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Introduction and motivation
Carleson measures and multipliers

Interpolation

Basic definitions
Motivation

Let Bd be the unit ball in Cd and dσ the normalized surface
measure on ∂Bd .

The classical Hardy space H2(Bd) is defined as the space of
holomorphic functions f ∈ O(Bd) such that

∥f ∥2
H2 ∶= sup

0<r<1
∫
∂Bd

∣f (rζ)∣2dσ(ζ) < +∞.

Let also Rs be the fractional differentiation operator

R
s
( ∑
α∈Nd

cαz
α
) ∶= ∑

α∈Nd

(∣α∣ + 1)scαz
α.
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We define the Hardy-Sobolev space H2
s as the space of

f ∈ O(Bd) such that

∥f ∥s ∶= ∥R
s f ∥H2 < +∞.

Figure: Scale of H2
s spaces

Ks(z ,w) =
1

(1 − z ⋅w)d−2s
, s < d/2; K d

2
(z ,w) =

1

z ⋅w
log

1

1 − z ⋅w
.
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But why ?

For operator theorists Drury - Arveson’s space is of fundamental
importance, essentially because of Drury’s inequality;

Theorem (Drury’s von Neumann type inequality)

Let A1, . . .Ad a commuting row of operators on a Hilbert space H
such that

d

∑
i=1

A∗i Ai ≤ id .

Then for any complex polynomial p of d variables we have

∥p(A1, . . . ,Ad)∥B(H) ≤ sup
∥f ∥≤1

∥pf ∥.

Where the norm ∥ ⋅ ∥ is a norm equivalent to ∥ ⋅ ∥ d−1
2

.
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From a geometric viewpoint the Dirichlet space is particularly
interesting.

Theorem (Arazy & Fisher (1985) d = 1, Peloso (1992) d > 2)

The Dirichlet space (s = d
2 ) is the “unique” Hilbert space of

analytic functions in the unit ball which contains constants and is
invariant under composition with biholomorphisms of the unit ball.

In fact there exists seminorms for H2
d
2

such that

∥f ○ϕ∥ = ∥f ∥,∀ϕ ∈ Aut(Bd). For d = 1 this seminorm is exactly the
square root of the area of f (B1).

Surprisingly enough we are lacking a simple geometric
interpretation of the same quantity for d > 1.
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2
≥ s > d−1

2
The Drury Arveson case via a T(1)-Theorem

Let M(H2
s ) be the space of functions f in the unit ball such that

f ⋅ g ∈ H2
s , ∀g ∈ H2

s .

This is an Banach algebra equipped with the norm of the
multiplication operator, i.e.;

∥f ∥M(H2
s ) ∶= sup

∥g∥
H2
s
≤1

∥f ⋅ g∥H2
s .

(Recall Drury’s inequality) It can be proven that

∥f ∥M(H2
s ) ≈ ∥f ∥H∞ + [f ]CM,s
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The Drury Arveson case via a T(1)-Theorem

To understand the quantity [f ]CM,s we need to introduce
Carleson measures. Let µ a positive Borel measure on Bd .

We say that µ is a Carleson measure for H2
s if H2

s ⊆ L2(Bd ,dµ).

The Carleson constant of µ is the norm of the identity operator
id ∶ H2

s → L2(Bd ,dµ).

Then [f ]CM,s is the Carleson constant of the positive Borel
measure,

∣(1 − ∣z ∣)m∂mf (z)∣2(1 − ∣z ∣)d−2sdλd(z).

Where m > s is an integer and the quantity is comparable for all
m > s.
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Let us introduce a type of capacity for sets in ∂Bd , d2 ≥ s > 0.

The s-potential of µ is

I2s(µ)(z) ∶= ∫
∂Bd

∣Ks(z ,w)∣dµ(w).

The s-energy of µ is defined by

Es(µ) = ∫
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∫
∂Bd
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1/2
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≥ s > d−1

2
The Drury Arveson case via a T(1)-Theorem

Let also for r < 1, ζ ∈ ∂Bd ,

Qr(ζ) ∶= {z ∈ Bd ; ∣1 − z ⋅ ζ ∣ ≤ r}, Ir(ζ) ∶= ∂Bd
∩Qr(ζ).

