Hardy Sobolev spaces in several complex variables

Nikos Chalmoukis - UNIBO

Università di Bologna
3 August 2021

Let \mathbb{B}^{d} be the unit ball in \mathbb{C}^{d} and $d \sigma$ the normalized surface measure on $\partial \mathbb{B}^{d}$.

> The classical Hardy space $H^{2}\left(\mathbb{B}^{d}\right)$ is defined as the space of holomorphic functions $f \in \mathcal{O}\left(\mathbb{B}^{d}\right)$ such that

Let also \mathcal{R}^{s} be the fractional differentiation operator

Let \mathbb{B}^{d} be the unit ball in \mathbb{C}^{d} and $d \sigma$ the normalized surface measure on $\partial \mathbb{B}^{d}$.

The classical Hardy space $H^{2}\left(\mathbb{B}^{d}\right)$ is defined as the space of holomorphic functions $f \in \mathcal{O}\left(\mathbb{B}^{d}\right)$ such that

$$
\|f\|_{H^{2}}^{2}:=\sup _{0<r<1} \int_{\partial \mathbb{B}^{d}}|f(r \zeta)|^{2} d \sigma(\zeta)<+\infty .
$$

Let also \mathcal{R}^{s} be the fractional differentiation operator

Let \mathbb{B}^{d} be the unit ball in \mathbb{C}^{d} and $d \sigma$ the normalized surface measure on $\partial \mathbb{B}^{d}$.

The classical Hardy space $H^{2}\left(\mathbb{B}^{d}\right)$ is defined as the space of holomorphic functions $f \in \mathcal{O}\left(\mathbb{B}^{d}\right)$ such that

$$
\|f\|_{H^{2}}^{2}:=\sup _{0<r<1} \int_{\partial \mathbb{B}^{d}}|f(r \zeta)|^{2} d \sigma(\zeta)<+\infty .
$$

Let also \mathcal{R}^{s} be the fractional differentiation operator

$$
\mathcal{R}^{s}\left(\sum_{\alpha \in \mathbb{N}^{d}} c_{\alpha} z^{\alpha}\right):=\sum_{\alpha \in \mathbb{N}^{d}}(|\alpha|+1)^{s} c_{\alpha} z^{\alpha} .
$$

We define the Hardy-Sobolev space H_{s}^{2} as the space of $f \in \mathcal{O}\left(\mathbb{B}^{d}\right)$ such that

$$
\|f\|_{s}:=\left\|\mathcal{R}^{s} f\right\|_{H^{2}}<+\infty .
$$

Figure: Scale of H_{s}^{2} spaces

We define the Hardy-Sobolev space H_{s}^{2} as the space of $f \in \mathcal{O}\left(\mathbb{B}^{d}\right)$ such that

$$
\|f\|_{s}:=\left\|\mathcal{R}^{s} f\right\|_{H^{2}}<+\infty .
$$

Figure: Scale of H_{s}^{2} spaces

$$
K_{s}(z, w)=\frac{1}{(1-z \cdot \bar{w})^{d-2 s}}, s<d / 2 ; \quad K_{\frac{d}{2}}(z, w)=\frac{1}{z \cdot \bar{w}} \log \frac{1}{1-z \cdot \bar{w}} .
$$

But why?

For operator theorists Drury - Arveson's space is of fundamental importance, essentially because of Drury's inequality;

Theorem (Druky's ven Newman type inequality)

Let $A_{1}, \ldots A_{d}$ a commuting row of operators on a Hilbert space \mathcal{H} such that

$$
\sum_{i=1}^{d} A_{i}^{*} A_{i} \leq \mathrm{id} .
$$

Then for any complex polynomial p of d variables we have

$$
\left\|p\left(A_{1}, \ldots, A_{d}\right)\right\|_{\mathcal{B}(\mathcal{H})} \leq \sup _{\|f\| \leq 1}\|p f\| .
$$

Where the norm $\|\cdot\|$ is a norm equivalent to $\|\cdot\|_{\frac{d-1}{2}}$.

But why?

For operator theorists Drury - Arveson's space is of fundamental importance, essentially because of Drury's inequality;

Theorem (Drury's von Neumann type inequality)

Let $A_{1}, \ldots A_{d}$ a commuting row of operators on a Hilbert space \mathcal{H} such that

$$
\sum_{i=1}^{d} A_{i}^{*} A_{i} \leq \mathrm{id} .
$$

Then for any complex polynomial p of d variables we have

But why?

For operator theorists Drury - Arveson's space is of fundamental importance, essentially because of Drury's inequality;

Theorem (Drury's von Neumann type inequality)

Let $A_{1}, \ldots A_{d}$ a commuting row of operators on a Hilbert space \mathcal{H} such that

$$
\sum_{i=1}^{d} A_{i}^{*} A_{i} \leq \mathrm{id} .
$$

Then for any complex polynomial p of d variables we have

$$
\left\|p\left(A_{1}, \ldots, A_{d}\right)\right\|_{\mathcal{B}(\mathcal{H})} \leq \sup _{\|f\| \leq 1}\|p f\| .
$$

Where the norm $\|\cdot\|$ is a norm equivalent to $\|\cdot\|_{\frac{d-1}{2}}$.

From a geometric viewpoint the Dirichlet space is particularly interesting.

Theorem (Arazy \& Fisher (1985) $d=1$, Peloso (1992) $d>2$)

The Dirichlet space $\left(s=\frac{d}{2}\right)$ is the "unique" Hilbert space of analytic functions in the unit ball which contains constants and is invariant under composition with biholomorphisms of the unit ball.

In fact there exists seminorms for H_{d}^{2} such that
$\|f \circ \varphi\|=\|f\|, \forall \varphi \in \operatorname{Aut}\left(\mathbb{R}^{d}\right)$. For $d=1$ this seminorm is exactly the square root of the area of $f\left(\mathbb{B}^{1}\right)$

Surprisingly enough we are lacking a simple geometric interpretation of the same quantity for $d>1$.

From a geometric viewpoint the Dirichlet space is particularly interesting.

Theorem (Arazy \& Fisher (1985) $d=1$, Peloso (1992) $d>2$)

The Dirichlet space $\left(s=\frac{d}{2}\right)$ is the "unique" Hilbert space of analytic functions in the unit ball which contains constants and is invariant under composition with biholomorphisms of the unit ball.

In fact there exists seminorms for $H_{\frac{d}{2}}^{2}$ such that
$\left\|f \circ \varphi^{\|}=\right\| f \|, \forall \varphi \in \operatorname{Aut}\left(\mathbb{D}^{d}\right)$. For $d=1$ this seminorm is exactly the
square root of the area of $f\left(\mathbb{B}^{1}\right)$
Surprisingly enough we are lacking a simple geometric
interpretation of the same quantity for $d>1$.

From a geometric viewpoint the Dirichlet space is particularly interesting.

Theorem (Arazy \& Fisher (1985) $d=1$, Peloso (1992) $d>2$)

The Dirichlet space $\left(s=\frac{d}{2}\right)$ is the "unique" Hilbert space of analytic functions in the unit ball which contains constants and is invariant under composition with biholomorphisms of the unit ball.

