An abstract approach to the conjecture of Crouzeix

Raphaël Clouâtre
University of Manitoba

Multivariable Operator Theory and Function Spaces in Several Variables

Casa Matemática Oaxaca
August 2021

This talk is based on papers by Ransford-Schwenninger (2018) and Ostermann-Ransford (2020). These are short and beautifully written - go read them!

The starting point: spectral sets
$\Omega \subset \mathbb{C}$ bounded open convex subset T bounded linear operator on a Hilbert space \mathcal{H}

The starting point: spectral sets
$\Omega \subset \mathbb{C}$ bounded open convex subset
T bounded linear operator on a Hilbert space \mathcal{H}

Definition

We say that Ω is a \mathcal{Q}-spectral set for T if

$$
\|p(T)\| \leq \mathcal{Q} \sup _{z \in \Omega}|p(z)|
$$

for every polynomial p.

The starting point: spectral sets
$\Omega \subset \mathbb{C}$ bounded open convex subset
T bounded linear operator on a Hilbert space \mathcal{H}

Definition

We say that Ω is a \mathcal{Q}-spectral set for T if

$$
\|p(T)\| \leq \mathcal{Q} \sup _{z \in \Omega}|p(z)|
$$

for every polynomial p. If this condition holds for matrices of polynomials of any size, we say that Ω is a complete \mathcal{Q}-spectral set for T.

The starting point: spectral sets
$\Omega \subset \mathbb{C}$ bounded open convex subset
T bounded linear operator on a Hilbert space \mathcal{H}

Definition

We say that Ω is a \mathcal{Q}-spectral set for T if

$$
\|p(T)\| \leq \mathcal{Q} \sup _{z \in \Omega}|p(z)|
$$

for every polynomial p. If this condition holds for matrices of polynomials of any size, we say that Ω is a complete \mathcal{Q}-spectral set for T.

Let $\mathrm{A}(\Omega) \subset \mathrm{C}(\bar{\Omega})$ denote the algebra of functions that are holomorphic on Ω. Then, Ω is a (complete) \mathcal{Q}-spectral set if and only if the map

$$
\Theta_{T}: p \mapsto p(T)
$$

extends to a (completely) bounded homomorphism on $\mathrm{A}(\Omega)$ with norm at most \mathcal{Q}.

Basic facts about spectral sets

- If Ω is a \mathcal{Q}-spectral set for T, then Ω contains the spectrum $\operatorname{Spec}(T)$.

Basic facts about spectral sets

- If Ω is a \mathcal{Q}-spectral set for T, then Ω contains the spectrum $\operatorname{Spec}(T)$.
- If $T \in B(\mathcal{H})$ is normal, then $\operatorname{Spec}(T)$ is a complete (1)-spectral set for T (spectral theorem).

Basic facts about spectral sets

- If Ω is a \mathcal{Q}-spectral set for T, then Ω contains the spectrum $\operatorname{Spec}(T)$.
- If $T \in B(\mathcal{H})$ is normal, then $\operatorname{Spec}(T)$ is a complete (1)-spectral set for T (spectral theorem).
- Typically, $\operatorname{Spec}(T)$ is not a spectral set for T.

Basic facts about spectral sets

- If Ω is a \mathcal{Q}-spectral set for T, then Ω contains the spectrum $\operatorname{Spec}(T)$.
- If $T \in B(\mathcal{H})$ is normal, then $\operatorname{Spec}(T)$ is a complete (1)-spectral set for T (spectral theorem).
- Typically, $\operatorname{Spec}(T)$ is not a spectral set for T.
- The unit disc \mathbb{D} is a complete (1)-spectral set for all Hilbert space contractions (von Neumann's inequality).

Basic facts about spectral sets

- If Ω is a \mathcal{Q}-spectral set for T, then Ω contains the spectrum $\operatorname{Spec}(T)$.
- If $T \in B(\mathcal{H})$ is normal, then $\operatorname{Spec}(T)$ is a complete (1)-spectral set for T (spectral theorem).
- Typically, $\operatorname{Spec}(T)$ is not a spectral set for T.
- The unit disc \mathbb{D} is a complete (1)-spectral set for all Hilbert space contractions (von Neumann's inequality).
What is another instance of a naturally occuring spectral set?

