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The general setting for the Langlands program over global fields.
Let G be a reductive group over a global field F . We assume G is split to simplify.
We denote by Ĝ the Langlands dual group of G . It is the split reductive group whose
weights and roots are the coweights and coroots of G . Examples :

G Ĝ
GLn GLn
SLn PGLn

SO2n+1 Sp2n
Sp2n SO2n+1
SO2n SO2n

and if G is one of the five exceptional groups, Ĝ is of the same type.
The locally compact ring of adèles A of F contains F discretely, and the goal of the
Langlands program is to decompose L2(G(F )\G(A),C), as a representation of G(A),
in terms of global Langlands parameters, which are (if we impose some algebraicity
conditions in the case of number fields) continuous morphisms Gal(F/F )→ Ĝ(Q`), up
to conjugacy. From now on we consider only function fields.



Geometric interpretation of the adelic quotient.
Let X be a smooth projective geometrically connected curve over Fq and F its field of
rational functions.
Let A be the ring of adèles of F and O =

∏
v OFv be the ring of integral adèles.

Let G be a split reductive group over F .
We have

G(F )\G(A)/G(O) = BunG(Fq) (0.1)

where BunG(Fq) is the set of isomorphism classes of G-principal bundles over X .
We recall that a G-principal bundle over X is defined as a morphism Y → X equipped
with a simply transitive action of G on the fibers. The GLr -principal bundles can be
equivalently seen as the frame bundles of the vector bundles of rank r .
Equality (0.1) holds because any G-principal bundle over X can be trivialized over
X \ S where S is a finite set of places of X , and is then given by an element of∏

v∈S G(Fv )/G(OFv ). Moreover G(A)/G(O) is the union of all
∏

v∈S G(Fv )/G(OFv )
where S varies, and two trivializations of a G-principal bundle over X \ S for some S
are related by the action of an element of G(F ).



Definition of automorphic forms over function fields.

Let N be a level, i.e. a finite subscheme of X (which is the same as a finite subset of
places of X with multiplicities).
Let ON be the ring of functions on N. We note that G(ON) is a finite group. We
define KN = Ker(G(O)→ G(ON)). It is an open compact subgroup of G(A).
Then we have

G(F )\G(A)/KN = BunG,N(Fq)

where BunG,N(Fq) is the set of isomorphism classes of G-principal bundles over X
together with a trivialization of their restriction to N.
Definition. An automorphic form with level N is a function on BunG,N(Fq).
In particular an automorphic form with trivial level is a function on
G(F )\G(A)/G(O) = BunG(Fq).



Stacks.

In fact, as G-principal bundles over X may have automorphisms, BunG,N(Fq) is a
groupoid whose elements have finite automorphism groups.
It is the groupoid of points over Fq of a stack BunG,N over Fq. The definition of
BunG,N is that its groupoid of “points” over a scheme S over Fq (by which we mean
morphisms S → BunG,N) classify the G-principal bundles over X × S together with a
trivialization of their restriction to N × S.
The products X × S and N × S are products of schemes over Spec(Fq).

A stack is like a scheme whose points may have algebraic automorphism groups.
Examples of stacks are given by quotients of schemes by actions of affine smooth
group schemes.



Cuspidal automorphic forms over function fields.

Let ` be a prime number not dividing q.
We write

Functcusp
c (BunG,N(Fq),Q`) ⊂ Functc(BunG,N(Fq),Q`)

the Q`-vector subspace formed by “cuspidal” functions, inside the vector space of all
functions with finite support on BunG,N(Fq). The cuspidal automorphic forms are the
“elementary bricks” to build all automorphic forms.
We can define cuspidal automorphic forms with coefficients in Q. We take them with
coefficients in Q` because the `-adic cohomology we need to use and the Langlands
parameters we want to construct are both with coefficients in Q`.



