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A formulation of the Madsen-Weiss theorem

Let M, 1 denote the moduli space of compact Riemann surfaces of type ¥, 1, i.e. of

genus g = 0 with one parametrised boundary component.

M, 1 is a classifying space for the mapping class group Iz,1 = 7o (Difft (Z4,1,0%4.1)):
Mg~ Blg1.

Gluing two Riemann surfaces of type ¥, 1
and X,/ ; using a disc with two holes gives
a surface of type ¥, 1. The space

My = [ [ Mga

g=0 @ —
is (up to homotopy) a topological monoid ==

(in fact it is an Ex-algebra).

Theorem (Madsen, Weiss)

There is an equivalence of loop spaces

QBMy 1 ~ Q°MTSO(2).
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What about free loop spaces of moduli spaces?

Myx = [ [ Mga QBM, 1 ~ Q°MTSO(2)

=0

Consider now the free loop spaces AM,1 := map(S*,Mg,1) for g = 0.

A-wise multiplication makes
Ay = | [ A1

£=0

also into a topological monoid (in fact an E>-algebra).

What does QBAM . 1 look like?

In fact, A9ty 1 is not only an E>-algebra, but also an algebra over Tillmann's surface
operad M. A result by Tillmann implies that QBAIN, 1 is an Q®-space.

« There are maps of M-algebras

const,

M1 20 ADy 1 —s Mt

with composition the identity. Therefore Q*MTSO(2) is a factor of QBAIM 1.
ez et CpRees 6 e 10th October 2022 3/14



NN
Main result, and the work of BBPTY

Theorem (B., Kranhold, Reinhold)

For a suitable topological space X, there is an equivalence of loop spaces

QBAD; ~ Q°MTSO(2) x Q°TLX.

So far we only know QBAM . 1 ~ QCMTSO(2) x Q% ?77.

Tillmann's result was recently improved by Basterra, Bobkova, Ponto, Tillmann and
Yeakel to the setting of (monochromatic) operads O with homological stability (OHS).
For example, Tillmann's surface operad M is an OHS.

If O is an OHS, BBPTY give a quite direct way to compute QBY for a O-algebra Y:
for example, if Y = FO(X) is the free O-algebra over an unpointed space X, then

QBF°(X) ~ QBO(0) x QPLTX,
where O(0) is the initial O-algebra (in the case O = M, we have O(0) >~ M. 1).

Naive conjecture

There is a space ¥ such that AMy 1 ~ FM(%).

The previous conjecture turns out to be wrong, but not completely wrong.
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Generic moduli spaces M, ,

In order to understand the structure of A9y 1 as a M-algebra, we need to consider all
surfaces of type X ,, for all g >0 and n > 1.

The moduli space M, , contains equivalence classes

of Riemann surfaces S of type ¥ , with ordered and

parametrised boundary components, i.e. S is endowed

with a diffeomorphism

08 ~{1,...,n} x S
compatible with boundary orientation.

M. is a classifying space for the mapping class group 'y, = mo(Diff ™ (Xg.n, 0Xg.n))-
For g > 0 and n > 1 we homotopy equivalences

Mign=ABlgn~  [[  BZ(e,Ten)
[¢]eConj(Tg,n)

« Conj(lg,n) is the set of conjugacy classes of [, ,;
« Z(p, g n) is the centraliser of ¢ in [z ,.
The homotopy type of A9 1 depends on the groups Z(¢, ;1) for ¢ € T, 1;
to describe these centralisers we will need all groups I'g,,, also for n > 1.
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Examples of mapping classes and their centralisers
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Cut locus of a mapping class

Let ¢ € [;,» Then there is a unique isotopy class of an oriented, unordered multicurve
ci,...,cnin S satisfying the following:
ci,...,cp are disjoint simple closed curves, dividing X , into two regions W and Y,
and are oriented as boundary curves of Y;

« each connected component of W touches 0% ,;
no connected component of Y is a disc;
¢ can be represented by a diffeomorphism ®: ¥, , — ¥, , fixing W pointwise;

+ the isotopy class of W < ¥, , is maximal among all isotopy classes of subsurfaces
satisfying all the above conditions.

Definition

The isotopy class of multicurve [ci, ..., c] is called the cut locus of ¢.
A mapping class ¢ € ', , is 0-irreducible if its cut locus is [0X ).

In fact, for a generic ¢ € I, , as above, the restriction of ® to any component P c Y
gives a 0d-irreducible mapping class pp € (P, dP).

Assume now ¢ € [z1: then W is connected; instead Y may be disconnected, and
connected components of Y may have more than 1 boundary curve!l
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Structure result for Z(¢, g 1), first part

Let ¢ € [;,1, and decompose ¥, 1 = W U Y along the cut locus ci, ..., ch.
Fix parametrisations ¢; = S which are compatible with orientation as Y.
Represent ¢ by a diffeomorphism & fixing W pointwise, and let ¢y := [®|y] € [(Y,0Y).
The extended mapping class group I'(Y) is the group of isotopy classes of

orientation-preserving diffeomorphisms of Y that may permute the h components of 0Y,
but are compatible with their parametrisation.

Similarly, the extended mapping class group F'S#(W) is the group of isotopy classes of
orientation-preserving diffeomorphisms of W that fix 0%z 1 pointwise, and may permute
the other h components of W, but are compatible with their parametrisation.
Both groups map to &;,. We have a gluing map
£ TN (W) % T(Y) - Tg1.
Note that £(ldw, ¢y) = ¢. In fact € restricts to
e: TO(W) x®" Z(pv,T(Y)) = Z(p,Tga)-

Proposition

The map ¢ is surjective and has kernel isomorphic to Z", generated by the pairs
(De;, DY) for 1 < i < h.
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Structure result for Z(¢, g 1), second part

Recall that we have a central extension

Z' —— TS (W) xS Z(py, T(Y)) —— Z(p,Ta).