In fact there exists seminorms for $H_{\frac{d}{2}}^{2}$ such that $\|f \circ \varphi\|=\|f\|, \forall \varphi \in \operatorname{Aut}\left(\mathbb{B}^{d}\right)$. For $d=1$ this seminorm is exactly the square root of the area of $f\left(\mathbb{B}^{1}\right)$.

Surprisingly enough we are lacking a simple geometric
interpretation of the same quantity for $d>1$.

From a geometric viewpoint the Dirichlet space is particularly interesting.

Theorem (Arazy \& Fisher (1985) $d=1$, Peloso (1992) $d>2$)

The Dirichlet space $\left(s=\frac{d}{2}\right)$ is the "unique" Hilbert space of analytic functions in the unit ball which contains constants and is invariant under composition with biholomorphisms of the unit ball.

In fact there exists seminorms for $H_{\frac{d}{2}}^{2}$ such that
$\|f \circ \varphi\|=\|f\|, \forall \varphi \in \operatorname{Aut}\left(\mathbb{B}^{d}\right)$. For $d=1$ this seminorm is exactly the square root of the area of $f\left(\mathbb{B}^{1}\right)$.

Surprisingly enough we are lacking a simple geometric interpretation of the same quantity for $d>1$.

Let $\mathcal{M}\left(H_{s}^{2}\right)$ be the space of functions f in the unit ball such that

$$
f \cdot g \in H_{s}^{2}, \quad \forall g \in H_{s}^{2} .
$$

This is an Banach algebra equipped with the norm of the multiplication operator, i.e.;

(Recall Drury's inequality) It can be proven that

Let $\mathcal{M}\left(H_{s}^{2}\right)$ be the space of functions f in the unit ball such that

$$
f \cdot g \in H_{s}^{2}, \quad \forall g \in H_{s}^{2} .
$$

This is an Banach algebra equipped with the norm of the multiplication operator, i.e.;

$$
\|f\|_{\mathcal{M}\left(H_{s}^{2}\right)}:=\sup _{\|g\|_{H_{s}} \leq 1}\|f \cdot g\|_{H_{s}^{2}} .
$$

(Recall Drury's inequality) It can be proven that

Let $\mathcal{M}\left(H_{s}^{2}\right)$ be the space of functions f in the unit ball such that

$$
f \cdot g \in H_{s}^{2}, \quad \forall g \in H_{s}^{2} .
$$

This is an Banach algebra equipped with the norm of the multiplication operator, i.e.;

$$
\|f\|_{\mathcal{M}\left(H_{s}^{2}\right)}:=\sup _{\|g\|_{H_{s}^{2}} \leq 1}\|f \cdot g\|_{H_{s}^{2}} .
$$

(Recall Drury's inequality) It can be proven that

$$
\|f\|_{\mathcal{M}\left(H_{s}^{2}\right)} \approx\|f\|_{H^{\infty}}+[f]_{C M, s}
$$

To understand the quantity $[f]_{C M, s}$ we need to introduce Carleson measures. Let μ a positive Borel measure on \mathbb{B}^{d}.

We say that μ is a Carleson measure for H_{s}^{2} if $H_{s}^{2} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.
The Carleson constant of μ is the norm of the identity operator id: $H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.

Then $[f]_{C M, s}$ is the Carleson constant of the positive Borel measure,

$$
\left|(1-|z|)^{m} \partial^{m} f(z)\right|^{2}(1-|z|)^{d-2 s} d \lambda_{d}(z) .
$$

Where $m>s$ is an integer and the quantity is comparable for all $m>s$.

To understand the quantity $[f]_{C M, s}$ we need to introduce Carleson measures. Let μ a positive Borel measure on \mathbb{B}^{d}.

We say that μ is a Carleson measure for H_{s}^{2} if $H_{s}^{2} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.
The Carleson constant of μ is the norm of the identity operator id : $H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.

Then $[f]$ CM, s is the Carleson constant of the positive Borel
measure,

$$
\left|(1-|z|)^{m} \partial^{m} f(z)\right|^{2}(1-|z|)^{d-2 s} d \lambda_{d}(z) .
$$

Where $m>s$ is an integer and the quantity is comparable for all $m>s$.

To understand the quantity $[f]_{C M, s}$ we need to introduce Carleson measures. Let μ a positive Borel measure on \mathbb{B}^{d}.

We say that μ is a Carleson measure for H_{s}^{2} if $H_{s}^{2} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.
The Carleson constant of μ is the norm of the identity operator id: $H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.

Then $[f]_{C M, s}$ is the Carleson constant of the positive Borel
measure,

$$
\left|(1-|z|)^{m} \partial^{m} f(z)\right|^{2}(1-|z|)^{d-2 s} d \lambda_{d}(z) .
$$

Where $m>s$ is an integer and the quantity is comparable for all

To understand the quantity $[f]_{C M, s}$ we need to introduce Carleson measures. Let μ a positive Borel measure on \mathbb{B}^{d}.

We say that μ is a Carleson measure for H_{s}^{2} if $H_{s}^{2} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.
The Carleson constant of μ is the norm of the identity operator id : $H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$.

Then $[f]_{C M, s}$ is the Carleson constant of the positive Borel measure,

$$
\left|(1-|z|)^{m} \partial^{m} f(z)\right|^{2}(1-|z|)^{d-2 s} d \lambda_{d}(z)
$$

Where $m>s$ is an integer and the quantity is comparable for all $m>s$.

Let us introduce a type of capacity for sets in $\partial \mathbb{B}^{d}, \frac{d}{2} \geq s>0$. - The s-potential of μ is

$$
\mathcal{I}_{2 s}(\mu)(z):=\int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(w)
$$

- The s-energy of μ is defined by

$$
\varepsilon_{s}(\mu)=\iint_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(z) d \mu(w) .
$$

- The s-capacity of E is defined by

$$
C_{S}(E)^{1 / 2}=\sup \left\{\mu(E): \mu \in M^{+}(E), \varepsilon_{S}(\mu) \leq 1\right\} .
$$

Let us introduce a type of capacity for sets in $\partial \mathbb{B}^{d}, \frac{d}{2} \geq s>0$.

- The s-potential of μ is

$$
\mathcal{I}_{2 s}(\mu)(z):=\int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(w)
$$

- The s-energy of μ is defined by

- The s-capacity of E is defined by

$$
C_{s}(E)^{1 / 2}=\sup \left\{\mu(E): \mu \in M^{+}(E), \varepsilon_{S}(\mu) \leq 1\right\} .
$$

Let us introduce a type of capacity for sets in $\partial \mathbb{B}^{d}, \frac{d}{2} \geq s>0$.

- The s-potential of μ is

$$
\mathcal{I}_{2 s}(\mu)(z):=\int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(w)
$$

- The s-energy of μ is defined by

$$
\mathcal{E}_{s}(\mu)=\int_{\partial \mathbb{B}^{d}} \int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(z) d \mu(w) .
$$

- The s-capacity of E is defined by

$$
C_{s}(E)^{1 / 2}=\sup \left\{\mu(E): \mu \in M^{+}(E), \mathcal{E}_{s}(\mu) \leq 1\right\} .
$$

Let us introduce a type of capacity for sets in $\partial \mathbb{B}^{d}, \frac{d}{2} \geq s>0$.

