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This talk is based on papers by Ransford–Schwenninger (2018) and
Ostermann–Ransford (2020). These are short and beautifully written – go read them!
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The starting point: spectral sets

Ω ⊂ C bounded open convex subset
T bounded linear operator on a Hilbert space H

Definition

We say that Ω is a Q-spectral set for T if

‖p(T )‖ ≤ Q sup
z∈Ω
|p(z)|

for every polynomial p. If this condition holds for matrices of polynomials of any size,
we say that Ω is a complete Q-spectral set for T .

Let A(Ω) ⊂ C(Ω) denote the algebra of functions that are holomorphic on Ω. Then,
Ω is a (complete) Q-spectral set if and only if the map

ΘT : p 7→ p(T )

extends to a (completely) bounded homomorphism on A(Ω) with norm at most Q.
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Basic facts about spectral sets

If Ω is a Q-spectral set for T , then Ω contains the spectrum Spec(T ).

If T ∈ B(H) is normal, then Spec(T ) is a complete (1)-spectral set for T
(spectral theorem).

Typically, Spec(T ) is not a spectral set for T .

The unit disc D is a complete (1)-spectral set for all Hilbert space contractions
(von Neumann’s inequality).

What is another instance of a naturally occuring spectral set?
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Enters the numerical range

The numerical range of T is the set

W (T ) = {〈Tξ, ξ〉 : ξ ∈ H, ‖ξ‖ = 1}.

Recall that Spec(T ) ⊂W (T ) and

‖T‖/2 ≤ sup
w∈W (T )

|w| ≤ ‖T‖.

Theorem (Delyon–Delyon 1999)

Let T ∈ B(H) and let Ω ⊂ C be a bounded open convex subset. Assume that
W (T ) ⊂ Ω. Then, Ω is a Q-spectral set for T for some constant Q that depends only
Ω. (Note: Q →∞ as Area(Ω)→ 0.)

Theorem (Crouzeix 2007)

Let T ∈ B(H). Then, W (T ) is a complete (11.08)-spectral set.
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Enters the numerical range

The numerical range of T is the set

W (T ) = {〈Tξ, ξ〉 : ξ ∈ H, ‖ξ‖ = 1}.

Recall that Spec(T ) ⊂W (T ) and

‖T‖/2 ≤ sup
w∈W (T )

|w| ≤ ‖T‖.

Theorem (Delyon–Delyon 1999)

Let T ∈ B(H) and let Ω ⊂ C be a bounded open convex subset. Assume that
W (T ) ⊂ Ω. Then, Ω is a Q-spectral set for T for some constant Q that depends only
Ω.

(Note: Q →∞ as Area(Ω)→ 0.)

Theorem (Crouzeix 2007)

Let T ∈ B(H). Then, W (T ) is a complete (11.08)-spectral set.
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The sharp constant

Question

What is the smallest Q for which W (T ) is always a (complete) Q-spectral set for T?

Crouzeix’s conjecture: 2

Example

Let T =

[
0 2
0 0

]
. Then, W (T ) = D and ‖T‖ = 2, so that W (T ) cannot be a

Q-spectral set for T for Q < 2.
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A reason to care: normal dilations

H ⊂ K Hilbert spaces, T ∈ B(H) arbitrary
Ω ⊂ C bounded open convex subset

A normal operator U ∈ B(K) is called a ∂Ω-normal dilation of T if Spec(U) ⊂ ∂Ω and

f(T ) = PHf(U)|H, f ∈ C[z].

(Axiom. Normal dilations are good.)

Theorem (Arveson 1969, Paulsen 1984)

Given a constant Q > 0, the following statements are equivalent.

1 There is an invertible operator X ∈ B(H) such that ‖X‖‖X−1‖ ≤ Q and such
that the operator XTX−1 admits a ∂Ω-normal dilation.

2 The set Ω is a complete Q-spectral set for T .
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R. Clouâtre (University of Manitoba) An abstract approach to Crouzeix Casa Matemática Oaxaca 7 / 15
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The basic insight of the lions
Ω ⊂ C bounded open convex subset with smooth boundary
T ∈ B(H) with W (T ) ⊂ Ω
γ : [0, 1]→ C parametrization of ∂Ω, with positive orientation

Fix 0 ≤ t ≤ 1 and put ζ = γ(t) ∈ ∂Ω and β = iγ′(t) ∈ C.

Re(w − ζ)β = 〈w − ζ, β〉R2 ≥ 0 =⇒ Re(T − ζI)β ≥ 0

We have

Re

(
1

2πi
γ′(t)(γ(t)I − T )−1

)
=

1

4π
(ζI − T )−1(Re(T − ζI)β)(ζI − T )∗−1≥ 0

for every 0 ≤ t ≤ 1.
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The Cauchy transform and the key estimate

For f ∈ A(Ω), Cauchy’s formula gives

f(T ) =

∫
∂Ω

f(ζ)

(
1

2πi
(ζI − T )−1

)
dζ.