Enters the numerical range

The numerical range of T is the set

$$
W(T)=\{\langle T \xi, \xi\rangle: \xi \in \mathcal{H},\|\xi\|=1\} .
$$

Enters the numerical range

The numerical range of T is the set

$$
W(T)=\{\langle T \xi, \xi\rangle: \xi \in \mathcal{H},\|\xi\|=1\} .
$$

Recall that $\operatorname{Spec}(T) \subset \overline{W(T)}$ and

$$
\|T\| / 2 \leq \sup _{w \in W(T)}|w| \leq\|T\| .
$$

Enters the numerical range

The numerical range of T is the set

$$
W(T)=\{\langle T \xi, \xi\rangle: \xi \in \mathcal{H},\|\xi\|=1\} .
$$

Recall that $\operatorname{Spec}(T) \subset \overline{W(T)}$ and

$$
\|T\| / 2 \leq \sup _{w \in W(T)}|w| \leq\|T\| .
$$

Theorem (Delyon-Delyon 1999)

Let $T \in B(\mathcal{H})$ and let $\Omega \subset \mathbb{C}$ be a bounded open convex subset. Assume that $W(T) \subset \Omega$. Then, Ω is a \mathcal{Q}-spectral set for T for some constant \mathcal{Q} that depends only Ω.

Enters the numerical range

The numerical range of T is the set

$$
W(T)=\{\langle T \xi, \xi\rangle: \xi \in \mathcal{H},\|\xi\|=1\} .
$$

Recall that $\operatorname{Spec}(T) \subset \overline{W(T)}$ and

$$
\|T\| / 2 \leq \sup _{w \in W(T)}|w| \leq\|T\| .
$$

Theorem (Delyon-Delyon 1999)

Let $T \in B(\mathcal{H})$ and let $\Omega \subset \mathbb{C}$ be a bounded open convex subset. Assume that $W(T) \subset \Omega$. Then, Ω is a \mathcal{Q}-spectral set for T for some constant \mathcal{Q} that depends only Ω. (Note: $\mathcal{Q} \rightarrow \infty$ as $\operatorname{Area}(\Omega) \rightarrow 0$.)

Enters the numerical range

The numerical range of T is the set

$$
W(T)=\{\langle T \xi, \xi\rangle: \xi \in \mathcal{H},\|\xi\|=1\} .
$$

Recall that $\operatorname{Spec}(T) \subset \overline{W(T)}$ and

$$
\|T\| / 2 \leq \sup _{w \in W(T)}|w| \leq\|T\| .
$$

Theorem (Delyon-Delyon 1999)

Let $T \in B(\mathcal{H})$ and let $\Omega \subset \mathbb{C}$ be a bounded open convex subset. Assume that $W(T) \subset \Omega$. Then, Ω is a \mathcal{Q}-spectral set for T for some constant \mathcal{Q} that depends only Ω. (Note: $\mathcal{Q} \rightarrow \infty$ as Area $(\Omega) \rightarrow 0$.)

Theorem (Crouzeix 2007)

Let $T \in B(\mathcal{H})$. Then, $W(T)$ is a complete (11.08)-spectral set.

The sharp constant

Question

What is the smallest \mathcal{Q} for which $W(T)$ is always a (complete) \mathcal{Q}-spectral set for T ?

The sharp constant

Question

What is the smallest \mathcal{Q} for which $W(T)$ is always a (complete) \mathcal{Q}-spectral set for T ?
Crouzeix's conjecture: 2

The sharp constant

Question

What is the smallest \mathcal{Q} for which $W(T)$ is always a (complete) \mathcal{Q}-spectral set for T ?
Crouzeix's conjecture: 2
Example
Let $T=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$. Then, $W(T)=\overline{\mathbb{D}}$ and $\|T\|=2$, so that $W(T)$ cannot be a \mathcal{Q}-spectral set for T for $\mathcal{Q}<2$.