- The s-potential of μ is

$$
\mathcal{I}_{2 s}(\mu)(z):=\int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(w)
$$

- The s-energy of μ is defined by

$$
\mathcal{E}_{s}(\mu)=\int_{\partial \mathbb{B}^{d}} \int_{\partial \mathbb{B}^{d}}\left|K_{s}(z, w)\right| d \mu(z) d \mu(w) .
$$

- The s-capacity of E is defined by

$$
C_{s}(E)^{1 / 2}=\sup \left\{\mu(E): \mu \in M^{+}(E), \mathcal{E}_{s}(\mu) \leq 1\right\}
$$

Let also for $r<1, \zeta \in \partial \mathbb{B}^{d}$,

$$
Q_{r}(\zeta):=\left\{z \in \overline{\mathbb{B}^{d}} ;|1-z \cdot \bar{\zeta}| \leq r\right\}, \quad I_{r}(\zeta):=\partial \mathbb{B}^{d} \cap Q_{r}(\zeta) .
$$

Theorem (Stegenga 1980, Ahern \& Cohn 1989)

Let $\frac{d}{2}>s>\frac{d-1}{2}$, then a (positive Borel) measure 11 is Carleson for H_{s}^{2} if and only if for all $\zeta_{1}, \ldots \zeta_{k} \in \partial \mathbb{B}^{d}, r_{1}, \ldots r_{k}<1$ we have

For $s \leq \frac{d-1}{2}$ this condition is sufficient but not necessary.

Let also for $r<1, \zeta \in \partial \mathbb{B}^{d}$,

$$
Q_{r}(\zeta):=\left\{z \in \overline{\mathbb{B}^{d}} ;|1-z \cdot \bar{\zeta}| \leq r\right\}, \quad I_{r}(\zeta):=\partial \mathbb{B}^{d} \cap Q_{r}(\zeta) .
$$

Theorem (Stegenga 1980, Ahern \& Cohn 1989)

Let $\frac{d}{2} \geq s>\frac{d-1}{2}$, then a (positive Borel) measure μ is Carleson for H_{s}^{2} if and only if for all $\zeta_{1}, \ldots \zeta_{k} \in \partial \mathbb{B}^{d}, r_{1}, \ldots r_{k}<1$ we have

$$
\mu\left(\bigcup_{i=1}^{k} Q_{r_{i}}\left(\zeta_{i}\right)\right) \leq[\mu] C_{s}\left(\bigcup_{i=1}^{k} I_{r_{i}}\left(\zeta_{i}\right)\right) .
$$

For $s \leq \frac{d-1}{2}$ this condition is sufficient but not necessary.

Let also for $r<1, \zeta \in \partial \mathbb{B}^{d}$,

$$
Q_{r}(\zeta):=\left\{z \in \overline{\mathbb{B}^{d}} ;|1-z \cdot \bar{\zeta}| \leq r\right\}, \quad I_{r}(\zeta):=\partial \mathbb{B}^{d} \cap Q_{r}(\zeta) .
$$

Theorem (Stegenga 1980, Ahern \& Cohn 1989)

Let $\frac{d}{2} \geq s>\frac{d-1}{2}$, then a (positive Borel) measure μ is Carleson for H_{s}^{2} if and only if for all $\zeta_{1}, \ldots \zeta_{k} \in \partial \mathbb{B}^{d}, r_{1}, \ldots r_{k}<1$ we have

$$
\mu\left(\bigcup_{i=1}^{k} Q_{r_{i}}\left(\zeta_{i}\right)\right) \leq[\mu] C_{s}\left(\bigcup_{i=1}^{k} I_{r_{i}}\left(\zeta_{i}\right)\right) .
$$

For $s \leq \frac{d-1}{2}$ this condition is sufficient but not necessary.

On a macroscopic scale the flow of the argument for sufficiency is the following.
(1) The kernel defining the s-potential is the reciprocal of a quasidistance, i.e.

(2) This implies (Adams \& Hedberg) that the potential satisfies the so called boundedness principle, i.e.

$$
\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}\left(\partial \mathbb{B}^{d}\right)} \leq M\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}(\operatorname{supp} \mu)}
$$

(3) In turn this implies a strong capacitary inequality;

On a macroscopic scale the flow of the argument for sufficiency is the following.
(1) The kernel defining the s-potential is the reciprocal of a quasidistance, i.e.

$$
\frac{1}{\left|K_{s}(z, w)\right|} \leq C\left(\frac{1}{\left|K_{s}(z, y)\right|}+\frac{1}{\left|K_{s}(y, w)\right|}\right), \quad z, y, w \in \partial \mathbb{B}^{d} .
$$

(2) This implies (Adams \& Hedberg) that the potential satisfies the so called boundedness principle, i.e.

$$
\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}\left(\partial \mathbb{B}^{d}\right)} \leq M\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}(\operatorname{supp} \mu)}
$$

(3) In turn this implies a strong capacitary inequality;

On a macroscopic scale the flow of the argument for sufficiency is the following.
(1) The kernel defining the s-potential is the reciprocal of a quasidistance, i.e.

$$
\frac{1}{\left|K_{s}(z, w)\right|} \leq C\left(\frac{1}{\left|K_{s}(z, y)\right|}+\frac{1}{\left|K_{s}(y, w)\right|}\right), \quad z, y, w \in \partial \mathbb{B}^{d} .
$$

(2) This implies (Adams \& Hedberg) that the potential satisfies the so called boundedness principle, i.e.

$$
\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}\left(\partial \mathbb{B}^{d}\right)} \leq M\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}(\operatorname{supp} \mu)}
$$

(3) In turn this implies a strong capacitary inequality;

On a macroscopic scale the flow of the argument for sufficiency is the following.
(1) The kernel defining the s-potential is the reciprocal of a quasidistance, i.e.

$$
\frac{1}{\left|K_{s}(z, w)\right|} \leq C\left(\frac{1}{\left|K_{s}(z, y)\right|}+\frac{1}{\left|K_{s}(y, w)\right|}\right), \quad z, y, w \in \partial \mathbb{B}^{d} .
$$

(2) This implies (Adams \& Hedberg) that the potential satisfies the so called boundedness principle, i.e.

$$
\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}\left(\partial \mathbb{B}^{d}\right)} \leq M\left\|\mathcal{I}_{2 s}(\mu)\right\|_{L^{\infty}(\operatorname{supp} \mu)}
$$

(3) In turn this implies a strong capacitary inequality;

$$
\int_{0}^{\infty} C_{s}\left(\mathcal{I}_{s}(\mu)>\lambda\right) d \lambda^{2} \leq M\|\mu\|_{L^{2}\left(d \sigma, \mathbb{B}^{d}\right)}^{2}
$$

Then the Carleson inequality as follows. Pick a function $F \in H_{s}^{2}$. The real part $f:=$ ReF has a representation as $f=\mathcal{I}_{s}(\varphi)$ such that $\|\varphi\|_{L^{2}(d \sigma)} \lesssim\|F\|_{H_{s}^{2}}$.

$$
\begin{aligned}
\int_{\mathbb{B}^{d}}|f|^{2} d \mu & \leq \int_{0}^{\infty} \mu\left(I_{s}(|\varphi|)>\lambda\right) d \lambda^{2} \\
& \left.\lesssim \int_{0}^{\infty} C_{s}\left(I_{s}(|\varphi|)>\lambda\right)\right) d \lambda^{2} \\
& \lesssim\|\varphi\|_{L^{2}(d \sigma)}^{2} \lesssim\|F\|_{H_{s} .}^{2} .
\end{aligned}
$$

This proves sufficiency.