Theorem (Stegenga 1980, Ahern & Cohn 1989)

Let d
2 ≥ s > d−1

2 , then a (positive Borel) measure µ is Carleson for

H2
s if and only if for all ζ1, . . . ζk ∈ ∂Bd , r1, . . . rk < 1 we have

µ(
k

⋃
i=1

Qri (ζi)) ≤ [µ]Cs(
k

⋃
i=1

Iri (ζi)).

For s ≤ d−1
2 this condition is sufficient but not necessary.
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≥ s > d−1

2
The Drury Arveson case via a T(1)-Theorem

On a macroscopic scale the flow of the argument for sufficiency is
the following.

(1) The kernel defining the s-potential is the reciprocal of a
quasidistance, i.e.

1

∣Ks(z ,w)∣
≤ C(

1

∣Ks(z , y)∣
+

1

∣Ks(y ,w)∣
), z , y ,w ∈ ∂Bd .

(2) This implies (Adams & Hedberg) that the potential satisfies
the so called boundedness principle, i.e.

∥I2s(µ)∥L∞(∂Bd) ≤M∥I2s(µ)∥L∞(suppµ)

(3) In turn this implies a strong capacitary inequality;

∫

∞

0
Cs(Is(µ) > λ)dλ

2
≤M∥µ∥2

L2(dσ,Bd)
10 / 23
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The Drury Arveson case via a T(1)-Theorem

Then the Carleson inequality as follows. Pick a function F ∈ H2
s .

The real part f ∶= ReF has a representation as f = Is(ϕ) such that
∥ϕ∥L2(dσ) ≲ ∥F ∥H2

s
.

∫
Bd

∣f ∣2dµ ≤ ∫

∞

0
µ(Is(∣ϕ∣) > λ)dλ

2

≲ ∫

∞

0
Cs(Is(∣ϕ∣) > λ))dλ

2

≲ ∥ϕ∥2
L2(dσ) ≲ ∥F ∥

2
H2

s
.

This proves sufficiency.
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s .

The real part f ∶= ReF has a representation as f = Is(ϕ) such that
∥ϕ∥L2(dσ) ≲ ∥F ∥H2

s
.

∫
Bd

∣f ∣2dµ ≤ ∫
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0
µ(Is(∣ϕ∣) > λ)dλ
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L2(dσ) ≲ ∥F ∥
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s
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2
The Drury Arveson case via a T(1)-Theorem

So what goes wrong for s ≤ d−1
2 . Nothing... only that considering a

potential associated to the absolute value of the kernel Ks is too
crude in most cases.

It is only the real part of the kernel that only matters. It just
happens that for d

2 ≥ s > d−1
2 we have

ReKs(z ,w) ≈ ∣Ks(z ,w)∣, z ,w ∈ Bd .

For the Drury Arveson space s = d−1
2 the real part of the kernel is

still positive, while for s < d−1
2 the real part of the kernel is signed

(things are even worse in some sense).
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≥ s > d−1

2
The Drury Arveson case via a T(1)-Theorem

Let Θ = id∗, id ∶ H2
s → L2(Bd ,dµ). We have that,

Θϕ(z) = ⟨Θϕ,KDA
z ⟩H2

s
= ⟨ϕ,KDA

z ⟩L2(dµ) = ∫Bd

ϕ(w)

1 − z ⋅w
dµ(w).

By testing Θ∗Θ ∶ L2(dµ)→ L2(µ) on characteristic functions of
sets of the form Qr(ζ) we have the following necessary condition
for the Carleson measure µ;

∫
Qr (ζ)

(∫
Qr (ζ)

Re
1

1 − z ⋅w
dµ(w))

2
dµ(z) ≤M ⋅ µ(Qr(ζ)).