Definition of the unramified Hecke operators.
We assume first that N is empty. Let v be a closed point of X .
If G and G′ are two G-principal bundles over X we say that G′ is a modification of G at
v if we are given an isomorphism between their restrictions to X \ v . Then their
relative position [G′ : G] at v is a dominant coweight λ of G (when G = GLn it is the
n-uple of the elementary divisors). We introduce the unramified Hecke operator

Tλ,v : Functc(BunG(Fq),Q`)→ Functc(BunG(Fq),Q`)
f 7→

[
G 7→

∑
G′,[G′:G]=λ

f (G′)
]

The sum, taken over the modifications G′ of G at v with relative position λ, is finite.
More generally, with a level N, for any closed point v in X \ N, and any coweight λ,
we have an operator Tλ,v acting on Functc(BunG,N(Fq),Q`).
When λ varies the operators Tλ,v span the unramified Hecke algebra Hv which is
commutative and acts on Functc(BunG,N(Fq),Q`). Its action preserves
Functcusp

c (BunG,N(Fq),Q`).



Definition of the global Langlands parameters.
Let F be an algebraic closure of the function field F .
For any open subscheme U ⊂ X (the complement of a finite number of closed points),
we denote by F U ⊂ F the subfield generated by all finite extensions of F associated to
unramified coverings of U. Then Gal(F/F ) acts on F U by a quotient denoted by
π1(U) (with base point Spec F ).
We have F ⊃ Fq (the subfield of constant functions on the curve) and F ⊃ F U ⊃ Fq.
This gives a short exact sequence

1→ πgeom
1 (U)→ π1(U)→ Gal(Fq/Fq)→ 1.

We have Gal(Fq/Fq) = Ẑ (with generator x 7→ xq) and we define Weil(U) by the short
exact sequence

1→ πgeom
1 (U)→Weil(U)→ Z→ 1.

Definition. A global Langlands parameter is a Ĝ(Q`)-conjugacy class of continuous
and semisimple morphisms σ : Weil(X \ N)→ Ĝ(Q`).



Statement of the theorem.
To simplify we assume from now on that G is semisimple, i.e. its center is finite. Then
Functcusp

c (BunG,N(Fq),Q`) is a Q`-vector space of finite dimension.
Theorem. We have a canonical decomposition Functcusp

c (BunG,N(Fq),Q`) =
⊕
σ Hσ

indexed by global Langlands parameters σ : Weil(X \ N)→ Ĝ(Q`). It is respected by
all Hecke operators. We have a compatibility with the Satake isomorphism at all closed
points of X \ N (the meaning will be explained later).
In the case where G = GLn this was already known from the works of Drinfeld for
n = 2 and of Laurent Lafforgue for arbitrary n, with different methods.

The proof of the theorem above uses
I general stacks of shtukas (introduced by Drinfeld and Varshavsky)
I the geometric Satake equivalence (due to Lusztig, Drinfeld, Ginzburg, and

Mirkovic–Vilonen).



Meaning of the compatibility with the Satake isomorphism stated in the theorem.
The Satake isomorphism is a canonical isomorphism

[V ] 7→ TV ,v

from the Q`-algebra of algebraic representations of Ĝ (where product is tensor
product) to the unramifed Hecke algebra Hv . If V is an irreducible representation of
Ĝ , TV ,v is a combination of the Tλ,v for λ a weight of V .
We have π1(v) := Gal(k(v)/k(v)) = Ẑ with generator Frobv : x 7→ xqd where d is the
degree of v (and the cardinal of k(v) is qd).
We still denote by Frobv ∈ π1(X \ N) the image of Frobv ∈ π1(v) by the morphism
π1(v)→ π1(X \ N) (indeed v ⊂ X \ N and any morphism of schemes Y → Z gives a
morphism of groups π1(Y )→ π1(Z )). We have Frobv ∈Weil(X \ N) and it is well
defined up to conjugation.
Then the compatibility of the decomposition Functcusp

c (BunG,N(Fq),Q`) =
⊕

σ Hσ
with the Satake isomorphism means that for any closed point v of X \ N and for any
representation V of Ĝ , TV ,v preserves this decomposition and acts on Hσ by
multiplication by TrV (σ(Frobv )).



In the next slides we explain the idea of the proof of the theorem.
We will construct a commutative algebra B of “excursion operators” containing all the
Hv and such that
I B acts on Functc(BunG,N(Fq),Q`) and preserves Functcusp

c (BunG,N(Fq),Q`)
I each character ν : B→ Q` corresponds in a unique way to a Langlands parameter
σ.

Since B is commutative and Functcusp
c (BunG,N(Fq),Q`) is of finite dimension we will

obtain a canonical spectral decomposition in generalized eigenspaces

Functcusp
c (BunG,N(Fq),Q`) =

⊕
ν

Hν

where the sum is taken over the characters ν : B→ Q`. By associating to every ν a
Langlands parameter σ we will deduce the decomposition of the theorem

Functcusp
c (BunG,N(Fq),Q`) =

⊕
σ

Hσ.