Then the Carleson inequality as follows. Pick a function $F \in H_{s}^{2}$. The real part $f:=\operatorname{Re} F$ has a representation as $f=\mathcal{I}_{s}(\varphi)$ such that $\|\varphi\|_{L^{2}(d \sigma)} \lesssim\|F\|_{H_{s}^{2}}$.

This proves sufficiency.

Then the Carleson inequality as follows. Pick a function $F \in H_{s}^{2}$. The real part $f:=\operatorname{Re} F$ has a representation as $f=\mathcal{I}_{s}(\varphi)$ such that $\|\varphi\|_{L^{2}(d \sigma)} \lesssim\|F\|_{H_{s}^{2}}$.

$$
\begin{aligned}
\int_{\mathbb{B}^{d}}|f|^{2} d \mu & \leq \int_{0}^{\infty} \mu\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right) d \lambda^{2} \\
& \left.\lesssim \int_{0}^{\infty} C_{s}\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right)\right) d \lambda^{2} \\
& \lesssim\|\varphi\|_{L^{2}(d \sigma)}^{2} \lesssim\|F\|_{H_{s}}^{2} .
\end{aligned}
$$

This proves sufficiency.

Then the Carleson inequality as follows. Pick a function $F \in H_{s}^{2}$. The real part $f:=\operatorname{Re} F$ has a representation as $f=\mathcal{I}_{s}(\varphi)$ such that $\|\varphi\|_{L^{2}(d \sigma)} \lesssim\|F\|_{H_{s}^{2}}$.

$$
\begin{aligned}
\int_{\mathbb{B}^{d}}|f|^{2} d \mu & \leq \int_{0}^{\infty} \mu\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right) d \lambda^{2} \\
& \left.\lesssim \int_{0}^{\infty} C_{s}\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right)\right) d \lambda^{2}
\end{aligned}
$$

This proves sufficiency.

Then the Carleson inequality as follows. Pick a function $F \in H_{s}^{2}$. The real part $f:=\operatorname{ReF}$ has a representation as $f=\mathcal{I}_{s}(\varphi)$ such that $\|\varphi\|_{L^{2}(d \sigma)} \lesssim\|F\|_{H_{s}^{2}}$.

$$
\begin{aligned}
\int_{\mathbb{B}^{d}}|f|^{2} d \mu & \leq \int_{0}^{\infty} \mu\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right) d \lambda^{2} \\
& \left.\lesssim \int_{0}^{\infty} C_{s}\left(\mathcal{I}_{s}(|\varphi|)>\lambda\right)\right) d \lambda^{2} \\
& \lesssim\|\varphi\|_{L^{2}(d \sigma)}^{2} \lesssim\|F\|_{H_{s}^{2}}^{2} .
\end{aligned}
$$

This proves sufficiency.

So what goes wrong for $s \leq \frac{d-1}{2}$. Nothing... only that considering a potential associated to the absolute value of the kernel K_{s} is too crude in most cases.
it is only the real part of the kernel that only matters. It just happens that for $\frac{d}{2} \geq s>\frac{d-1}{2}$ we have

$$
\operatorname{Re}_{s}(z, w) \approx\left|K_{s}(z, w)\right|, \quad z, w \in \mathbb{B}^{d} .
$$

For the Drury Arveson space $s=\frac{d-1}{2}$ the real part of the kernel is still positive, while for $s<\frac{d-1}{2}$ the real part of the kernel is signed (things are even worse in some sense).

So what goes wrong for $s \leq \frac{d-1}{2}$. Nothing... only that considering a potential associated to the absolute value of the kernel K_{s} is too crude in most cases.
it is only the real part of the kernel that only matters. It just happens that for $\frac{d}{2} \geq s>\frac{d-1}{2}$ we have

$$
\operatorname{Re} K_{s}(z, w) \approx\left|K_{s}(z, w)\right|, \quad z, w \in \mathbb{B}^{d} .
$$

For the Drury Arveson space $s=\frac{d-1}{2}$ the real part of the kernel is still positive, while for $s<\frac{d-1}{2}$ the real part of the kernel is signed (things are even worse in some sense).

So what goes wrong for $s \leq \frac{d-1}{2}$. Nothing... only that considering a potential associated to the absolute value of the kernel K_{s} is too crude in most cases.

It is only the real part of the kernel that only matters. It just happens that for $\frac{d}{2} \geq s>\frac{d-1}{2}$ we have

$$
\operatorname{Re} K_{s}(z, w) \approx\left|K_{s}(z, w)\right|, \quad z, w \in \mathbb{B}^{d} .
$$

For the Drury Arveson space $s=\frac{d-1}{2}$ the real part of the kernel is still positive, while for $s<\frac{d-1}{2}$ the real part of the kernel is signed (things are even worse in some sense).

So what goes wrong for $s \leq \frac{d-1}{2}$. Nothing... only that considering a potential associated to the absolute value of the kernel K_{s} is too crude in most cases.

It is only the real part of the kernel that only matters. It just happens that for $\frac{d}{2} \geq s>\frac{d-1}{2}$ we have

$$
\operatorname{Re}_{s}(z, w) \approx\left|K_{s}(z, w)\right|, \quad z, w \in \mathbb{B}^{d} .
$$

For the Drury Arveson space $s=\frac{d-1}{2}$ the real part of the kernel is still positive, while for $s<\frac{d-1}{2}$ the real part of the kernel is signed (things are even worse in some sense).

So what goes wrong for $s \leq \frac{d-1}{2}$. Nothing... only that considering a potential associated to the absolute value of the kernel K_{s} is too crude in most cases.

It is only the real part of the kernel that only matters. It just happens that for $\frac{d}{2} \geq s>\frac{d-1}{2}$ we have

$$
\operatorname{Re}_{s}(z, w) \approx\left|K_{s}(z, w)\right|, \quad z, w \in \mathbb{B}^{d} .
$$

For the Drury Arveson space $s=\frac{d-1}{2}$ the real part of the kernel is still positive, while for $s<\frac{d-1}{2}$ the real part of the kernel is signed (things are even worse in some sense).

Let $\Theta=\mathrm{id}^{*}, i d: H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$. We have that, $\Theta \varphi(z)=\left\langle\Theta \varphi, K_{z}^{D A}\right\rangle_{H_{s}^{2}}=\left\langle\varphi, K_{z}^{D A}\right\rangle_{L^{2}(d \mu)}=\int_{\mathbb{B}^{d}} \frac{\varphi(w)}{1-z \cdot \bar{w}} d \mu(w)$.