A reason to care: normal dilations
$\mathcal{H} \subset \mathcal{K}$ Hilbert spaces, $T \in B(\mathcal{H})$ arbitrary $\Omega \subset \mathbb{C}$ bounded open convex subset

A reason to care: normal dilations
$\mathcal{H} \subset \mathcal{K}$ Hilbert spaces, $T \in B(\mathcal{H})$ arbitrary
$\Omega \subset \mathbb{C}$ bounded open convex subset
A normal operator $U \in B(\mathcal{K})$ is called a $\partial \Omega$-normal dilation of T if $\operatorname{Spec}(U) \subset \partial \Omega$ and

$$
f(T)=\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}, \quad f \in \mathbb{C}[z] .
$$

A reason to care: normal dilations
$\mathcal{H} \subset \mathcal{K}$ Hilbert spaces, $T \in B(\mathcal{H})$ arbitrary
$\Omega \subset \mathbb{C}$ bounded open convex subset
A normal operator $U \in B(\mathcal{K})$ is called a $\partial \Omega$-normal dilation of T if $\operatorname{Spec}(U) \subset \partial \Omega$ and

$$
f(T)=\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}, \quad f \in \mathbb{C}[z] .
$$

(Axiom. Normal dilations are good.)

A reason to care: normal dilations
$\mathcal{H} \subset \mathcal{K}$ Hilbert spaces, $T \in B(\mathcal{H})$ arbitrary
$\Omega \subset \mathbb{C}$ bounded open convex subset
A normal operator $U \in B(\mathcal{K})$ is called a $\partial \Omega$-normal dilation of T if $\operatorname{Spec}(U) \subset \partial \Omega$ and

$$
f(T)=\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}, \quad f \in \mathbb{C}[z]
$$

(Axiom. Normal dilations are good.)
Theorem (Arveson 1969, Paulsen 1984)
Given a constant $\mathcal{Q}>0$, the following statements are equivalent.
(1) There is an invertible operator $X \in B(\mathcal{H})$ such that $\|X\|\left\|X^{-1}\right\| \leq \mathcal{Q}$ and such that the operator $X T X^{-1}$ admits a $\partial \Omega$-normal dilation.

A reason to care: normal dilations

$\mathcal{H} \subset \mathcal{K}$ Hilbert spaces, $T \in B(\mathcal{H})$ arbitrary
$\Omega \subset \mathbb{C}$ bounded open convex subset
A normal operator $U \in B(\mathcal{K})$ is called a $\partial \Omega$-normal dilation of T if $\operatorname{Spec}(U) \subset \partial \Omega$ and

$$
f(T)=\left.P_{\mathcal{H}} f(U)\right|_{\mathcal{H}}, \quad f \in \mathbb{C}[z] .
$$

(Axiom. Normal dilations are good.)
Theorem (Arveson 1969, Paulsen 1984)
Given a constant $\mathcal{Q}>0$, the following statements are equivalent.
(1) There is an invertible operator $X \in B(\mathcal{H})$ such that $\|X\|\left\|X^{-1}\right\| \leq \mathcal{Q}$ and such that the operator $X T X^{-1}$ admits a $\partial \Omega$-normal dilation.
(2) The set Ω is a complete \mathcal{Q}-spectral set for T.

The basic insight of the lions

$\Omega \subset \mathbb{C}$ bounded open convex subset with smooth boundary
$T \in B(\mathcal{H})$ with $W(T) \subset \Omega$
$\gamma:[0,1] \rightarrow \mathbb{C}$ parametrization of $\partial \Omega$, with positive orientation

The basic insight of the lions

$\Omega \subset \mathbb{C}$ bounded open convex subset with smooth boundary
$T \in B(\mathcal{H})$ with $W(T) \subset \Omega$
$\gamma:[0,1] \rightarrow \mathbb{C}$ parametrization of $\partial \Omega$, with positive orientation

- Fix $0 \leq t \leq 1$ and put $\zeta=\gamma(t) \in \partial \Omega$ and $\beta=i \gamma^{\prime}(t) \in \mathbb{C}$.

The basic insight of the lions
$\Omega \subset \mathbb{C}$ bounded open convex subset with smooth boundary
$T \in B(\mathcal{H})$ with $W(T) \subset \Omega$
$\gamma:[0,1] \rightarrow \mathbb{C}$ parametrization of $\partial \Omega$, with positive orientation

- Fix $0 \leq t \leq 1$ and put $\zeta=\gamma(t) \in \partial \Omega$ and $\beta=i \gamma^{\prime}(t) \in \mathbb{C}$.