Definition of the stack of shtukas (for N empty, to simplify) .
For any scheme S over Fq we recall that FrobS : S → S is the morphism acting on
functions by Frob∗S(f ) = f q.
Let I be a finite set. We define ShtI as the stack over X I whose “points” over a
scheme S over Fq (by which we mean morphisms S → ShtI) classify shtukas, namely
I points (xi )i∈I : S → X I , called the legs of the shtuka,
I a G-principal bundle G over X × S,
I an isomorphism

φ : G
∣∣
(X×S)r(

⋃
i∈I Γxi )

∼→ (IdX ×FrobS)∗(G)
∣∣
(X×S)r(

⋃
i∈I Γxi )

where Γxi ⊂ X × S denotes the graph of xi .
It is a Deligne-Mumford stack (i.e. the automorphism groups of points are finite étale).
The stack of shtukas without legs Sht∅ is equal to the groupoid BunG(Fq).
Remark. Shtukas do not have analogues over number fields in general because nobody
knows what (Spec(Z))I should be for ]I > 1. The work of Fargues and Scholze uses an
analogue of local shtukas over Qp.



The geometric Satake equivalence.
We define MI as the stack over X I whose points over a scheme S over Fq classify
I points (xi )i∈I : S → X I ,
I G-principal bundles G and G′ over the formal completion X̂ × S of X × S along

the union of the Γxi ,
I an isomorphism

φ : G
∣∣
X̂×Sr(

⋃
i∈I Γxi )

∼→ G′
∣∣
X̂×Sr(

⋃
i∈I Γxi )

where Γxi denotes the graph of xi .
Thus MI(S) depends only on

⋃
i∈I Γxi .

Fusion of legs is what happens when some xi become equal.
The geometric Satake equivalence associates to any finite set I and any algebraic finite
dimensional Q`-linear representation W of Ĝ I a perverse sheaf SI,W on MI , which is
functorial in W and compatible with the fusion of legs.

The obvious forgetful morphism α : ShtI →MI is smooth.
We define a perverse sheaf FI,W on ShtI as the pull-back α∗(SI,W ).



The `-adic cohomology of the stacks of shtukas.

We denote by HI,W the Q`-vector space of `-adic cohomology with compact support of
the fiber of ShtI over a geometric generic point of X I (or, a posteriori equivalently,
over a geometric generic point of the diagonal X ⊂ X I) with coefficients in FI,W .
We no more assume N empty. We can define a stack ShtI of shtukas with level N, and
construct FI,W and HI,W in the same way.
We note that what matters is not the total space ShtI but the morphism

ShtI

��
(X \ N)I

which associates to a shtuka the I-uple of its legs.
The Q`-vector space HI,W is equipped with a continuous action of (Weil(X \ N))I

(thanks to partial Frobenius morphisms introduced by Drinfeld, my work, and the work
of Cong Xue). Here continuous means it is the union of subspaces of finite dimension
with continuous action of (πgeom

1 (X \ N))I .



The strategy to construct the algebra B of excursion operators.

When I = ∅ and W = 1 (the trivial one dimensional representation), we have
isomorphisms

H∅,1 ' Functc(BunG,N(Fq),Q`)

because Sht∅ = BunG,N(Fq), and F∅,1 is the constant sheaf Q`.
We will use the HI,W to construct an algebra B of excursion operators acting on
H∅,1 ' Functc(BunG,N(Fq),Q`). This action will preserve Functcusp

c (BunG,N(Fq),Q`).



Properties of the HI,W
a) Functoriality of HI,W in W
For any finite set I,

W 7→ HI,W

is a Q`-linear functor from the category of representations of Ĝ I to the category of
continuous representations of (Weil(X \ N))I .
This means that for any morphism

u : W →W ′

of representations of Ĝ I , we have a morphism

H(u) : HI,W → HI,W ′

of continuous representations of (Weil(X \ N))I .



b) Fusion for the HI,W

Fusion can be associated to any map ζ : I → J but we consider here only the case
where J is a singleton, which we denote by {0}.
For any representation W of Ĝ I , we have a fusion isomorphism, functorial in W ,

HI,W
∼→ H{0},Wdiag

where Wdiag denotes the representation of Ĝ on W obtained by composition with the
diagonal morphism Ĝ → Ĝ I .