Lemma (Classical?)

For each f ∈ A(Ω), there is a function α(f) ∈ A(Ω) with ‖α(f)‖ ≤ ‖f‖ such that

(α(f))(z) =

∫
∂Ω

f(ζ)

(
1

2πi
(ζI − z)−1

)
dζ, z ∈ Ω.

We find

f(T ) + (α(f))(T )∗ = 2

∫ 1

0

f(γ(t))

(
1

2πi
Re γ′(t)(γ(t)I − T )−1

)
dt

which implies

‖f(T ) + (α(f))(T )∗‖ ≤ 2‖f‖A(Ω) (Crouzeix–Palencia 2007)

Crouzeix’s conjecture: ‖f(T )‖ ≤ 2‖f‖A(Ω)
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Partial progress
Using ‖f(T ) + (α(f))(T )∗‖ ≤ 2‖f‖A(Ω), what can be said about the norm of

ΘT : f 7→ f(T )?

(Delyon–Delyon 1999) Let R : A(Ω)→ B(H) be defined as

R(f) = f(T ) + (α(f))(T )∗, f ∈ A(Ω)

Then, there is an operator SΩ such that R ◦ SΩ = ΘT . Thus,

‖ΘT ‖ ≤ 2‖SΩ‖ ≤ 2

((
2πDiam(Ω)2

Area(Ω)

)3
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R. Clouâtre (University of Manitoba) An abstract approach to Crouzeix Casa Matemática Oaxaca 10 / 15
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The abstract approach

A uniform algebra
θ : A → Mn unital completely bounded homomorphism
α : A → A completely contractive antilinear map

Standing assumption. ‖θ + θ∗ ◦ α‖ ≤ 2 (i.e. ‖θ(f) + θ(α(f))∗‖ ≤ 2‖f‖)

Question

What can be said about ‖θ‖?

Lemma (Ransford–Schwenninger 2018)

We have ‖θ‖ ≤ 1 +
√

2, and this bound is sharp.

Is all hope lost? No! We should also assume that α is unital.
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Another conjecture

A uniform algebra
θ : A → Mn unital completely bounded homomorphism
α : A → A completely contractive antilinear map

Standing assumption. ‖θ + θ∗ ◦ α‖ ≤ 2

Conjecture.(Ransford–Schwenninger 2018, Ostermann–Ransford 2020)
If α is unital, then ‖θ‖ ≤ 2.

Theorem (Ostermann–Ransford 2020)

If the previous conjecture holds with A = A(D), then Crouzeix’s conjecture holds.

Theorem (Ostermann–Ransford 2020)

The following statements hold.

The map θ sends orthogonal projections to orthogonal projections.

If A is a commutative von Neumann algebra, then ‖θ‖ = 1.
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Exceptional matrices
‖θ + θ∗ ◦ α‖ ≤ 2 =⇒ ‖θ‖ ≤ 2?

Lemma (Crouzeix–Gilfeather–Holbrook 2014, Caldwell–Greenbaum–Li 2018)

Let T ∈ Mn with Spec(T ) ⊂ D and ‖T‖ > 1. Assume that ‖ϕ(T )‖ ≤ ‖T‖ for every
automorphism ϕ of D. If ξ ∈ Cn is a unit vector with ‖Tξ‖ = ‖T‖, then 〈Tξ, ξ〉 = 0.

Theorem (Ostermann–Ransford 2020)

Assume that α(A) ⊂ CI. Then, ‖θ‖ ≤ 2.

Proof.

Assume that f ∈ A with ‖f‖ = 1 such that ‖θ(f)‖ = ‖θ‖ > 1. Choose ξ ∈ Cn such
that ‖θ(f)ξ‖ = ‖θ‖. Then 〈ξ, θ(f)ξ〉 = 0 and

‖θ‖2 = 〈θ(f)ξ, θ(f)ξ〉 = 〈(θ(f)+θ(α(f))∗)ξ, θ(f)ξ〉 ≤ 2‖θ‖.

Corollary (Okubo–Ando 1975)

Crouzeix’s conjecture holds when W (T ) ⊂ D.

R. Clouâtre (University of Manitoba) An abstract approach to Crouzeix Casa Matemática Oaxaca 13 / 15
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Dilation theory?

The map
1

2
(θ + θ∗ ◦ α)

is a unital completely contractive map on A. In particular, there is a unital
∗-homomorphism π : C(X)→ B(H) such that

1

2
(θ(f) + θ(α(f))∗) = PCnπ(f)|Cn , f ∈ A.

But then what?
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Thank you!
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