Geometry of free loci and factorization of nc polynomials

(following Helton, Klep, Volčič)

Mike Jury

University of Florida

2 August 2021

Hilbert's nullstellensatz:
If f_{1}, f_{2} are polynomials over \mathbb{C}, and $f_{2}(x)=0$ whenever $f_{1}(x)=0$, then some power of f_{2} belongs to the ideal generated by f_{1}.
Special cases:

- If f_{1} is irreducible, then $f_{2}=g f_{1}$ for some polynomial g.
- If f_{1} and f_{2} are irreducible and have the same zeroes, then $f_{1}=c f_{2}$ for a nonzero constant $c \in \mathbb{C}$.
$\mathbb{C}\left\langle x_{1}, \ldots, x_{g}\right\rangle$: polynomials in g noncommuting variables
$f\left(x_{1}, x_{2}\right)=x_{1} x_{2}-x_{2} x_{1}$
$f\left(x_{1}, x_{2}, x_{3}\right)=1+2 x_{1} x_{2}-x_{2} x_{1}+x_{3} x_{2}^{2}+7 x_{2} x_{3} x_{2}$
What should we mean by a "zero" of an nc polynomial?....where do we even evaluate them?
On matrices, of arbitrary size....

Let f be an nc polynomial in g variables x_{1}, \ldots, x_{g}. For each $n \geq 1$ we get a function

$$
\begin{gathered}
f_{n}: \mathbb{M}_{n}(\mathbb{C})^{g} \rightarrow \mathbb{M}_{n} \\
f_{n}:\left(X_{1}, \ldots, X_{g}\right) \rightarrow f\left(X_{1}, \ldots, X_{g}\right)
\end{gathered}
$$

(a "graded function")

Can also consider polynomials with matrix coefficients:
$g\left(x_{1}, x_{2}\right)=A x_{1} x_{2}-B x_{2} x_{1}$
where $A, B \in \mathbb{M}_{d}$.

Evaluate on $n \times n X$'s:

$$
g\left(X_{1}, X_{2}\right)=A \otimes X_{1} X_{2}-B \otimes X_{2} X_{1} \in \mathbb{M}_{d} \otimes \mathbb{M}_{n} \cong \mathbb{M}_{d n}
$$

Zeroes of nc polynomials:

- "hard" zeroes: say $X=\left(X_{1}, \ldots, X_{g}\right)$ is a hard zero of f if

$$
f\left(X_{1}, \ldots, X_{g}\right)=0_{n}
$$

Question about hard zeroes ${ }^{1}$: if f_{1}, f_{2} are nc polynomials and f_{2} has a hard zero everywhere f_{1} does, how are they related?

$$
\begin{aligned}
& f_{1}(x, y)=\text { anything } \\
& f_{2}(x, y)=x y-y x
\end{aligned}
$$

every hard zero of f_{1} at level 1 is a hard zero of $f_{2} \ldots$

${ }^{1}$ Hartnullstellenfrage

Theorem (Amitsur 1957)

Fix a level n. If $f_{2}(x)=0_{n}$ whenever $f_{1}(x)=0_{n}$, then f_{2} belongs to the ideal generated by f_{1} and \mathfrak{M}_{n}.
$\mathfrak{M}_{n}=$ ideal of polynomials that are identically zero up to level n

Zeroes of nc polynomials:

- "hard" zeroes: $f(X)=0_{n}$
- "detailed" zeroes: say a pair $X \in \mathbb{M}_{n}(\mathbb{C})^{g}, 0 \neq v \in \mathbb{C}^{n}$ is a detailed zero of f if

$$
f\left(X_{1}, \ldots, X_{g}\right) v=0
$$

Question about detailed zeroes ${ }^{2}$: if $f_{2}(X) v=0$ whenever $f_{1}(X) v=0$, how are f_{1}, f_{2} related?
${ }^{2}$ Ausführlichnullstellenfrage

Theorem (Bergman's nullstellensatz (Helton-McCullough 2004))

 If $f_{2}(X) v=0$ whenever $f_{1}(X) v=0$, then f_{2} belongs to the left ideal generated by f_{1}.(need only check (X, v) up to some fixed size depending on degrees of f_{1}, f_{2})

Zeroes of nc polynomials:

- "hard" zeroes: $f(X)=0_{n}$
- "detailed" zeroes: $f(X) v=0$
- the "zero locus":

$$
\begin{gathered}
\mathscr{Z}_{n}(f)=\left\{X \in \mathbb{M}_{n}(\mathbb{C})^{g}: \operatorname{det} f(X)=0\right\} \\
\mathscr{Z}(f)=\bigcup_{n \geq 1} \mathscr{Z}_{n}(f)
\end{gathered}
$$

(Question about the zero locus, etc...) Example:

$$
f_{1}(x, y)=1-x y, \quad f_{2}(x, y)=1-y x
$$

$$
\operatorname{det}(1-x y)=0 \quad \text { iff } \quad \operatorname{det}(1-y x)=0:
$$

Proof 1: linear algebra- $X Y$ and $Y X$ have same eigenvalues, etc.

$$
\operatorname{det}(1-x y)=0 \quad \text { iff } \quad \operatorname{det}(1-y x)=0:
$$

Proof 1: linear algebra- $X Y$ and $Y X$ have same eigenvalues, etc.

