MCG repr's via Heisenberg

Mapping class group representations via Heisenberg, Schrödinger and Stone-von Neumann

Martin Palmer-Anghel

IMAR, Bucharest

11 October 2022 Cobordisms, Strings, and Thom Spectra, Oaxaca (and online)

Joint work with Christian Blanchet and Awais Shaukat

Aims

Kepi oi D_n

Repr of MCG

- Moriyama
- abelian co
- Heisenberg
- Torelli
- Schröding
- tautological

Karnel

Summar

Applications of braid group representations:

• Linearity: B_n embeds into $GL_N(\mathbb{R})$

[Bigelow, Krammer] using Lawrence representations

- Applications to knot theory (Alexander and Markov theorems)
- ullet Applications to algebraic geometry (invariants of curves in \mathbb{CP}^2) [Moishezon, Libgober]

Aim:

Construct analogues of the Lawrence representations for

$$\operatorname{Map}(\Sigma_{g,1}) = \pi_0(\operatorname{Diff}_\partial(\Sigma_{g,1}))$$

- (→ linearity?)
- (→ extensions to 3-dim. TQFT?)

Representations of braid groups – Burau

Aim

Repr of B_n

Repr of MCG

- Heisenberg
- Torelli
- Schröding
- tautologica

Summar

[Burau] representation (1935):

$$\sigma_i \quad \longmapsto \quad \mathrm{I}_{i-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus \mathrm{I}_{n-i-1}$$

- This defines $B_n \longrightarrow GL_n(\mathbb{Z}[t^{\pm 1}]) \subset GL_n(\mathbb{R})$
- Q([Birman'74]): Is this representation injective? (≡'faithful')
- A($n \le 3$): Yes

[Magnus-Peluso'69]

• $A(n \ge 5)$: No

[Moody'91,Long-Paton'93,Bigelow'99]

- A(n=4): ??
- Q: Are the braid groups linear?
 Does B_n embed into some GL_N(F)?

Representations of braid groups – Lawrence

Aim

Repr of B_n

Repr of MCG

-
- 100
- Heisenberg
- Callanii dia
- tautologica
- Summai

[Lawrence] representation (1990) — geometric definition.

- $\operatorname{Diff}_{\partial}(D_n)$ acts on $C_k(D_n)$ (unordered configuration space) $(D_n = \operatorname{closed} 2\text{-disc minus } n \operatorname{punctures})$
- $B_n = \operatorname{Map}(D_n) = \pi_0(\operatorname{Diff}_{\partial}(D_n))$ acts on $H_*(C_k(D_n); \mathbb{Z})$
- Two modifications:
 - Choose $\pi_1(C_k(D_n)) \to Q$ invariant under the action. Then B_n acts on $H_*(C_k(D_n); \mathbb{Z}[Q])$
 - Replace H_* with H_*^{BM} (Borel-Moore homology) Then $H_*^{BM}(C_k(D_n); \mathbb{Z}[Q])$ is a free $\mathbb{Z}[Q]$ -module concentrated in degree *=k

 $\mathsf{Lawrence}_k \colon B_n \longrightarrow \mathsf{GL}_N(\mathbb{Z}[Q]) = \mathrm{Aut}_{\mathbb{Z}[Q]} \left(H_*^{BM}(C_k(D_n); \mathbb{Z}[Q]) \right)$

Representations of braid groups – Lawrence

Aim

Repr of B_n

Repr of MCG

- Morivama
- abelian coe
- Heisenberg
- Ticisciibeig
- Schröding
- tautologic
- -----

Summar

How is the quotient *Q* defined?

• $\pi_1(D_n) = F_n \longrightarrow \mathbb{Z} = Q$

- "total winding number"
- $\pi_1(C_k(D_n)) \longrightarrow \mathbb{Z} \oplus \mathbb{Z}$ ("total winding number", "self-winding number")

Lemma

This quotient is $Map(D_n)$ -invariant, and hence

$$\mathsf{Lawrence}_k \colon B_n \longrightarrow \mathit{GL}_N(\mathbb{Z}[Q])$$

is well-defined. Moreover, we have $Lawrence_1 = Burau$.