The basic insight of the lions
$\Omega \subset \mathbb{C}$ bounded open convex subset with smooth boundary
$T \in B(\mathcal{H})$ with $W(T) \subset \Omega$
$\gamma:[0,1] \rightarrow \mathbb{C}$ parametrization of $\partial \Omega$, with positive orientation

- Fix $0 \leq t \leq 1$ and put $\zeta=\gamma(t) \in \partial \Omega$ and $\beta=i \gamma^{\prime}(t) \in \mathbb{C}$.

- $\operatorname{Re}(w-\zeta) \bar{\beta}=\langle w-\zeta, \beta\rangle_{\mathbb{R}^{2}} \geq 0 \Longrightarrow \operatorname{Re}(T-\zeta I) \bar{\beta} \geq 0$

The basic insight of the lions
$\Omega \subset \mathbb{C}$ bounded open convex subset with smooth boundary
$T \in B(\mathcal{H})$ with $W(T) \subset \Omega$
$\gamma:[0,1] \rightarrow \mathbb{C}$ parametrization of $\partial \Omega$, with positive orientation

- Fix $0 \leq t \leq 1$ and put $\zeta=\gamma(t) \in \partial \Omega$ and $\beta=i \gamma^{\prime}(t) \in \mathbb{C}$.

- $\operatorname{Re}(w-\zeta) \bar{\beta}=\langle w-\zeta, \beta\rangle_{\mathbb{R}^{2}} \geq 0 \Longrightarrow \operatorname{Re}(T-\zeta I) \bar{\beta} \geq 0$

We have

$$
\operatorname{Re}\left(\frac{1}{2 \pi i} \gamma^{\prime}(t)(\gamma(t) I-T)^{-1}\right)=\frac{1}{4 \pi}(\zeta I-T)^{-1}(\operatorname{Re}(T-\zeta I) \bar{\beta})(\zeta I-T)^{*-1} \geq 0
$$

for every $0 \leq t \leq 1$.

The Cauchy transform and the key estimate
For $f \in \mathrm{~A}(\Omega)$, Cauchy's formula gives

$$
f(T)=\int_{\partial \Omega} f(\zeta)\left(\frac{1}{2 \pi i}(\zeta I-T)^{-1}\right) d \zeta
$$

The Cauchy transform and the key estimate

For $f \in \mathrm{~A}(\Omega)$, Cauchy's formula gives

$$
f(T)=\int_{\partial \Omega} f(\zeta)\left(\frac{1}{2 \pi i}(\zeta I-T)^{-1}\right) d \zeta
$$

Lemma (Classical?)

For each $f \in \mathrm{~A}(\Omega)$, there is a function $\alpha(f) \in \mathrm{A}(\Omega)$ with $\|\alpha(f)\| \leq\|f\|$ such that

$$
(\alpha(f))(z)=\int_{\partial \Omega} \overline{f(\zeta)}\left(\frac{1}{2 \pi i}(\zeta I-z)^{-1}\right) d \zeta, \quad z \in \Omega .
$$

The Cauchy transform and the key estimate

For $f \in \mathrm{~A}(\Omega)$, Cauchy's formula gives

$$
f(T)=\int_{\partial \Omega} f(\zeta)\left(\frac{1}{2 \pi i}(\zeta I-T)^{-1}\right) d \zeta .
$$

Lemma (Classical?)

For each $f \in \mathrm{~A}(\Omega)$, there is a function $\alpha(f) \in \mathrm{A}(\Omega)$ with $\|\alpha(f)\| \leq\|f\|$ such that

$$
(\alpha(f))(z)=\int_{\partial \Omega} \overline{f(\zeta)}\left(\frac{1}{2 \pi i}(\zeta I-z)^{-1}\right) d \zeta, \quad z \in \Omega .
$$

We find

$$
f(T)+(\alpha(f))(T)^{*}=2 \int_{0}^{1} f(\gamma(t))\left(\frac{1}{2 \pi i} \operatorname{Re} \gamma^{\prime}(t)(\gamma(t) I-T)^{-1}\right) d t
$$

The Cauchy transform and the key estimate
For $f \in \mathrm{~A}(\Omega)$, Cauchy's formula gives

$$
f(T)=\int_{\partial \Omega} f(\zeta)\left(\frac{1}{2 \pi i}(\zeta I-T)^{-1}\right) d \zeta .
$$

Lemma (Classical?)