By testing $\Theta^{*} \Theta: L^{2}(d \mu) \rightarrow L^{2}(\mu)$ on characteristic functions of sets of the form $Q_{r}(\zeta)$ we have the following necessary condition for the Carleson measure μ;

$$
\begin{equation*}
\int_{Q_{r}(\zeta)}\left(\int_{Q_{r}(\zeta)} \operatorname{Re} \frac{1}{1-z \cdot \bar{w}} d \mu(w)\right)^{2} d \mu(z) \leq M \cdot \mu\left(Q_{r}(\zeta)\right) \tag{1}
\end{equation*}
$$

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure μ is Carleson for DA if and only if satisfies the $T(1)$ condition and $\mu\left(Q_{r}(\zeta)\right) \lesssim M \cdot r$

Let $\Theta=\mathrm{id}^{*}, i d: H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$. We have that,

$$
\Theta \varphi(z)=\left\langle\Theta \varphi, K_{z}^{D A}\right\rangle_{H_{s}^{2}}=\left\langle\varphi, K_{z}^{D A}\right\rangle_{L^{2}(d \mu)}=\int_{\mathbb{B}^{d}} \frac{\varphi(w)}{1-z \cdot \bar{w}} d \mu(w) .
$$

By testing $\Theta^{*} \Theta: L^{2}(d \mu) \rightarrow L^{2}(\mu)$ on characteristic functions of sets of the form $Q_{r}(\zeta)$ we have the following necessary condition for the Carleson measure μ;

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure μ is Carleson for DA if and only if satisfies the $T(1)$ condition and $\mu\left(Q_{r}(\zeta)\right) \lesssim M \cdot r$

Let $\Theta=\mathrm{id}^{*}, i d: H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$. We have that,

$$
\Theta \varphi(z)=\left\langle\Theta \varphi, K_{z}^{D A}\right\rangle_{H_{s}^{2}}=\left\langle\varphi, K_{z}^{D A}\right\rangle_{L^{2}(d \mu)}=\int_{\mathbb{B}^{d}} \frac{\varphi(w)}{1-z \cdot \bar{w}} d \mu(w) .
$$

By testing $\Theta^{*} \Theta: L^{2}(d \mu) \rightarrow L^{2}(\mu)$ on characteristic functions of sets of the form $Q_{r}(\zeta)$ we have the following necessary condition for the Carleson measure μ;

($\mathrm{T}(1)$-Testing)

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure 11 is Carleson for DA if and only if satisfies the $T(1)$

Let $\Theta=\mathrm{id}^{*}, i d: H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$. We have that,

$$
\Theta \varphi(z)=\left\langle\Theta \varphi, K_{z}^{D A}\right\rangle_{H_{s}^{2}}=\left\langle\varphi, K_{z}^{D A}\right\rangle_{L^{2}(d \mu)}=\int_{\mathbb{B}^{d}} \frac{\varphi(w)}{1-z \cdot \bar{w}} d \mu(w) .
$$

By testing $\Theta^{*} \Theta: L^{2}(d \mu) \rightarrow L^{2}(\mu)$ on characteristic functions of sets of the form $Q_{r}(\zeta)$ we have the following necessary condition for the Carleson measure μ;

$$
\int_{Q_{r}(\zeta)}\left(\int_{Q_{r}(\zeta)} \operatorname{Re} \frac{1}{1-z \cdot \bar{w}} d \mu(w)\right)^{2} d \mu(z) \leq M \cdot \mu\left(Q_{r}(\zeta)\right)
$$

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure μ is Carleson for DA if and only if satisfies the $T(1)$

Let $\Theta=\mathrm{id}^{*}, i d: H_{s}^{2} \rightarrow L^{2}\left(\mathbb{B}^{d}, d \mu\right)$. We have that,

$$
\Theta \varphi(z)=\left\langle\Theta \varphi, K_{z}^{D A}\right\rangle_{H_{s}^{2}}=\left\langle\varphi, K_{z}^{D A}\right\rangle_{L^{2}(d \mu)}=\int_{\mathbb{B}^{d}} \frac{\varphi(w)}{1-z \cdot \bar{w}} d \mu(w) .
$$

By testing $\Theta^{*} \Theta: L^{2}(d \mu) \rightarrow L^{2}(\mu)$ on characteristic functions of sets of the form $Q_{r}(\zeta)$ we have the following necessary condition for the Carleson measure μ;

$$
\int_{Q_{r}(\zeta)}\left(\int_{Q_{r}(\zeta)} \operatorname{Re} \frac{1}{1-z \cdot \bar{w}} d \mu(w)\right)^{2} d \mu(z) \leq M \cdot \mu\left(Q_{r}(\zeta)\right)
$$

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure μ is Carleson for DA if and only if satisfies the $T(1)$ condition and $\mu\left(Q_{r}(\zeta)\right) \lesssim M \cdot r$

- P. Ahern, \& W. Cohn (1989). Exceptional Sets for Hardy Sobolev Functions, $p>1$. Indiana University Mathematics Journal, 38(2), 417-453.
- W. S. Cohn, I. E. Verbitsky Nonlinear potential theory on the ball, with applications to exceptional and boundary interpolation sets., Michigan Mathematical Journal, Michigan Math. J. 42(1), 79-97, (1995).
- N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Mathematics, Volume 218, Issue 4, 2008, Pages 1107-1180
- E. Tchoundja, Carleson measures for the generalized Bergman spaces via a T(1)-type theorem. Arkiv för Matematik, Ark. Mat. 46(2), 377-406, (2008)
- P. Ahern, \& W. Cohn (1989). Exceptional Sets for Hardy Sobolev Functions, $p>1$. Indiana University Mathematics Journal, 38(2), 417-453.
- W. S. Cohn, I. E. Verbitsky Nonlinear potential theory on the ball, with applications to exceptional and boundary interpolation sets., Michigan Mathematical Journal, Michigan Math. J. 42(1), 79-97, (1995).
- N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Mathematics, Volume 218, Issue 4, 2008, Pages 1107-1180
- E. Tchoundja, Carleson measures for the generalized Bergman spaces via a T(1)-type theorem. Arkiv för Matematik, Ark Mat. 46(2), 377-406, (2008)
- P. Ahern, \& W. Cohn (1989). Exceptional Sets for Hardy Sobolev Functions, $p>1$. Indiana University Mathematics Journal, 38(2), 417-453.
- W. S. Cohn, I. E. Verbitsky Nonlinear potential theory on the ball, with applications to exceptional and boundary interpolation sets., Michigan Mathematical Journal, Michigan Math. J. 42(1), 79-97, (1995).
- N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Mathematics, Volume 218, Issue 4, 2008, Pages 1107-1180.