Theorem [Bigelow'00, Krammer'00]

Lawrence₂ is faithful (injective). Hence B_n embeds into $GL_N(\mathbb{R})$.

MCG repr's via Heisenberg

Representations of mapping class groups

Aim

Repr of B

Repr of MCGs

- Ivioriyama
- abelian coe
- Heisenberg
- Torelli
- Schröding
- tautologica
- Summa

- Q: Does $\operatorname{Map}(S)$ embed into $GL_N(\mathbb{F})$ for other surfaces S?
- $\operatorname{Map}(\operatorname{torus}) \cong SL_2(\mathbb{Z}) \subset GL_2(\mathbb{R})$
- $\operatorname{Map}(\Sigma_2) \subset GL_{64}(\mathbb{C})$

[Bigelow-Budney'01]

- In general, wide open.
 - Kontsevich (2006): proposal of a sketch of a construction of a faithful finite-dimensional representation of $\operatorname{Map}(\Sigma_g)$
 - Dunfield (cf. [Margalit'18]): computational evidence suggesting that this will *not* actually be faithful
- From now on, focus on $\Sigma = \Sigma_{g,1}$ (orientable, genus g, one boundary component)

Main result [Blanchet-P.-Shaukat'21]

A new family of representations of $\operatorname{Map}(\Sigma)$.

("Genuine" analogues of the Lawrence representations)

Representations of MCGs – Moriyama

Aim

Repr of *B*

Repr of MCG

– Moriyama

- abelian coe
- Heisenberg
- Ticisciibcig
- Schröding
- and the state
- -----

Summar

Simplest analogue of the Lawrence representations:

$$\operatorname{Map}(\Sigma)$$
 \circlearrowleft $H_k^{BM}(F_k(\Sigma'); \mathbb{Z})$

- $F_k(\) = ordered$ configuration space
- $\Sigma' = \Sigma \setminus (\text{interval in } \partial \Sigma)$
- untwisted \mathbb{Z} coefficients
- $H_k^{BM}(F_k(\Sigma'); \mathbb{Z})$ is a free abelian group of finite rank

Theorem [Moriyama'07]

The kernel of this representation is $\mathfrak{J}(k) \subset \operatorname{Map}(\Sigma)$.

• $\mathfrak{J}(k)$ is the *k*-th term of the *Johnson filtration* of $\mathrm{Map}(\Sigma)$

Aims Repr of B_n Repr of MCGs	• Lower central series: $\pi_1(\Sigma) = \Gamma_1 \supseteq \Gamma_2 \supseteq \Gamma_3 \supseteq \Gamma_4 \supseteq \cdots$ • $\Gamma_i = [\pi_1(\Sigma), \Gamma_{i-1}]$ (commutators of length i)
– Moriyama	Definition [Johnson'81]
abelian coeffHeisenberg	$\mathfrak{J}(k)=$ kernel of the action of $\mathrm{Map}(\Sigma)$ on $\pi_1(\Sigma)/\Gamma_{k+1}$.

• $\operatorname{Map}(\Sigma) = \mathfrak{J}(0) \supset \mathfrak{J}(1) \supset \mathfrak{J}(2) \supset \mathfrak{J}(3) \supset \cdots$

The Johnson filtration

Torelli group

• $\mathfrak{J}(1) = \operatorname{Tor}(\Sigma) = \ker (\operatorname{Map}(\Sigma) \circlearrowleft H_1(\Sigma; \mathbb{Z}))$ Theorem [Johnson'81]

k=1

MCG repr's

via Heisenberg

Corollary [Moriyama'07] $\bigoplus H_k^{BM}(F_k(\Sigma'); \mathbb{Z})$ is a faithful $(\infty$ -rank) $\operatorname{Map}(\Sigma)$ -representation.