(T(1)-Testing)

Theorem (Arcozzi Rochberg Sawyer 2007, Tchoundja 2008)

A measure µ is Carleson for DA if and only if satisfies the T (1)
condition and µ(Qr(ζ)) ≲M ⋅ r
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Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

The general idea of interpolation problems is that one is asked to
construct (or prove the existence) of a function in some
admissible space which in some set of points assumes preassigned
values.

For example the elementary fact that for any complex numbers
z1, z2, . . . zn,w1, . . .wn there exists a polynomial p of degree less
than n such that p(zi) = wi , is a an interpolation result.

We would like to study interpolation problems that the space of
admissible functions consists of holomorphic functions and
carries some Hilbert space structure.
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Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

Let H a rkHs in the unit disc and Z ∶= {zi} ⊆ Bd a sequence, the
associated weighted restriction operator are defined as follows.

TZ ∶H ⇢ `2

f ↦ {
f (zi)

∥Kzi ∥
}

The dashed arrow means that a priori TZ is not defined
everywhere. If TZ is surjective we say that it is simply
interpolating (SI) (also onto interpolating exists in the literature).
Explicitly

∀{ai} ∈ `
2
∃f ∈H such that f (zi) = ai∥Kzi ∥.

Finally if TZ is surjective and bounded, Z is called universally
interpolating (UI).
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Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

1 The boundedness of TZ is equivalent to say that the measure

dµZ ∶= ∑
z∈Z

δz
∥Kz∥

2

is Carleson for H, i.e. H ⊆ L2(Bd ,dµZ).
2 A geometric condition which is implied by simple interpolation

is the so called weak separation (WS). This can be expressed
in terms of the Gleason metric

dG(z ,w) ∶=

¿
Á
ÁÀ1 −

∣⟨Kz ,Kw ⟩∣2

∥Kz∥
2∥Kw∥2

= ∣ sin∠(Kz ,Kw)∣.

inf
i≠j

dG(zi , zj) > 0 (WS)
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2 For Hardy Sobolev spaces H2
s , s < d/2 weak separation is

equivalent to separation with respect to the Bergman metric
in the unit ball. For s = d

2 the weak separation condition is
more complicated.
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Theorem

Let d−1
2 ≤ s ≤ d

2 . Then a sequence Z ⊆ Bd is universally
interpolating for H2

s if and only if it is weakly separated and dµZ is
a Carleson measure.

For d = 1, s = 0 Carleson 1958, Shapiro & Shields 1961

For d = 1,0 < s ≤ 1
2 Bishop 1994 (preprint), Marshall and

Sundberg 1994 (preprint)

For all d and d−1
2 < s ≤ d

2 , Böe 2005

All d and s in the theorem, Aleman, Hartz, McCarthy &
Richter 2017, Hartz 2020 (In fact their result holds for all
complete Nevanlinna Pick spaces).
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For d = 1, s = 0 Carleson 1958, Shapiro & Shields 1961

For d = 1,0 < s ≤ 1
2 Bishop 1994 (preprint), Marshall and

Sundberg 1994 (preprint)

For all d and d−1
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2 , Böe 2005

All d and s in the theorem, Aleman, Hartz, McCarthy &
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In some way random sequences give us a sense of which situations
are ”generic”. One possible way to consider random sequences are
the so called Steinhaus sequences. Let ζn an independent random
sequence of points in ∂Bd distributed according to the Lebesgue
measure dσ and a (deterministic) sequence of radii {rn} ⊆ [0,1).
Then the sequence Λ = {Λn} of random variables

Λn = rnζn

is called Steinhaus sequence. Notice that being interpolating (in
any sense) is a tail event. Therefore Kolmogorov 0-1 theorem
applies.
Hence there exists a condition on rn which determines whether Λn

is interpolating with probability 0 or 1. Same applies for weak
separation, and the Carleson condition on dµZ .

