\{Z \in \mathcal{M}^{1}:\|Z\|,\left\|Z^{-1}\right\|<2\right\}$.

- $u(Z):=\log |Z|=\frac{1}{2} \log \left(Z^{*} Z\right)$ is a well defined (real free) function on \mathbb{A}.
- u is not pluriharmonic:

$$
\left.\Delta_{z} u\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+z\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)\right|_{z=0}=\left[\begin{array}{cc}
-\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right] .
$$

Note: $F: \mathbb{A} \rightarrow \mathcal{M}^{1}$ is free analytic iff on $\mathbb{A}, F(Z)=\sum_{n=-\infty}^{\infty} c_{n} Z^{n}$.

Corollary, Pascoe 2020

The pluriharmonic free functions on \mathbb{A} are of the form $u(Z)=\operatorname{Re}\left(\sum_{n=-\infty}^{\infty} c_{n} Z^{n}\right)$.

Plurisubharmonic Functions

If Ω is an NC domain in \mathcal{M}^{d}, a self-adjoint valued free u on Ω is plurisubharmonic if

- u is a real free function (satisfies the first 3 properties of a pluriharmonic function)
- for all $A \in \Omega_{n}, B \in M_{n}(\mathbb{C})^{d}$,

$$
\left.\Delta_{z} u(A+B z)\right|_{z=0}=\left.\left(\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(A+B z)\right)\right|_{z=0} \geq 0 .
$$

- (Green, Helton, and Vinnikov (2011) and Green (2012)): Noncommutative plurisubharmonic polynomials
- (Dym, Klep, Helton, McCullough and Volcic, 2019): Plurisubharmonic free rational functions
- (Pascoe 2020): Realization formulas for general plurisubharmonic functions
- Pascoe first proved a local version.
- Then used Monodromy to obtain a global realization.

Open Question

Existence of Logarithms

If $\Omega \subseteq \mathbb{C}$ is simply connected and $f: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ is analytic, then there exist an analytic g on Ω with $f=e^{g}$.

Open Question: If F is a nonsingular free noncommutative function, when does F possess a logarithm?

Open Question

Existence of Logarithms

If $\Omega \subseteq \mathbb{C}$ is simply connected and $f: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ is analytic, then there exist an analytic g on Ω with $f=e^{g}$.

Open Question: If F is a nonsingular free noncommutative function, when does F possess a logarithm?

Related Example. Set $F\left(X_{1}, X_{2}\right)=e^{X_{1}} e^{X_{2}}$. Then F is always nonsingular, but standard results in Lie Theory show that F does not have a globally defined logarithm.

Why can't monodromy help? There are curves along which the logarithm solution cannot be analytically continued.

Open Question

Existence of Logarithms

If $\Omega \subseteq \mathbb{C}$ is simply connected and $f: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ is analytic, then there exist an analytic g on Ω with $f=e^{g}$.

Open Question: If F is a nonsingular free noncommutative function, when does F possess a logarithm?

Related Example. Set $F\left(X_{1}, X_{2}\right)=e^{X_{1}} e^{X_{2}}$. Then F is always nonsingular, but standard results in Lie Theory show that F does not have a globally defined logarithm.

Why can't monodromy help? There are curves along which the logarithm solution cannot be analytically continued.

Takeaway. The noncommutative situation is simpler in some respects but more complicated in others.

Thanks for listening!

Based on:

J.E. Pascoe. Noncommutative Free Universal Monodromy, Pluriharmonic Conjugates, and Plurisubharmonicity. 2020. Available at https://arxiv.org/abs/2002.07801.