 $\bigcap \mathfrak{J}(k) = \{1\}$

Rep. of MCGs – abelian twisted coefficients

Aim

Repr of B

Repr of MCG

- abelian coeff

- Heisenberg

- Toreili

- Schröding

- tautologica

Kernel

6

- Idea: Enrich the representation by taking homology with *twisted* coefficients $\mathbb{Z}[Q]$, where $\pi_1(C_k(\Sigma')) = B_k(\Sigma) \twoheadrightarrow Q$.
 - $Q = \mathfrak{S}_k$ corresponds to the Moriyama representations: $H_k^{BM}(F_k(\Sigma'); \mathbb{Z}) = H_k^{BM}(C_k(\Sigma'); \mathbb{Z}[\mathfrak{S}_k]).$
- First try abelian quotients Q.

Fact $(k \ge 2)$

$$B_k(S)^{ab}\cong \pi_1(S)^{ab}\oplus egin{cases} \mathbb{Z} & S ext{ planar} \ \mathbb{Z}/(2k-2) & S=S^2 \ \mathbb{Z}/2 & ext{ otherwise.} \end{cases}$$

- If S is non-planar, we can only count the *self-winding number* ("writhe") of S-braids $\mathbf{mod}\ 2$. (or $mod\ 2k-2$ if $S=S^2$)
- In $\mathbb{Z}[B_k(S)^{ab}]$, the corresp. variable t has order two: $t^2 = 1$. \rightsquigarrow we get a much "weaker" representation...

Rep. of MCGs – Heisenberg twisted coefficients

5

tepr of E

tautologica

Sumn

Theorem [Bellingeri'04]

$$B_k(\Sigma_{g,1}) \cong \left\langle \sigma_1, \dots, \sigma_{k-1}, \begin{matrix} a_1, \dots, a_g \\ b_1, \dots, b_g \end{matrix} \middle| \cdots \text{ some relations } \cdots \right\rangle$$

Adding the relations saying that σ_1 is *central* (commutes with every element), we obtain:

$$B_k(\Sigma_{g,1})/\langle\!\langle \left[\sigma_1,x\right]
angle
angle \cong \left\langle \sigma, egin{align*} a_1,\ldots,a_g \ b_1,\ldots,b_g \ \end{matrix}
ight| ext{ all pairs commute except}
ight
angle$$

Definition

$$\mathcal{H}_{g} = B_{k}(\Sigma_{g,1})/\langle\langle [\sigma_{1},x] \rangle\rangle$$

This is the genus-g discrete Heisenberg group. Note that:

$$\mathcal{H}_1\cong \left\{egin{pmatrix} 1 & \mathbb{Z} & rac{\mathbb{Z}}{2} \ 0 & 1 & \mathbb{Z} \ 0 & 0 & 1 \end{pmatrix}
ight\}\subset \textit{GL}_3(\mathbb{Q})$$

MCG repr's

via Heisenberg

Lemma

- Heisenberg

The action $\operatorname{Map}(\Sigma) \circlearrowleft B_k(\Sigma)$ descends to a well-defined action on the quotient \mathcal{H}_{g} .

Proof

- Aim: $\ker(B_k(\Sigma) \to \mathcal{H}_g)$ is preserved by the $\operatorname{Map}(\Sigma)$ -action.
- This is $\langle \langle [\sigma_1, x] \rangle \rangle$, so it is enough to show that σ_1 is fixed by the $\mathrm{Map}(\Sigma)$ -action.

Rep. of MCGs - Heisenberg twisted coefficients

- Let $[\varphi] \in \operatorname{Map}(\Sigma) = \operatorname{Diff}(\Sigma)/\sim$ be represented by a diffeo. φ that fixes *pointwise* a collar neighbourhood of $\partial \Sigma$.
- The loop of configurations $\sigma_1 \in B_k(\Sigma) = \pi_1(C_k(\Sigma))$ can be homotoped to stay inside this collar neighbourhood.