- P. Ahern, \& W. Cohn (1989). Exceptional Sets for Hardy Sobolev Functions, $p>1$. Indiana University Mathematics Journal, 38(2), 417-453.
- W. S. Cohn, I. E. Verbitsky Nonlinear potential theory on the ball, with applications to exceptional and boundary interpolation sets., Michigan Mathematical Journal, Michigan Math. J. 42(1), 79-97, (1995).
- N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Mathematics, Volume 218, Issue 4, 2008, Pages 1107-1180.
- E. Tchoundja, Carleson measures for the generalized Bergman spaces via a T(1)-type theorem. Arkiv för Matematik, Ark. Mat. 46(2), 377-406, (2008)

The general idea of interpolation problems is that one is asked to construct (or prove the existence) of a function in some admissible space which in some set of points assumes preassigned values.

For example the elementary fact that for any complex numbers $z_{1}, z_{2}, \ldots z_{n}, w_{1}, \ldots w_{n}$ there exists a polynomial p of degree less than n such that $p\left(z_{i}\right)=w_{i}$, is a an interpolation result.

We would like to study interpolation problems that the space of admissible functions consists of holomorphic functions and carries some Hilbert space structure.

The general idea of interpolation problems is that one is asked to construct (or prove the existence) of a function in some admissible space which in some set of points assumes preassigned values.

For example the elementary fact that for any complex numbers $z_{1}, z_{2}, \ldots z_{n}, w_{1}, \ldots w_{n}$ there exists a polynomial p of degree less than n such that $p\left(z_{i}\right)=w_{i}$, is a an interpolation result.

We would like to study interpolation problems that the space of admissible functions consists of holomorphic functions and carries some Hilbert space structure.

The general idea of interpolation problems is that one is asked to construct (or prove the existence) of a function in some admissible space which in some set of points assumes preassigned values.

For example the elementary fact that for any complex numbers $z_{1}, z_{2}, \ldots z_{n}, w_{1}, \ldots w_{n}$ there exists a polynomial p of degree less than n such that $p\left(z_{i}\right)=w_{i}$, is a an interpolation result.

We would like to study interpolation problems that the space of admissible functions consists of holomorphic functions and carries some Hilbert space structure.

Let \mathcal{H} a rkHs in the unit disc and $\mathcal{Z}:=\left\{z_{i}\right\} \subseteq \mathbb{B}^{d}$ a sequence, the associated weighted restriction operator are defined as follows.

The dashed arrow means that a priori $T_{\mathcal{Z}}$ is not defined everywhere. If $T_{\mathcal{Z}}$ is surjective we say that it is simply interpolating (SI) (also onto interpolating exists in the literature) Explicitly

$$
\forall\left\{a_{i}\right\} \in \ell^{2} \exists f \in \mathcal{H} \text { such that } f\left(z_{i}\right)=a_{i}\left\|K_{z_{i}}\right\| .
$$

Finally if $T_{\mathcal{Z}}$ is surjective and bounded, \mathcal{Z} is called universally interpolating (UI).

Let \mathcal{H} a rkHs in the unit disc and $\mathcal{Z}:=\left\{z_{i}\right\} \subseteq \mathbb{B}^{d}$ a sequence, the associated weighted restriction operator are defined as follows.

$$
\begin{aligned}
T_{\mathcal{Z}} & : \mathcal{H} \\
\qquad & \rightarrow \ell^{2} \\
& \mapsto\left\{\frac{f\left(z_{i}\right)}{\left\|K_{z_{i}}\right\|}\right\}
\end{aligned}
$$

The dashed arrow means that a priori $T_{\mathcal{Z}}$ is not defined everywhere. If T_{z} is surjective we say that it is simply interpolating (SI) (also onto interpolating exists in the literature) Explicitly

$$
\forall\left\{a_{i}\right\} \in \ell^{2} \exists f \in \mathcal{H} \text { such that } f\left(z_{i}\right)=a_{i}\left\|K_{z_{i}}\right\| .
$$

Finally if $T_{\mathcal{Z}}$ is surjective and bounded, \mathcal{Z} is called universally interpolating (UI).

Let \mathcal{H} a rkHs in the unit disc and $\mathcal{Z}:=\left\{z_{i}\right\} \subseteq \mathbb{B}^{d}$ a sequence, the associated weighted restriction operator are defined as follows.

$$
\begin{aligned}
T_{\mathcal{Z}} & : \mathcal{H} \\
& \rightarrow \ell^{2} \\
f & \mapsto\left\{\frac{f\left(z_{i}\right)}{\left\|K_{z_{i}}\right\|}\right\}
\end{aligned}
$$

The dashed arrow means that a priori $T_{\mathcal{Z}}$ is not defined everywhere. If $T_{\mathcal{Z}}$ is surjective we say that it is simply interpolating (SI) (also onto interpolating exists in the literature).
Explicitly

Finally if $T_{\mathcal{Z}}$ is surjective and bounded, \mathcal{Z} is called universally interpolating (UI)

Let \mathcal{H} a rkHs in the unit disc and $\mathcal{Z}:=\left\{z_{i}\right\} \subseteq \mathbb{B}^{d}$ a sequence, the associated weighted restriction operator are defined as follows.

$$
\begin{aligned}
T_{\mathcal{Z}} & : \mathcal{H} \\
& \rightarrow \ell^{2} \\
f & \mapsto\left\{\frac{f\left(z_{i}\right)}{\left\|K_{z_{i}}\right\|}\right\}
\end{aligned}
$$

The dashed arrow means that a priori $T_{\mathcal{Z}}$ is not defined everywhere. If $T_{\mathcal{Z}}$ is surjective we say that it is simply interpolating (SI) (also onto interpolating exists in the literature). Explicitly

$$
\forall\left\{a_{i}\right\} \in \ell^{2} \exists f \in \mathcal{H} \text { such that } f\left(z_{i}\right)=a_{i}\left\|K_{z_{i}}\right\| .
$$

Finally if $T_{\mathcal{Z}}$ is surjective and bounded, \mathcal{Z} is called universally interpolating (UI).

Let \mathcal{H} a rkHs in the unit disc and $\mathcal{Z}:=\left\{z_{i}\right\} \subseteq \mathbb{B}^{d}$ a sequence, the associated weighted restriction operator are defined as follows.

$$
\begin{aligned}
& T_{\mathcal{Z}}: \mathcal{H} \rightarrow \ell^{2} \\
& \qquad f \mapsto\left\{\frac{f\left(z_{i}\right)}{\left\|K_{z_{i}}\right\|}\right\}
\end{aligned}
$$

The dashed arrow means that a priori $T_{\mathcal{Z}}$ is not defined everywhere. If $T_{\mathcal{Z}}$ is surjective we say that it is simply interpolating (SI) (also onto interpolating exists in the literature). Explicitly

$$
\forall\left\{a_{i}\right\} \in \ell^{2} \exists f \in \mathcal{H} \text { such that } f\left(z_{i}\right)=a_{i}\left\|K_{z_{i}}\right\|
$$