For each $f \in \mathrm{~A}(\Omega)$, there is a function $\alpha(f) \in \mathrm{A}(\Omega)$ with $\|\alpha(f)\| \leq\|f\|$ such that

$$
(\alpha(f))(z)=\int_{\partial \Omega} \overline{f(\zeta)}\left(\frac{1}{2 \pi i}(\zeta I-z)^{-1}\right) d \zeta, \quad z \in \Omega .
$$

We find

$$
f(T)+(\alpha(f))(T)^{*}=2 \int_{0}^{1} f(\gamma(t))\left(\frac{1}{2 \pi i} \operatorname{Re} \gamma^{\prime}(t)(\gamma(t) I-T)^{-1}\right) d t
$$

which implies

$$
\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)} \quad(\text { Crouzeix-Palencia 2007) }
$$

The Cauchy transform and the key estimate
For $f \in \mathrm{~A}(\Omega)$, Cauchy's formula gives

$$
f(T)=\int_{\partial \Omega} f(\zeta)\left(\frac{1}{2 \pi i}(\zeta I-T)^{-1}\right) d \zeta .
$$

Lemma (Classical?)

For each $f \in \mathrm{~A}(\Omega)$, there is a function $\alpha(f) \in \mathrm{A}(\Omega)$ with $\|\alpha(f)\| \leq\|f\|$ such that

$$
(\alpha(f))(z)=\int_{\partial \Omega} \overline{f(\zeta)}\left(\frac{1}{2 \pi i}(\zeta I-z)^{-1}\right) d \zeta, \quad z \in \Omega .
$$

We find

$$
f(T)+(\alpha(f))(T)^{*}=2 \int_{0}^{1} f(\gamma(t))\left(\frac{1}{2 \pi i} \operatorname{Re} \gamma^{\prime}(t)(\gamma(t) I-T)^{-1}\right) d t
$$

which implies

$$
\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)} \quad \text { (Crouzeix-Palencia 2007) }
$$

Crouzeix's conjecture: $\|f(T)\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathbf{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$.

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathbf{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right) .
$$

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathbf{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right) .
$$

- (Crouzeix 2007) $\left\|\Theta_{T}\right\| \leq 11.08$

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right) .
$$

- (Crouzeix 2007) $\left\|\Theta_{T}\right\| \leq 11.08$ ("the proof [...] only uses old-fashioned mathematics [...] I have found no help in the modern literature on operator theory")

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right)
$$

- (Crouzeix 2007) $\left\|\Theta_{T}\right\| \leq 11.08$ ("the proof [...] only uses old-fashioned mathematics [...] I have found no help in the modern literature on operator theory")
- (Crouzeix-Palencia 2017, Ransford-Schwenninger 2018) $\left\|\Theta_{T}\right\| \leq 1+\sqrt{2}$ using eldritch insight:

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right)
$$

- (Crouzeix 2007) $\left\|\Theta_{T}\right\| \leq 11.08$ ("the proof [...] only uses old-fashioned mathematics [...] I have found no help in the modern literature on operator theory")
- (Crouzeix-Palencia 2017, Ransford-Schwenninger 2018) $\left\|\Theta_{T}\right\| \leq 1+\sqrt{2}$ using eldritch insight:

$$
f(T) f(T)^{*} f(T) f(T)^{*}=f(T) R(f)^{*} f(T) f(T)^{*}-\left(f^{2} \alpha(f)\right)(T) f(T)^{*}
$$

Partial progress

Using $\left\|f(T)+(\alpha(f))(T)^{*}\right\| \leq 2\|f\|_{\mathrm{A}(\Omega)}$, what can be said about the norm of

$$
\Theta_{T}: f \mapsto f(T) ?
$$

- (Delyon-Delyon 1999) Let $R: \mathrm{A}(\Omega) \rightarrow B(\mathcal{H})$ be defined as

$$
R(f)=f(T)+(\alpha(f))(T)^{*}, \quad f \in \mathrm{~A}(\Omega)
$$

Then, there is an operator S_{Ω} such that $R \circ S_{\Omega}=\Theta_{T}$. Thus,

$$
\left\|\Theta_{T}\right\| \leq 2\left\|S_{\Omega}\right\| \leq 2\left(\left(\frac{2 \pi \operatorname{Diam}(\Omega)^{2}}{\operatorname{Area}(\Omega)}\right)^{3}+3\right)
$$