The Heisenberg group fits into a central extension:

$$1 o \mathbb{Z} \longrightarrow \mathcal{H}_{\sigma} \longrightarrow \mathcal{H}_1(\Sigma;\mathbb{Z}) o 1$$

and the $\operatorname{Map}(\Sigma)$ -action on $\mathcal{H}_{\mathfrak{g}}$ lifts the natural action on $H_1(\Sigma; \mathbb{Z})$.

MCG repr's

via Heisenberg

Corollary

We obtain a *twisted* representation, defined over $\mathbb{Z}[\mathcal{H}_{\sigma}]$:

$$\operatorname{Map}(\Sigma)$$
 \circlearrowleft $H_k^{BM}(C_k(\Sigma'); \mathbb{Z}[\mathcal{H}_g]) = \mathcal{V}$

Rep. of MCGs – Heisenberg twisted coefficients

"Twisted representation" really means we have:

- a $\mathbb{Z}[\mathcal{H}_{\varrho}]$ -module $_{\tau}\mathcal{V}$ for each $\tau \in \operatorname{Aut}^+(\mathcal{H}_{\varrho})$
- isomorphisms $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ for each $\varphi \in \operatorname{Map}(\Sigma)$, $\tau \in \operatorname{Aut}^+(\mathcal{H}_{\mathfrak{g}})$

(where $\varphi_* \in \operatorname{Aut}^+(\mathcal{H}_{\varepsilon})$ is the action of φ on $\mathcal{H}_{\varepsilon}$)

In other words a functor $Ac(Map(\Sigma) \circlearrowleft \mathcal{H}_g) \longrightarrow Mod_{\mathbb{Z}[\mathcal{H}_g]}$. (where $Ac(Map(\Sigma) \circlearrowleft \mathcal{H}_g)$ is the action groupoid)

Note Replace the coefficients $\mathbb{Z}[\mathcal{H}_g]$ with any \mathcal{H}_g -representation W over R to get a twisted Map(Σ)-representation $\mathcal{V}(W)$ over R.

Rep. of MCGs – Heisenberg twisted coefficients

Aim

Repr of *B*

Repr of MC

.....

– abelian coe

- Heisenberg

Ticiscriber

- Schröding

– tautologica

taatologic

Summar

Problem

How to untwist this representation?

Three methods:

- (1) On the Torelli group $\operatorname{Tor}(\Sigma) \subset \operatorname{Map}(\Sigma)$ for any \mathcal{H}_g -representation W.
- (2) On the (stably) universal central extension of $\operatorname{Map}(\Sigma)$ for $W = W_{\operatorname{Sch}}$ the Schrödinger representation of $\mathcal{H}_{\varepsilon}$.
- (3) Directly on the mapping class group $\operatorname{Map}(\Sigma)$ for $W = W_{\text{lin}}$ the linearised tautological representation of \mathcal{H}_g .

Rep. of MCGs – restricting to the Torelli group

Aim

epr of B

Repr of MC

. . .

– abelian coe

- Heisenber

- Torelli

- Schröding

tautologica

Kernel

Summar

Proposition

The pre-image of $\operatorname{Inn}(\mathcal{H}_g) \subset \operatorname{Aut}(\mathcal{H}_g)$ under $\alpha \colon \operatorname{Map}(\Sigma) \to \operatorname{Aut}(\mathcal{H}_g)$ is the Torelli group.

We obtain a central extension of the Torelli group:

The twisted representation provides $_{\tau \circ \varphi_*} \mathcal{V} \to _{\tau} \mathcal{V}$ for $\varphi \in \mathrm{Tor}(\Sigma)$. Given a lift $\widetilde{\varphi}$ to $\widetilde{\mathrm{Tor}}(\Sigma)$, the element $\widetilde{\alpha}(\widetilde{\varphi})$ provides $_{\tau} \mathcal{V} \to _{\tau \circ \varphi_*} \mathcal{V}$.