Finally if $T_{\mathcal{Z}}$ is surjective and bounded, \mathcal{Z} is called universally interpolating (UI).
(1) The boundedness of $T_{\mathcal{Z}}$ is equivalent to say that the measure

$$
d \mu_{\mathcal{Z}}:=\sum_{z \in \mathcal{Z}} \frac{\delta_{z}}{\left\|K_{z}\right\|^{2}}
$$

is Carleson for \mathcal{H}, i.e. $\mathcal{H} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu_{\mathcal{Z}}\right)$.
(3) A geometric condition which is implied by simple interpolation is the so called weak separation (WS). This can be expressed in terms of the Gleason metric

$$
\inf _{i \neq j} d_{G}\left(z_{i}, z_{j}\right)>0
$$

(1) The boundedness of $T_{\mathcal{Z}}$ is equivalent to say that the measure

$$
d \mu_{\mathcal{Z}}:=\sum_{z \in \mathcal{Z}} \frac{\delta_{z}}{\left\|K_{z}\right\|^{2}}
$$

is Carleson for \mathcal{H}, i.e. $\mathcal{H} \subseteq L^{2}\left(\mathbb{B}^{d}, d \mu \mathcal{Z}\right)$.
(2) A geometric condition which is implied by simple interpolation is the so called weak separation (WS). This can be expressed in terms of the Gleason metric

$$
\begin{gather*}
d_{G}(z, w):=\sqrt{1-\frac{\left|\left\langle K_{z}, K_{w}\right\rangle\right|^{2}}{\left\|K_{z}\right\|^{2}\left\|K_{w}\right\|^{2}}}=\left|\sin \angle\left(K_{z}, K_{w}\right)\right| . \\
\inf _{i \neq j} d_{G}\left(z_{i}, z_{j}\right)>0 \tag{WS}
\end{gather*}
$$

(2) For Hardy Sobolev spaces $H_{s}^{2}, s<d / 2$ weak separation is equivalent to separation with respect to the Bergman metric in the unit ball. For $s=\frac{d}{2}$ the weak separation condition is more complicated.

Theorem

Let $\frac{d-1}{2} \leq s \leq \frac{d}{2}$. Then a sequence $\mathcal{Z} \subseteq \mathbb{B}^{d}$ is universally interpolating for H_{s}^{2} if and only if it is weakly separated and $d \mu_{\mathcal{Z}}$ is a Carleson measure.

- For $d=1, s=0$ Carleson 1958, Shapiro \& Shields 1961
- For $d=1,0<s \leq \frac{1}{2}$ Bishop 1994 (preprint). Marshall and Sundberg 1994 (preprint)
- For all d and $\frac{d-1}{2}<s \leq \frac{d}{2}$, Böe 2005
- All d and s in the theorem, Aleman, Hartz, McCarthy \& Richter 2017, Hartz 2020 (In fact their result holds for all complete Nevanlinna Pick spaces)

Theorem

Let $\frac{d-1}{2} \leq s \leq \frac{d}{2}$. Then a sequence $\mathcal{Z} \subseteq \mathbb{B}^{d}$ is universally interpolating for H_{s}^{2} if and only if it is weakly separated and $d \mu_{\mathcal{Z}}$ is a Carleson measure.

- For $d=1, s=0$ Carleson 1958, Shapiro \& Shields 1961
- For $d=1,0<s \leq \frac{1}{2}$ Bishop 1994 (preprint), Marshall and Sundberg 1994 (preprint)
- For all d and $\frac{d-1}{2}<s \leq \frac{d}{2}$, Böe 2005
- All d and s in the theorem, Aleman, Hartz, McCarthy \& Richter 2017, Hartz 2020 (In fact their result holds for all complete Nevanlinna Pick spaces)

Theorem

Let $\frac{d-1}{2} \leq s \leq \frac{d}{2}$. Then a sequence $\mathcal{Z} \subseteq \mathbb{B}^{d}$ is universally interpolating for H_{s}^{2} if and only if it is weakly separated and $d \mu_{\mathcal{Z}}$ is a Carleson measure.

- For $d=1, s=0$ Carleson 1958, Shapiro \& Shields 1961
- For $d=1,0<s \leq \frac{1}{2}$ Bishop 1994 (preprint), Marshall and Sundberg 1994 (preprint)
- For all d and $\frac{d-1}{2}<s \leq \frac{d}{2}$, Böe 2005
- All d and s in the theorem, Aleman, Hartz, McCarthy \& Richter 2017, Hartz 2020 (In fact their result holds for all complete Nevanlinna Pick spaces)

Theorem

Let $\frac{d-1}{2} \leq s \leq \frac{d}{2}$. Then a sequence $\mathcal{Z} \subseteq \mathbb{B}^{d}$ is universally interpolating for H_{s}^{2} if and only if it is weakly separated and $d \mu_{\mathcal{Z}}$ is a Carleson measure.

- For $d=1, s=0$ Carleson 1958, Shapiro \& Shields 1961
- For $d=1,0<s \leq \frac{1}{2}$ Bishop 1994 (preprint), Marshall and Sundberg 1994 (preprint)
- For all d and $\frac{d-1}{2}<s \leq \frac{d}{2}$, Böe 2005
- All d and s in the theorem, Aleman, Hartz, McCarthy \& Richter 2017, Hartz 2020 (In fact their result holds for all complete Nevanlinna Pick spaces)

Theorem

Let $\frac{d-1}{2} \leq s \leq \frac{d}{2}$. Then a sequence $\mathcal{Z} \subseteq \mathbb{B}^{d}$ is universally interpolating for H_{s}^{2} if and only if it is weakly separated and $d \mu_{\mathcal{Z}}$ is a Carleson measure.

- For $d=1, s=0$ Carleson 1958, Shapiro \& Shields 1961
- For $d=1,0<s \leq \frac{1}{2}$ Bishop 1994 (preprint), Marshall and Sundberg 1994 (preprint)
- For all d and $\frac{d-1}{2}<s \leq \frac{d}{2}$, Böe 2005
- All d and s in the theorem, Aleman, Hartz, McCarthy \& Richter 2017, Hartz 2020 (In fact their result holds for all complete Nevanlinna Pick spaces).

In some way random sequences give us a sense of which situations are "generic". One possible way to consider random sequences are the so called Steinhaus sequences. Let ζ_{n} an independent random sequence of points in $\partial \mathbb{B}^{d}$ distributed according to the Lebesgue measure $d \sigma$ and a (deterministic) sequence of radii $\left\{r_{n}\right\} \subseteq[0,1)$. Then the sequence $\Lambda=\left\{\Lambda_{n}\right\}$ of random variables

$$
\Lambda_{n}=r_{n} \zeta_{n}
$$

is called Steinhaus sequence. Notice that being interpolating (in any sense) is a tail event. Therefore Kolmogorov 0-1 theorem applies.
Hence there exists a condition on r_{n} which determines whether Λ_{n} is interpolating with probability 0 or 1 . Same applies for weak separation, and the Carleson condition on $d \mu_{z}$.