Two examples of the fusion isomorphism of the previous slide.

I If W1 and W2 are two representations of Ĝ , we have the fusion isomorphism

H{1,2},W1�W2
∼→ H{0},W1⊗W2

associated to the obvious map {1, 2} → {0}. We note the difference between
W1 �W2 which is a representation of (Ĝ)2 and W1 ⊗W2 which is a
representation of Ĝ .

I We have the fusion isomorphism

H∅,1
∼→ H{0},1

associated to the obvious map ∅ → {0} (the idea is that H∅,1, resp. H{0},1 is the
cohomology of the stack of shtukas without legs, resp. with an inactive leg and
that they are identical).



Construction of the algebra B of excursion operators.

For any algebraic function f on Ĝ\Ĝ I/Ĝ we can find a representation W of Ĝ I and
x ∈W and ξ ∈W ∗ invariant by the diagonal action of Ĝ such that

f ((gi )i∈I) = 〈ξ, (gi )i∈I · x〉. (0.2)

Let (γi )i∈I ∈ (Weil(X \ N))I . The excursion operator SI,f ,(γi )i∈I of H{0},1 is defined as
the composition

H{0},1
H(x)−−−→ H{0},Wdiag

fusion
∼→ HI,W

(γi )i∈I−−−−→ HI,W
fusion
∼→ H{0},Wdiag

H(ξ)−−−→ H{0},1

where Wdiag is the diagonal representation of Ĝ on W , and x : 1→Wdiag and
ξ : Wdiag → 1 are considered here as morphisms of representations of Ĝ .
The construction above does not depend on the choice of W , x , ξ satisfying (0.2).



Construction of the decomposition of the theorem.

Thanks to the properties of the HI,W explained in the previous slides we show that
1) the algebra B of endomorphisms of H{0},1 generated by the SI,f ,(γi )i∈I when I, f
and (γi )i∈I vary is commutative,
2) for any character ν : B→ Q` there is a unique Langlands parameter σ such
that for any I, f and (γi )i∈I ,

ν(SI,f ,(γi )i∈I ) = f ((σ(γi ))i∈I).

Since B is commutative and its action preserves the finite dimensional subspace
Functcusp

c (BunG(Fq),Q`) ⊂ Functc(BunG(Fq),Q`) = H∅,1 = H{0},1 we have a
canonical spectral decomposition Functcusp

c (BunG(Fq),Q`) =
⊕
ν Hν where the sum is

taken over characters ν of B (in other words Hν is a generalized eigenspace for the
elements of B). Associating to ν a unique Langlands parameter σ as in 2) we deduce
the decomposition Functcusp

c (BunG(Fq),Q`) =
⊕
σ Hσ of the theorem.



Compatibility with the Satake isomorphism and end of the proof of the theorem.
The unramified Hecke operators are particular cases of excursion operators.
Indeed let V be an irreducible representation of Ĝ . We take

I = {1, 2} and f : (g1, g2) 7→ TrV (g1g−1
2 ) as a function on Ĝ\Ĝ I/Ĝ .

By a geometric argument (computing the intersection of algebraic cycles in the stack
of shtukas) we show that for any closed point v ,

TV ,v = S{1,2},f ,(Frobv ,1).

This equality plays an important role in technical arguments (the Eichler-Shimura
relations), and it justifies the compatibility of the decomposition with Satake
isomorphism at closed points v of X .



Some open questions.

1) We hope that all Langlands parameters σ which appear in this decomposition come
from elliptic Arthur parameters. This would imply the Ramanujan-Petersson conjecture
for all reductive groups over function fields.
2) We hope that the decomposition

Functcusp
c (BunG,N(Fq),Q`) =

⊕
σ

Hσ

is defined over Q (instead of Q`) and is independent on ` and on the embedding
ι : Q ⊂ Q`. The question makes sense because in a recent article Drinfeld defined the
set of Langlands parameters σ independently on ` and ι.
We could prove this is true if we knew how to construct the excursion operators in a
motivic way (then the σ would be motivic Langlands parameters). In other words, we
hope that the motive of ShtI with coefficients in FI,W , equipped with the partial
Frobenius morphisms, is equivalent to a sum of external products of motives over
X \ N, but this seems completely out of reach.