- (Crouzeix 2007) $\left\|\Theta_{T}\right\| \leq 11.08$ ("the proof [...] only uses old-fashioned mathematics [...] I have found no help in the modern literature on operator theory")
- (Crouzeix-Palencia 2017, Ransford-Schwenninger 2018) $\left\|\Theta_{T}\right\| \leq 1+\sqrt{2}$ using eldritch insight:

$$
f(T) f(T)^{*} f(T) f(T)^{*}=f(T) R(f)^{*} f(T) f(T)^{*}-\left(f^{2} \alpha(f)\right)(T) f(T)^{*}
$$

This grouping of term is "best possible".

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism $\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism $\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map

Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$ (i.e. $\left\|\theta(f)+\theta(\alpha(f))^{*}\right\| \leq 2\|f\|$)

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$ (i.e. $\left\|\theta(f)+\theta(\alpha(f))^{*}\right\| \leq 2\|f\|$)

Question

What can be said about $\|\theta\|$?

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$ (i.e. $\left\|\theta(f)+\theta(\alpha(f))^{*}\right\| \leq 2\|f\|$)

Question

What can be said about $\|\theta\|$?

Lemma (Ransford-Schwenninger 2018)
We have $\|\theta\| \leq 1+\sqrt{2}$, and this bound is sharp.

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$ (i.e. $\left\|\theta(f)+\theta(\alpha(f))^{*}\right\| \leq 2\|f\|$)

Question

What can be said about $\|\theta\|$?

Lemma (Ransford-Schwenninger 2018)
We have $\|\theta\| \leq 1+\sqrt{2}$, and this bound is sharp.
Is all hope lost?

The abstract approach
\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$ (i.e. $\left\|\theta(f)+\theta(\alpha(f))^{*}\right\| \leq 2\|f\|$)

Question

What can be said about $\|\theta\|$?

Lemma (Ransford-Schwenninger 2018)
We have $\|\theta\| \leq 1+\sqrt{2}$, and this bound is sharp.
Is all hope lost? No! We should also assume that α is unital.

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism $\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism $\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map

Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$
Conjecture.(Ransford-Schwenninger 2018, Ostermann-Ransford 2020) If α is unital, then $\|\theta\| \leq 2$.

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$
Conjecture.(Ransford-Schwenninger 2018, Ostermann-Ransford 2020) If α is unital, then $\|\theta\| \leq 2$.

Theorem (Ostermann-Ransford 2020)

If the previous conjecture holds with $\mathcal{A}=\mathrm{A}(\mathbb{D})$, then Crouzeix's conjecture holds.

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$
Conjecture.(Ransford-Schwenninger 2018, Ostermann-Ransford 2020) If α is unital, then $\|\theta\| \leq 2$.

Theorem (Ostermann-Ransford 2020)

If the previous conjecture holds with $\mathcal{A}=\mathrm{A}(\mathbb{D})$, then Crouzeix's conjecture holds.

Theorem (Ostermann-Ransford 2020)
The following statements hold.

- The map θ sends orthogonal projections to orthogonal projections.

Another conjecture

\mathcal{A} uniform algebra
$\theta: \mathcal{A} \rightarrow \mathbb{M}_{n}$ unital completely bounded homomorphism
$\alpha: \mathcal{A} \rightarrow \mathcal{A}$ completely contractive antilinear map
Standing assumption. $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2$
Conjecture.(Ransford-Schwenninger 2018, Ostermann-Ransford 2020) If α is unital, then $\|\theta\| \leq 2$.

Theorem (Ostermann-Ransford 2020)

If the previous conjecture holds with $\mathcal{A}=\mathrm{A}(\mathbb{D})$, then Crouzeix's conjecture holds.

Theorem (Ostermann-Ransford 2020)

The following statements hold.

- The map θ sends orthogonal projections to orthogonal projections.
- If \mathcal{A} is a commutative von Neumann algebra, then $\|\theta\|=1$.

Exceptional matrices

$$
\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2 ?
$$

Exceptional matrices

$$
\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2 ?
$$

Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Exceptional matrices
$\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?
Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)
Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Exceptional matrices
$\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?
Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)
Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Proof.

Assume that $f \in \mathcal{A}$ with $\|f\|=1$ such that $\|\theta(f)\|=\|\theta\|>1$.