In some way random sequences give us a sense of which situations are "generic". One possible way to consider random sequences are the so called Steinhaus sequences. Let ζ_{n} an independent random sequence of points in $\partial \mathbb{B}^{d}$ distributed according to the Lebesgue measure $d \sigma$ and a (deterministic) sequence of radii $\left\{r_{n}\right\} \subseteq[0,1)$.
Then the sequence $\Lambda=\left\{\Lambda_{n}\right\}$ of random variables
$\Lambda_{n}=r_{n} \zeta_{n}$
is called Steinhaus sequence. Notice that being interpolating (in any sense) is a tail event. Therefore Kolmogorov 0-1 theorem applies.
Hence there exists a condition on r_{n} which determines whether Λ_{n} is interpolating with probability 0 or 1. Same applies for weak separation, and the Carleson condition on $d \mu_{\mathcal{Z}}$.

In some way random sequences give us a sense of which situations are "generic". One possible way to consider random sequences are the so called Steinhaus sequences. Let ζ_{n} an independent random sequence of points in $\partial \mathbb{B}^{d}$ distributed according to the Lebesgue measure $d \sigma$ and a (deterministic) sequence of radii $\left\{r_{n}\right\} \subseteq[0,1$). Then the sequence $\Lambda=\left\{\Lambda_{n}\right\}$ of random variables

$$
\Lambda_{n}=r_{n} \zeta_{n}
$$

is called Steinhaus sequence.

In some way random sequences give us a sense of which situations are "generic". One possible way to consider random sequences are the so called Steinhaus sequences. Let ζ_{n} an independent random sequence of points in $\partial \mathbb{B}^{d}$ distributed according to the Lebesgue measure $d \sigma$ and a (deterministic) sequence of radii $\left\{r_{n}\right\} \subseteq[0,1$). Then the sequence $\Lambda=\left\{\Lambda_{n}\right\}$ of random variables

$$
\Lambda_{n}=r_{n} \zeta_{n}
$$

is called Steinhaus sequence. Notice that being interpolating (in any sense) is a tail event. Therefore Kolmogorov 0-1 theorem applies.
Hence there exists a condition on r_{n} which determines whether \wedge_{n} is interpolating with probability 0 or 1 . Same applies for weak separation, and the Carleson condition on $d \mu_{\mathcal{Z}}$.

In some way random sequences give us a sense of which situations are "generic". One possible way to consider random sequences are the so called Steinhaus sequences. Let ζ_{n} an independent random sequence of points in $\partial \mathbb{B}^{d}$ distributed according to the Lebesgue measure $d \sigma$ and a (deterministic) sequence of radii $\left\{r_{n}\right\} \subseteq[0,1$). Then the sequence $\Lambda=\left\{\Lambda_{n}\right\}$ of random variables

$$
\Lambda_{n}=r_{n} \zeta_{n}
$$

is called Steinhaus sequence. Notice that being interpolating (in any sense) is a tail event. Therefore Kolmogorov 0-1 theorem applies.
Hence there exists a condition on r_{n} which determines whether Λ_{n} is interpolating with probability 0 or 1 . Same applies for weak separation, and the Carleson condition on $d \mu_{\mathcal{Z}}$.

We introduce a counting function in order to fomulate our results;

$$
N_{n}:=\#\left\{r_{i}: n \leq \beta\left(0, r_{i}\right)<n+1\right\}
$$

Theorem (C., Hartman, Kellay, Wick, 2021)

Let $d=1,0<s<1 / 4$, then

$$
\mathbb{P}\left(\Lambda \text { is UI for } H_{s}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { iff } \left\{\begin{array}{l}
\sum_{n \geq 1} 2^{-n} N_{n}^{2}<\infty \\
\sum_{n \geq 1} 2^{-n} N_{n}^{2}=\infty .
\end{array}\right.\right.
$$

Theorem (CHKW)

Let $d=1,1 / 4 \leq s<\frac{1}{2}$, then

We introduce a counting function in order to fomulate our results;

$$
N_{n}:=\#\left\{r_{i}: n \leq \beta\left(0, r_{i}\right)<n+1\right\}
$$

Theorem (C., Hartman, Kellay, Wick, 2021)

Let $d=1,0<s<1 / 4$, then

$$
\mathbb{P}\left(\Lambda \text { is UI for } H_{s}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { iff } \left\{\begin{array}{l}
\sum_{n \geq 1} 2^{-n} N_{n}^{2}<\infty \\
\sum_{n \geq 1} 2^{-n} N_{n}^{2}=\infty .
\end{array}\right.\right.
$$

Theorem (CHKW)

Let $d=1,1 / 4 \leq s<\frac{1}{2}$, then

$$
\mathbb{P}\left(\Lambda \text { is UI for } H_{s}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \quad \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} 2^{-n(1-2 s)} N_{n}<\infty \\
\sum_{n \geq 1} 2^{-n(1-2 s)} N_{n}=\infty
\end{array}\right.\right.
$$

Theorem (CHKW)

$$
\mathbb{P}\left(\Lambda \text { is } U \text { I for } H_{\frac{1}{2}}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \quad \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} \frac{N_{n}}{n}<\infty \\
\sum_{n \geq 1} \frac{N_{n}}{n}=\infty .
\end{array}\right.\right.
$$

For Hardy Sobolev spaces in higher dimensions similar results have been investigated by Dayan Wick and Wu.

Theorem (Dayan, Wick \& W/, 2010)

Let $d \geq 2$ and $\frac{d-1}{2} \leq s<\frac{d}{2}$;

$$
\mathbb{P}\left(\Lambda \text { is } U \text { I for } H_{s}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} 2^{-n(d-2 s)} N_{n}<\infty \\
\sum_{n \geq 1} 2^{-n(d-2 s)} N_{n}=\infty .
\end{array}\right.\right.
$$

Theorem (CHKW)

$$
\mathbb{P}\left(\Lambda \text { is } U \text { I for } H_{\frac{1}{2}}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} \frac{N_{n}}{n}<\infty \\
\sum_{n \geq 1} \frac{N_{n}}{n}=\infty .
\end{array}\right.\right.
$$

For Hardy Sobolev spaces in higher dimensions similar results have been investigated by Dayan Wick and Wu.

Theorem (Dayan, Wick \& Wu, 2018)

Let $d \geq 2$ and $\frac{d-1}{2} \leq s<\frac{d}{2}$

Theorem (CHKW)

$$
\mathbb{P}\left(\Lambda \text { is } U \text { I for } H_{\frac{1}{2}}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} \frac{N_{n}}{n}<\infty \\
\sum_{n \geq 1} \frac{N_{n}}{n}=\infty .
\end{array}\right.\right.
$$

For Hardy Sobolev spaces in higher dimensions similar results have been investigated by Dayan Wick and Wu.

Theorem (Dayan, Wick \& Wu, 2018)

Let $d \geq 2$ and $\frac{d-1}{2} \leq s<\frac{d}{2}$;

$$
\mathbb{P}\left(\Lambda \text { is } U \text { I for } H_{s}^{2}\right)=\left\{\begin{array} { l }
{ 1 , } \\
{ 0 }
\end{array} \text { if } \left\{\begin{array}{l}
\sum_{n \geq 1} 2^{-n(d-2 s)} N_{n}<\infty \\
\sum_{n \geq 1} 2^{-n(d-2 s)} N_{n}=\infty
\end{array}\right.\right.
$$

Thank you for your attention!