A joint work with Alain Genestier.

In the theorem the canonical decomposition

Functcusp
c (BunG,N(Fq),Q`) =

⊕
σ

Hσ, (0.3)

is preserved by all Hecke operators, including ramified Hecke operators (not defined in
this talk) at closed points v in N.
The theorem gives the compatibility with the Satake isomorphism at closed points in
X \ N but does not say how the action on Hσ of ramified Hecke operators at closed
points v in N is related to σ.
In a joint work with Alain Genestier, we construct a local parameterization up to
semisimplification and show a local-global compatibility at all closed points.
It implies that in the decomposition above, for any closed point v ∈ N, the
semisimplification of σ

∣∣
Weil(Fv/Fv ) depends only on the character by which the center of

the algebra of ramified Hecke operators at v acts on Hσ.



The Arthur-Kottwitz heuristics says that for every σ there exists a Q`-linear
representation Aσ of its centralizer Sσ ⊂ Ĝ , so that for all I,W ,

HI,W
?=
⊕
σ

(
Aσ ⊗WσI

)Sσ
where Sσ acts diagonally and WσI is the representation of (Weil(X \ N))I obtained by
composition of the representation W of Ĝ I with the morphism
σI : (Weil(X \ N))I → Ĝ I .
Thanks to an idea of Drinfeld we can obtain something close to this heuristics.



A construction proposed by Drinfeld.

First we define a scheme S (locally of finite type over Q`) of morphisms
σ : Weil(X \ N)→ Ĝ , such that for any Q`-algebra R, the R-points of S are the
morphisms σ : Weil(X \ N)→ Ĝ(R), such that for any morphism α : Ĝ → GLN ,
α ◦ σ : Weil(X \ N)→ GLN(R) gives an action of Weil(X \ N) on RN such that RN

(seen as a Q`-vector space) is an inductive limit of continuous representations of
πgeom

1 (X \ N) on finite dimensional Q`-vector spaces.
Let Reg be the left regular representation of Ĝ (i.e. the action by left translation of Ĝ
on the vector space of all algebraic functions on Ĝ). We can endow H{0},Reg with

a) a structure of O-module on S,
b) an action of Ĝ compatible with conjugation by Ĝ on S.

This gives rise to an O-module on the algebraic stack S/Ĝ of Langlands parameters
and Aσ should be the fiber of this O-module at σ. It would be equipped with an action
of the centralizer Sσ, which is the automorphism group of σ in S/Ĝ .
Xinwen Zhu and I prove this works over elliptic σ (which means that Sσ is finite).



A reformulation of a) is the following structure. For any finite dimensional Q`-linear
representation V of Ĝ , with underlying vector space V , H{0},Reg ⊗ V is equipped with
an action of Weil(X \ N), such that it is an inductive limit of finite dimensional
continuous representations of πgeom

1 (X \ N). Moreover this structure is functorial in V
and compatible with tensor products.
This structure is obtained in the following way. We have a Ĝ-equivariant isomorphism

θ : Reg⊗V ' Reg⊗V
f ⊗ x 7→ [g 7→ f (g)g .x ]

where Ĝ acts diagonally on the RHS. This formula for θ makes sense when we consider
the RHS as the vector space of algebraic functions Ĝ → V . We deduce an isomorphism

H{0},Reg ⊗ V = H{0},Reg⊗V
θ−→∼ H{0},Reg⊗V ' H{0}∪{1},Reg�V

where the first equality is tautological and the last isomorphism is fusion. Then the
action of Weil(X \ N) on the LHS is defined as the action of Weil(X \ N) on the RHS
corresponding to the leg 1.



If V1 and V2 are two representations of Ĝ , the two actions of Weil(X \ N) on
H{0},Reg ⊗ V1 ⊗ V2 associated to actions of Ĝ on V1 and V2 commute with each other
and the diagonal action of Weil(X \ N) is equal to the action associated to the
diagonal action of Ĝ on V1 ⊗ V2.
If V is as above, x ∈ V , ξ ∈ V ∗, and f is the function on Ĝ defined as the matrix
coefficient f (g) = 〈ξ, g .x〉, and γ ∈Weil(X \ N) we see that Ff ,γ : σ 7→ f (σ(γ)) is a
function on S. Its action on H{0},Reg by the structure a) of H{0},Reg as an O-module on
S (which we want to construct) is defined as the composition

H{0},Reg
Id⊗x−−−→ H{0},Reg ⊗ V γ−→ H{0},Reg ⊗ V Id⊗ξ−−−→ H{0},Reg (0.4)

where the arrow in the middle is the action of γ ∈Weil(X \ N) on H{0},Reg ⊗ V
defined in the previous slide.