Exceptional matrices
$\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?
Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)
Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Proof.

Assume that $f \in \mathcal{A}$ with $\|f\|=1$ such that $\|\theta(f)\|=\|\theta\|>1$. Choose $\xi \in \mathbb{C}^{n}$ such that $\|\theta(f) \xi\|=\|\theta\|$.

Exceptional matrices
$\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?
Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)
Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Proof.

Assume that $f \in \mathcal{A}$ with $\|f\|=1$ such that $\|\theta(f)\|=\|\theta\|>1$. Choose $\xi \in \mathbb{C}^{n}$ such that $\|\theta(f) \xi\|=\|\theta\|$. Then $\langle\xi, \theta(f) \xi\rangle=0$

Exceptional matrices $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?

Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)

Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Proof.

Assume that $f \in \mathcal{A}$ with $\|f\|=1$ such that $\|\theta(f)\|=\|\theta\|>1$. Choose $\xi \in \mathbb{C}^{n}$ such that $\|\theta(f) \xi\|=\|\theta\|$. Then $\langle\xi, \theta(f) \xi\rangle=0$ and

$$
\|\theta\|^{2}=\langle\theta(f) \xi, \theta(f) \xi\rangle=\left\langle\left(\theta(f)+\theta(\alpha(f))^{*}\right) \xi, \theta(f) \xi\right\rangle \leq 2\|\theta\| .
$$

Exceptional matrices $\left\|\theta+\theta^{*} \circ \bar{\alpha}\right\| \leq 2 \Longrightarrow\|\theta\| \leq 2$?

Lemma (Crouzeix-Gilfeather-Holbrook 2014, Caldwell-Greenbaum-Li 2018)
Let $T \in \mathbb{M}_{n}$ with $\operatorname{Spec}(T) \subset \overline{\mathbb{D}}$ and $\|T\|>1$. Assume that $\|\varphi(T)\| \leq\|T\|$ for every automorphism φ of \mathbb{D}. If $\xi \in \mathbb{C}^{n}$ is a unit vector with $\|T \xi\|=\|T\|$, then $\langle T \xi, \xi\rangle=0$.

Theorem (Ostermann-Ransford 2020)

Assume that $\alpha(\mathcal{A}) \subset \mathbb{C} I$. Then, $\|\theta\| \leq 2$.

Proof.

Assume that $f \in \mathcal{A}$ with $\|f\|=1$ such that $\|\theta(f)\|=\|\theta\|>1$. Choose $\xi \in \mathbb{C}^{n}$ such that $\|\theta(f) \xi\|=\|\theta\|$. Then $\langle\xi, \theta(f) \xi\rangle=0$ and

$$
\|\theta\|^{2}=\langle\theta(f) \xi, \theta(f) \xi\rangle=\left\langle\left(\theta(f)+\theta(\alpha(f))^{*}\right) \xi, \theta(f) \xi\right\rangle \leq 2\|\theta\| .
$$

Corollary (Okubo-Ando 1975)
Crouzeix's conjecture holds when $W(T) \subset \overline{\mathbb{D}}$.

Dilation theory?

The map

$$
\frac{1}{2}\left(\theta+\theta^{*} \circ \bar{\alpha}\right)
$$

is a unital completely contractive map on \mathcal{A}. In particular, there is a unital *-homomorphism $\pi: \mathrm{C}(X) \rightarrow B(\mathcal{H})$ such that

$$
\frac{1}{2}\left(\theta(f)+\theta(\alpha(f))^{*}\right)=\left.P_{\mathbb{C}^{n}} \pi(f)\right|_{\mathbb{C}^{n}}, \quad f \in \mathcal{A}
$$

Dilation theory?

The map

$$
\frac{1}{2}\left(\theta+\theta^{*} \circ \bar{\alpha}\right)
$$

is a unital completely contractive map on \mathcal{A}. In particular, there is a unital *-homomorphism $\pi: \mathrm{C}(X) \rightarrow B(\mathcal{H})$ such that

$$
\frac{1}{2}\left(\theta(f)+\theta(\alpha(f))^{*}\right)=\left.P_{\mathbb{C}^{n}} \pi(f)\right|_{\mathbb{C}^{n}}, \quad f \in \mathcal{A}
$$

But then what?

Thank you!