Proof 2: Schur complements-

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1-x y & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & x \\
y & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1-y x & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & y \\
x & 1
\end{array}\right)
\end{aligned}
$$

$$
P(x, y)\left(\begin{array}{cc}
1-x y & 0 \\
0 & 1
\end{array}\right) Q(x, y)=\left(\begin{array}{cc}
1-y x & 0 \\
0 & 1
\end{array}\right)
$$

(with $\operatorname{det} P(x, y), \operatorname{det} Q(x, y) \neq 0)$

Say f_{1}, f_{2} are stably associated if there exist always-invertible matrix polynomials $P(x), Q(x)$ so that

$$
P(x)\left(\begin{array}{cc}
f_{1}(x) & 0 \\
0 & 1_{m_{1}}
\end{array}\right) Q(x)=\left(\begin{array}{cc}
f_{2}(x) & 0 \\
0 & 1_{m_{2}}
\end{array}\right)
$$

So:

If f_{1}, f_{2} are stably associated then $\mathscr{Z}\left(f_{1}\right)=\mathscr{Z}\left(f_{2}\right)$.
Say $f \in \mathbb{M}_{d}(\mathbb{C}<x>)$ is an atom if it does NOT factor into non-invertibles $f=g h$

Theorem (Polynomial Singularitätstellensatz)

Let f_{1}, f_{2} be nc matrix polynomials with $f(0)=l$.

1) If f_{1} is an atom, then $\operatorname{det} f_{1}\left(\Omega^{(n)}\right)$ is irreducible for large n.
2) If f_{1}, f_{2} are atoms and $\mathscr{Z}\left(f_{1}\right)=\mathscr{Z}\left(f_{2}\right)$, then f_{1} and f_{2} are stably associated.
3) If $\mathscr{Z}\left(f_{1}\right) \subset \mathscr{Z}\left(f_{2}\right)$ then each atomic factor of f_{1} is stably associated to an atomic factor of f_{2}.

The big idea: "linearize" the problem

A (monic) linear pencil:

$$
L\left(x_{1}, \ldots, x_{g}\right)=I_{d}-\sum_{j=1}^{g} A_{j} x_{j}
$$

for some $d \times d$ matrices A_{1}, \ldots, A_{g}.
FACT: every nc polynomial $f(x)$ has a realization

$$
f(x)=c^{t} L(x)^{-1} b
$$

for some monic pencil $L(x)$ of some size d; some vectors $b, c \in \mathbb{C}^{d}$

- call it minimal if the size d is smallest possible
- minimal realizations are unique up to change of basis
- the A 's in the pencil of a minimal realization will be jointly nilpotent

$$
f(x)=c^{t} L(x)^{-1} b
$$

Suppose $f(0) \neq 0$. Consider $f(x)^{-1}$.
FACT 1: [Schützenberger 1963] $f(x)^{-1}$ also has a realization (of some size d^{\prime}):

$$
f(x)^{-1}=\widetilde{c}^{t} \widetilde{L}(x)^{-1} \widetilde{b}
$$

FACT 2: [Volčič 2017] If the realization for $f(x)^{-1}$ is minimal, then $\widetilde{L}(x)$ is invertible if and only if $f(x)$ is invertible.

THUS:

$\operatorname{det} f(x)=0$ if and only if $\operatorname{det} \widetilde{L}(x)=0$, that is....

$$
\mathscr{Z}(f)=\mathscr{Z}(\widetilde{L})
$$

$$
\begin{gathered}
\text { "zeroes" of } f(x) \longleftrightarrow \text { "poles" of } f(x)^{-1} \\
\operatorname{det} f(x)=0 \longleftrightarrow \operatorname{det} L(x)=0
\end{gathered}
$$

Lemma

If f is an nc polynomial then f is stably equivalent to a monic linear pencil L.

Lemma

If f is an atom, then f is stably equivalent to an irreducible monic linear pencil.
irreducible means: the coefficients I, A_{1}, \ldots, A_{g} of L generate the full matrix algebra \mathbb{M}_{d}

Theorem (Klep-Volčič 2017)

If L_{1}, L_{2} are irreducible monic linear pencils and $\mathscr{Z}\left(L_{1}\right)=\mathscr{Z}\left(L_{2}\right)$, then L_{1} is similar to L_{2}.