Lemma

The central extension $\widetilde{\mathrm{Tor}}(\Sigma)$ of $\mathrm{Tor}(\Sigma)$ turns out to be trivial.

MCG repr's

Definition (Schrödinger representation)

- Schrödinger

$$\mathcal{H}_{\mathsf{g}}\cong\mathbb{Z}\langle\sigma,\mathsf{a}_1,\cdots,\mathsf{a}_{\mathsf{g}}
angle
times\mathbb{Z}\langle b_1,\ldots,b_{\mathsf{g}}
angle$$

$$\mathcal{H}_g \cong \mathbb{Z}\langle \sigma, a_1, \cdots, a_g \rangle \rtimes \mathbb{Z}\langle b_1, \dots, b_g \rangle$$

$$\mathcal{H}_g^{\mathsf{Re}} \cong \mathbb{R}\langle \sigma, a_1, \cdots, a_g \rangle \rtimes \mathbb{R}\langle b_1, \dots, b_g \rangle$$
($b_i \cdot a_i = a_i + 2\sigma$)

Rep. of MCGs – untwisting via Schrödinger \mathcal{H}_{g} -rep

One-dimensional repr. $\mathbb{R}\langle \sigma, a_1, \cdots, a_g \rangle \to \mathbb{R}\langle \sigma \rangle \to S^1 = U(1)$ given by $t \mapsto \exp(\hbar t i/2)$ for fixed $\hbar > 0$

Induction --- unitary representation

$$\mathcal{H}_g \subset \mathcal{H}_g^{\mathsf{Re}} \longrightarrow \mathit{U}(\mathit{W}_{\mathsf{Sch}}) \qquad \mathit{W}_{\mathsf{Sch}} = \mathit{L}^2(\mathbb{R}^g)$$

Theorem ((corollary of) Stone-von Neumann)

For $\varphi \in \operatorname{Aut}(\mathcal{H}_{\varphi}^{\mathsf{Re}})$ there is a unique inner automorphism $T(\varphi)$ of $U(W_{Sch})$ such that the following square commutes:

$$\mathcal{H}_{g}^{\mathsf{Re}} \longrightarrow U(W_{\mathsf{Sch}})$$
 $\varphi \downarrow \qquad \qquad \downarrow \tau(\varphi)$
 $\mathcal{H}_{\sigma}^{\mathsf{Re}} \longrightarrow U(W_{\mathsf{Sch}})$

MCG repr's

Theorem ((corollary of) Stone-von Neumann)

Repr of

Repr of MC

– abelian coe

Heisenbe

Schrödinger

– tautologica

Summary

Theorem ((coronary or) Stone-von Neumann)

For $\varphi \in \operatorname{Aut}(\mathcal{H}_g^{\mathsf{Re}})$ there is a unique inner automorphism $T(\varphi)$ of $U(W_{\mathsf{Sch}})$ such that the following square commutes:

Rep. of MCGs – untwisting via Schrödinger \mathcal{H}_{g} -rep

$$\mathcal{H}_{g}^{\mathsf{Re}} \longrightarrow U(W_{\mathsf{Sch}})$$
 $\varphi \downarrow \qquad \qquad \downarrow T(\varphi)$
 $\mathcal{H}_{g}^{\mathsf{Re}} \longrightarrow U(W_{\mathsf{Sch}})$

Since $Inn(U(W_{Sch})) = PU(W_{Sch})$, we obtain

$$\widetilde{\operatorname{Map}}(\Sigma)^{\operatorname{univ}} \xrightarrow{\widetilde{\alpha}} U(W_{\operatorname{Sch}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Map}(\Sigma) \xrightarrow{\alpha} \operatorname{Aut}^+(\mathcal{H}_g) \subset \operatorname{Aut}^+(\mathcal{H}_g^{\operatorname{Re}}) \xrightarrow{T} PU(W_{\operatorname{Sch}})$$

and $\widetilde{\alpha}$ allows us to untwist the representation:

$$\widetilde{\mathrm{Map}}(\Sigma)^{\mathrm{univ}} \longrightarrow U\left(H_k^{BM}(C_k(\Sigma'); W_{\mathsf{Sch}})\right) = U(\mathcal{V}(W_{\mathsf{Sch}}))$$