20 / 23



Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

In some way random sequences give us a sense of which situations
are ”generic”. One possible way to consider random sequences are
the so called Steinhaus sequences. Let ζn an independent random
sequence of points in ∂Bd distributed according to the Lebesgue
measure dσ and a (deterministic) sequence of radii {rn} ⊆ [0,1).
Then the sequence Λ = {Λn} of random variables

Λn = rnζn

is called Steinhaus sequence. Notice that being interpolating (in
any sense) is a tail event. Therefore Kolmogorov 0-1 theorem
applies.
Hence there exists a condition on rn which determines whether Λn

is interpolating with probability 0 or 1. Same applies for weak
separation, and the Carleson condition on dµZ .

20 / 23



Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

In some way random sequences give us a sense of which situations
are ”generic”. One possible way to consider random sequences are
the so called Steinhaus sequences. Let ζn an independent random
sequence of points in ∂Bd distributed according to the Lebesgue
measure dσ and a (deterministic) sequence of radii {rn} ⊆ [0,1).
Then the sequence Λ = {Λn} of random variables

Λn = rnζn

is called Steinhaus sequence. Notice that being interpolating (in
any sense) is a tail event. Therefore Kolmogorov 0-1 theorem
applies.
Hence there exists a condition on rn which determines whether Λn

is interpolating with probability 0 or 1. Same applies for weak
separation, and the Carleson condition on dµZ .

20 / 23



Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

In some way random sequences give us a sense of which situations
are ”generic”. One possible way to consider random sequences are
the so called Steinhaus sequences. Let ζn an independent random
sequence of points in ∂Bd distributed according to the Lebesgue
measure dσ and a (deterministic) sequence of radii {rn} ⊆ [0,1).
Then the sequence Λ = {Λn} of random variables

Λn = rnζn

is called Steinhaus sequence. Notice that being interpolating (in
any sense) is a tail event. Therefore Kolmogorov 0-1 theorem
applies.
Hence there exists a condition on rn which determines whether Λn

is interpolating with probability 0 or 1. Same applies for weak
separation, and the Carleson condition on dµZ .

20 / 23



Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

In some way random sequences give us a sense of which situations
are ”generic”. One possible way to consider random sequences are
the so called Steinhaus sequences. Let ζn an independent random
sequence of points in ∂Bd distributed according to the Lebesgue
measure dσ and a (deterministic) sequence of radii {rn} ⊆ [0,1).
Then the sequence Λ = {Λn} of random variables

Λn = rnζn

is called Steinhaus sequence. Notice that being interpolating (in
any sense) is a tail event. Therefore Kolmogorov 0-1 theorem
applies.
Hence there exists a condition on rn which determines whether Λn

is interpolating with probability 0 or 1. Same applies for weak
separation, and the Carleson condition on dµZ .

20 / 23



Introduction and motivation
Carleson measures and multipliers

Interpolation

The interpolation problem
Some consequences of the definition
The characterization of interpolating sequences
Random Interpolation

We introduce a counting function in order to fomulate our results;

Nn ∶= #{ri ∶ n ≤ β(0, ri) < n + 1}

Theorem (C., Hartman, Kellay, Wick, 2021)

Let d = 1, 0 < s < 1/4, then

P(Λ is UI for H2
s ) = {

1,

0
iff {

∑n≥1 2−nN2
n <∞

∑n≥1 2−nN2
n =∞.

.

Theorem (CHKW)

Let d = 1, 1/4 ≤ s < 1
2 , then

P(Λ is UI forH2
s ) = {

1,

0
if

⎧⎪⎪
⎨
⎪⎪⎩

∑n≥1 2−n(1−2s)Nn <∞

∑n≥1 2−n(1−2s)Nn =∞.
.
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⎨
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Nn
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n =∞.

For Hardy Sobolev spaces in higher dimensions similar results have
been investigated by Dayan Wick and Wu.

Theorem (Dayan, Wick & Wu, 2018)

Let d ≥ 2 and d−1
2 ≤ s < d

2 ;

P(Λ is UI forH2
s ) = {

1,

0
if

⎧⎪⎪
⎨
⎪⎪⎩

∑n≥1 2−n(d−2s)Nn <∞

∑n≥1 2−n(d−2s)Nn =∞.
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Thank you for your attention !
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