Theorem (Polynomial Singularitätstellensatz)

Let f_{1}, f_{2} be nc matrix polynomials with $f(0)=l$.
2) If f_{1}, f_{2} are atoms and $\mathscr{Z}\left(f_{1}\right)=\mathscr{Z}\left(f_{2}\right)$, then f_{1} and f_{2} are stably associated.
3) If $\mathscr{Z}\left(f_{1}\right) \subset \mathscr{Z}\left(f_{2}\right)$ then each atomic factor of f_{1} is stably associated to an atomic factor of f_{2}.

Proof of (2):

- $f_{1} \sim L_{1}, f_{2} \sim L_{2}$, both L_{i} irreducible
- Since $\mathscr{Z}\left(L_{1}\right)=\mathscr{Z}\left(L_{2}\right)$, by [KV17] we have $L_{1} \sim L_{2}$
- $f_{1} \sim L_{1} \sim L_{2} \sim f_{2} \square$

Eventual irreducibility:

$$
\mathscr{Z}_{n}(f)=\left\{X \in \mathbb{M}_{n}(\mathbb{C})^{g}: \operatorname{det} f(X)=0\right\}
$$

Introduce variables for all the matrix entries of X :

$$
\Omega^{k}=\left(\omega_{i j}^{k}\right), \quad k=1, \ldots, g, \quad i, j=1, \ldots, n
$$

Thus, at each level n the zero locus \mathscr{Z}_{n} is the zero variety of the polynomial

$$
\operatorname{det} f\left(\Omega^{(n)}\right)
$$

in $g n^{2}$ complex variables.

We already know:

$$
\mathscr{Z}_{n}(f)=\mathscr{Z}_{n}(L)
$$

for some monic pencil L, and we can choose L irreducible if f is irreducible.

Theorem (C)

Let $L=I-\sum A_{j} x_{j}$ be an irreducible monic pencil. Then there is an integer n_{0} so that

$$
\operatorname{det} L\left(\Omega_{1}^{(n)}, \ldots, \Omega_{g}^{(n)}\right)
$$

is an irreducible polynomial for all $n \geq n_{0}$.

Theorem (Polynomial Singularitätstellensatz)

Let f_{1}, f_{2} be nc matrix polynomials with $f(0)=I$.

1) If f_{1} is an atom, then $\operatorname{det} f_{1}\left(\Omega^{(n)}\right)$ is irreducible for large n.
2) If f_{1}, f_{2} are atoms and $\mathscr{Z}\left(f_{1}\right)=\mathscr{Z}\left(f_{2}\right)$, then f_{1} and f_{2} are stably associated.
3) If $\mathscr{Z}\left(f_{1}\right) \subset \mathscr{Z}\left(f_{2}\right)$ then each atomic factor of f_{1} is stably associated to an atomic factor of f_{2}.
"Large n " is necessary:
$f(x, y)=(1-x)^{2}-y^{2} \quad$ is irreducible as an nc polynomial, but
at level 1:

$$
(1-z)^{2}-w^{2}=(1-z-w)(1-z+w)
$$

"flip-poly" pencils:
We already know:

$$
\mathscr{Z}_{n}(f)=\mathscr{Z}_{n}(L)
$$

for some monic pencil L (e.g. L the pencil in a minimal realization of f^{-1})

Which pencils L arise this way?
Say a pencil $L=1-\sum A_{j} x_{j}$ is flip-poly if

$$
A_{j}=N_{j}+E_{j}, \quad \text { where }
$$

- N_{j} are nilpotent
- E_{j} are rank one
- codim $\cap \operatorname{ker} E_{j} \leq 1$

Lemma

Let $f \in \mathbb{C}\langle x\rangle$ with $f(0)=1$. Let L be the pencil in a minimal realization of f^{-1}. Then

- L is flip-poly, and
- $\operatorname{det} f\left(\Omega^{(n)}\right)=\operatorname{det} L\left(\Omega^{(n)}\right)$.

Theorem

$\mathscr{Z}(L)=\mathscr{Z}(f)$ for some nc polynomial f if and only if $\mathscr{Z}(L)=\mathscr{Z}\left(L_{0}\right)$ for some flip-poly pencil L_{0}.

One more theorem, which relates invariant subspaces for the pencil L in a minimal realization of f to invariant subspaces of the pencil \widetilde{L} in a minimal realization of $f^{-1} \ldots$.

Applications:

- factoring nc polynomials:

$$
f(x)^{-1}=1+\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right)^{t}\left(\begin{array}{cc}
L_{1} & \star \\
0 & L_{2}
\end{array}\right)^{-1}\binom{b_{1}}{b_{2}}
$$

- smooth points on free loci
- boundaries of spectrahedra