Rep. of MCGs – untwisting via tautological \mathcal{H}_g -rep

Aim

Repr of E

Repr of MC

- Mori
- abelian co
- Heisenber
- Schröding
- Jemodinge

tautological

Kerne

Summar

$$\mathcal{H}_g = \mathbb{Z}^{2g+1} = \mathbb{Z} \times H_1(\Sigma)$$
 with $(k,x)(l,y) = (k+l+x.y,x+y)$ Give \mathbb{Z}^{2g+1} its usual affine structure (a torsor over itself) **Obs1:** Left multiplication $\mathcal{H}_g \circlearrowleft \mathcal{H}_g$ preserves the affine structure.

$$\mathsf{Taut}_{\mathsf{lin}} \colon \mathcal{H}_{\sigma} \longrightarrow \mathsf{Aff}(\mathbb{Z}^{2g+1}) \subset \mathsf{GL}(W_{\mathsf{lin}}) \qquad W_{\mathsf{lin}} = \mathbb{Z}^{2g+1} \oplus \mathbb{Z}$$

Obs₂: Every (orientation-preserving) automorphism of \mathcal{H}_g preserves the structure of \mathbb{Z}^{2g+1} as a free \mathbb{Z} -module.

$$\operatorname{Map}(\Sigma) \stackrel{\alpha}{\longrightarrow} \operatorname{Aut}^+(\mathcal{H}_g) \stackrel{\operatorname{id}}{\longrightarrow} \operatorname{\mathit{GL}}(\mathbb{Z}^{2g+1}) \stackrel{-\oplus \operatorname{id}_\mathbb{Z}}{\longrightarrow} \operatorname{\mathit{GL}}(W_{\mathsf{lin}})$$

Lemma

This untwists the representation with coefficients in W_{lin} :

$$\operatorname{Map}(\Sigma) \longrightarrow \operatorname{GL}(H_k^{BM}(C_k(\Sigma'); W_{\operatorname{lin}})) = \operatorname{GL}(\mathcal{V}(W_{\operatorname{lin}}))$$

Upper bound on the kernel

Aim

Repr of *B*

Repr of MCC

Moriyama

- abelian coe
- Heisenberg
- r reiberiberg
- Schröding
- tautological

Kernel

Summary

Summary

For $k \geq 2$ and $W = \mathcal{H}_g$ -representation over R, we obtain:

- a $Tor(\Sigma)$ -representation $\mathcal{V}(W)$ over R;
- a unitary $\mathrm{\overline{Map}}(\Sigma)^{\mathsf{univ}}$ -representation $\mathcal{V}(W)$ if $W=W_{\mathsf{Sch}}$;
- a $\operatorname{Map}(\Sigma)$ -representation $\mathcal{V}(W)$ over \mathbb{Z} if $W = W_{\operatorname{lin}}$.

Lemma

As an R-module, $\mathcal{V}(W)\cong igoplus_{{k\choose k}}^{k-2g-1}W.$

For example, $\mathcal{V}(W_{\text{lin}})$ is a free \mathbb{Z} -module of rank $(2g+2)^{\binom{k+2g-1}{k}}$.

Q: What is the kernel of this representation?

 \mathbf{Q}' : Is it smaller than $\mathfrak{J}(k) = \ker(\operatorname{Moriyama}_k)$?

Upper bound on the kernel

Aim

epr of B

Repr of MCC

. . .