Recall that Y may be disconnected! Each component P c Y
is equipped with a mapping class ¢p = [®|p] € (P, 0P).
Two components P, P’ < Y are similar if there is =: P — P’
such that (—)=: ['(P,@P) — [(P',dP’) sends pp — @pr.

Decompose Y = [ [;_, [[7_, Yi;, with Y;; similar to Y ;s iff i = i". Let Vi, be of type
2 g0, and let @; € Ty o, correspond to ¢y, ; for all j. We can further decompose

r

Z(ev, 7)) = [T (2@ T (Zam)))* % &5).

i=1
Let $; € &,, be the image of Z(@, (X)) along the natural map to &,,,.
Then § :=[[;_,($:)% x & is the subgroup of S really used in the fibre product, and
Fo (W) x0 Z(py, 1(Y)) = P (W) x” T (2@, T(Zan))) % &5,).
i=1
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From groups to classifying spaces

Recall that we have a central extension, where ) := []_, (/)% % &5, € Gy

Zr —— T(W) x® [T, (231 T (Ean))) 5 65) —— Z(p,Tga).

Taking classifying spaces (and after some routine work) we get

r

BI(W,0W) xnis [ | ((BZ(81Tan))") > BZ(#,Tea) E A1

i=1

« To describe BZ(p, 1) for ¢ € [z 1, we use as “bulding blocks” the spaces
BZ(5i,T g n;) c Ay, ., corresponding to the d-irreducible mapping classes
@i € rgh”i'

+ These building blocks are assembled together using the space BI'(W,oW).

« Furthermore, we have some balancing by the group

T %0 =] [(T" x 9)% x &.

i=1
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Coloured operads and their algebras

For a set NV, an N-coloured operad O consists of spaces of “operations” O(kl";‘k’) for all
r>=0and ki,...,k,ne N. We say that ki, ..., k, are the input colours, and n is the
output colour. Composition of operations and permutation of inputs are only defined if
they are compatible with the colours: for instance we have compositions

r
Ky .o skr — K1 yeeeslrsy
O(ln )XHO(lki ’)_)O(Hn )
i=1
An O-algebra is a sequence of spaces X = (X,)nen with compatible multiplication maps
O<k17-;1.,kr) x ka,- — X,.
i=1

If ©' = O is a sub-N-coloured operad, every O-algebra is a O'-algebra. Viceversa, given
a O'-algebra X = (X,)», we can construct the relatively free O-algebra F& (X).

Andrea Bianchi (Copenhagen) Parametrised moduli spaces of surfaces 10th October 2022 11/14



The coloured surface operad M

For N = {1,2,3,...} there is an N-coloured operad M, whose restriction to colour-1 is
Tillmann's surface operad. For generic ki,..., k., n€ N, the space M(kl",;"k’) is the
moduli space of compact Riemann surfaces W with the following additional structures:

« OW is partitioned as 0™ W L1 0°**W, and each component of W touches §°"*W;

« 0°"" W is equipped with a diffeomorphism to {1 n} x St

« 0™ W is equipped with a dlffeomorphlsm to [ [/_ 1{1 . ki} x St

TG

M contains an N-sequence of groups R = : the group R, := T" x &, embeds into
M(Z) as moduli of Riemann surfaces Whlch are dlSjOInt unions of cylinders.

(z1,...,2p,0) = J eR,,CM(Z)

In particular every M-algebra is a R-algebra. Viceversa, given a R-algebra X = (X,),, i.e
a sequence of R,-spaces X,, we can form Fz"'(X).
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AN, 1 as a relatively free algebra

For all g = 0 and n > 1 the group R, = T" X &, acts on the space i, ,: given S with
ordered and parametrised boundary components, we can reorder the labels 1,..., n of the
boundary components, and rotate the parametrisations. R, also acts A-wise on AN, ,:

Ry O Mg n, Ry O ADg, .
In fact Mg n < M(,), and R, < M(").
Recall that AM,,, = H[ga]eConj(rg ) Ne.n(p). Put

Coni= I1 AMg () © A 0.

[(p]EConj(l—g,,,)
¢ is o-irreducible

Then R, acts on €, := [ [ ., &g, 50 € := (&n)nen is a R-algebra.

Proposition (improving on the naive conjecture)

A 1 is the colour-1 part of F3(€).
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BBPTY for coloured operads with homological stability

There is a notion of N-coloured OHS for an arbitrary set N. Let O be an N-coloured
OHS containing a sequence of groups G = (G,), as suboperad (of 1-ary operations). Let
X = (X,), be a G-algebra. Let ne N; then FS (X), is in particular a topological monoid.

Proposition

There is an equivalence of loop spaces

QBFE (X)n ~ QBO( ) x Q7% (]_[ Xk//Gk>.

keN

Let now N = {1,2,3,...}: then M is an N-coloured OHS containing R as suboperad.
Recall that A9ty 1 is the colour-1 part of F3'(€), where &, is the R,-space

G- 1 Ao

820 [p]eConj(lg,n)
o—irreducible

We then have an equivalence of loop spaces

QBAM,1 ~ QBM(,) x QPET (]_[ cn//Rn> ~ QPMTSO(2) x QLT X.

n=1
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