- abelian coe
- Heisenberg
- 110000000
- Schröding
- Schroding

Kernel

Summar

(k = 2)Quotient of (twisted) Map(Σ)-representations:

$$H_2^{BM}\left(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_g]\right) \longrightarrow H_2^{BM}\left(C_2(\Sigma'); \mathbb{Z}[\mathfrak{S}_2]\right)$$

induced by $\mathcal{H}_g \longrightarrow (\mathcal{H}_g)^{ab} = \mathbb{Z}/2 \oplus H_1(\Sigma) \longrightarrow \mathbb{Z}/2 = \mathfrak{S}_2.$

• The right-hand side is $H_2^{BM}(F_2(\Sigma'); \mathbb{Z}) = \text{Moriyama}_2$, hence

$$\ker \left(H_2^{BM}\left(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_g]\right)\right) \subseteq \mathfrak{J}(2)$$

- Let $\gamma \subset \Sigma$ be a simple closed curve that separates off a genus-1 subsurface. Then the Dehn twist T_{γ} lies in $\mathfrak{J}(2)$.
- Calculations $\Rightarrow T_{\gamma}$ acts *non-trivially* in our representation.

Corollary

The kernel of $H_2^{BM}(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_g])$ is **strictly smaller** than $\mathfrak{J}(2)$.

Example calculation

Aims

Repr of B_i

Repr of MCGs

- Moriyama

- abellali co
- Heisenberg
- Tavalli
- Schrödinge
- tautologica

Kernel

Summar

Set k = 2 and g = 1. In this case the representation

$$H_2^{BM}\left(C_2(\Sigma'); \mathbb{Z}[\mathcal{H}_1]\right)$$

is free of rank 3 over $\mathbb{Z}[\mathcal{H}_1]=\mathbb{Z}[\sigma^{\pm 1}]\langle a^{\pm 1},b^{\pm 1}\rangle/(ab=\sigma^2ba)$

Let γ be a curve isotopic to $\partial \Sigma = \partial \Sigma_{1,1}$. Then T_{γ} acts via:

$$\begin{bmatrix} \sigma^{-4}b^{+}+\sigma^{-4}z^{-2}-\sigma^{-2}b^{+}+(c^{-1}-\sigma^{-2})z^{-2}b + \\ (\sigma^{-1}-\sigma^{-1})z^{-2}b^{+}+(c^{-1}-\sigma^{-2})z^{-2}b + \\ (-2^{-1}+\sigma^{-2}-\sigma^{-2})z^{-2}b^{+}+(c^{-1}-\sigma^{-2})z^{-2}b + \\ (-2^{-1}+\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}-2b^{+} \\ (-1+\sigma^{-1}+\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}-2b^{+} \\ (-1+\sigma^{-1}+\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^{-2}-\sigma^{-2})z^{-2}b^{-2}+(c^{-1}-\sigma^{-2}-\sigma^$$

Exercise: this reduces to the identity if we set $a = b = \sigma^2 = 1$.

Summary and outlook

Aims

Repr of R

Repr of MCG

- Morivama
- abelian c
- Li alasa basa
- _ ..
- Toren
- Schrödinge

tautologica

Summary

Lawrence_k $\cong \bigoplus_{\text{fin}} \mathbb{Z}[\mathbb{Z}^2] \longrightarrow \text{linearity}$ B_n : $\operatorname{Map}(\Sigma_{\sigma,1})$: Moriyama, $\sim \sim \sim \ker \text{nel} = \mathfrak{J}(k)$ twisted representations $\mathcal{V}(W) \cong \bigoplus_{\text{fin}} W$ untwisting $\operatorname{Tor}(\Sigma_{\sigma,1})$ $\widetilde{\mathrm{Map}}(\Sigma_{g,1})^{\mathsf{univ}} \qquad \mathrm{Map}(\Sigma_{g,1})$ (W = Schrödinger) $(W = \mathsf{Taut}_{\mathsf{lin}})$ (any W) $kernel \subseteq \mathfrak{J}(k)$ (when $W = \mathbb{Z}[\mathcal{H}_g]$) $kernel \subseteq \mathfrak{J}(2)$ (for k=2) Q: linearity? \longrightarrow study $\mathcal{V}(W)$ for well-chosen Wextensions to TQFTs?

Thank you for your attention!