Any function f on Ĝ can be written as a matrix coefficient. There is a continuity
property : for any f, any γ0 ∈ π1(X \ N) and any c ∈ H{0},Reg, the space generated by
the {Ff ,γc | γ ∈ πgeom

1 (X \ N)γ0} is of finite dimension and γ 7→ Ff ,γc is continuous.
The property of the previous slide with V1 and V2 implies the relations between the
Ff ,γ , namely that

Ff ,γ1γ2 =
∑
α

Ff α1 ,γ1Ff α2 ,γ2 (0.5)

if the image of f by the coproduct is
∑
α f α1 ⊗ f α2 .



In fact S is essentially defined as the Spec of the algebra generated by the Ff ,γ , with
these relations, and taking into account this continuity property (it can also be derived,
as in articles by Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum, Varshavsky and by
Xinwen Zhu). Thus we have established structure a) above.
The structure b) is the action of Ĝ on H{0},Reg associated to the right action of Ĝ on
Reg. The conjugation gFf ,γg−1 for g ∈ Ĝ is then equal to the action of Ff g ,γ where
f g (h) = f (g−1hg). This proves that structure b) is compatible with conjugation by Ĝ
on S.
Remark : The Ff ,γ are functions on S, and the excursion operators correspond to
functions on S/Ĝ . The excursion operators are exactly the combinations of products of
Ff ,γ which are invariant under Ĝ . More precisely, for any finite set I, any function f on
Ĝ I , and (γi )i∈I , we can define Ff ,(γi )i∈I , which is equal to

∏
i Ffi ,γi when f = �i fi (and

any f is a sum of �i fi). Then the excursion operators are exactly the Ff ,(γi )i∈I when f
is a function on Ĝ\Ĝ I/Ĝ .



For any morphism σ : Weil(X \ N)→ Ĝ(Q`), we define Aσ as the biggest quotient of
H{0},Reg ⊗Q` Q` such that, for any f and γ, Ff ,γ acts on it by the multiplication by the
scalar f (σ(γ)). We see that Sσ acts on Aσ.
We say that σ is elliptic if Sσ is finite (to simplify we assumed G semisimple). For
example when Ĝ = SLn this is equivalent to say that σ is irreducible.
Then, in a joint work with Xinwen Zhu, we prove that, denoting by (HI,W )σ the
generalized eigenspace for the excursion operators with the eigenvalues associated to
σ, it is also the true eigenspace, and we have

(HI,W )σ =
(
Aσ ⊗WσI

)Sσ
All terms in the above formula are of finite dimension (thanks to the work of Cong Xue
establishing that HI,W is of finite type over a Hecke algebra, which is written only in
the split case).



Link with the geometric Langlands program (1)
For the moment, this relation is limited to the unramified case (when N is empty).
In an astonishing recent series of works, Arinkin, Gaitsgory, Kazhdan, Raskin,
Rozenblyum and Varshavsky introduce a new geometric object, the "stack" Locsysrestr

Ĝ
of local systems on a curve X with restricted variation ; this stack makes sense in any
sheaf-theoretic context (`-adic, de Rham, etc.), and is the only one which exists in the
`-adic setting, where X is a smooth projective curve over Fq as in this lecture. This
"stack" is derived and is formal in some directions. The authors formulate the
categorical geometric Langlands conjecture for the DG-category ShvNilp(BunG) of
`-adic sheaves on BunG with singular support in some nilpotent cone, and they prove :
(a) ShvNilp(BunG) admits a spectral decomposition over Locsysrestr

Ĝ ,
(b) the categorical trace of Frobenius on ShvNilp(BunG) is canonically isomorphic to

Functc(BunG(Fq),Q`) ; the categorical trace of Frobenius composed with Hecke
functors is canonically isomorphic to HI,W .



Link with the geometric Langlands program (2)
They define the stack of arithmetic local systems on X as the Frobenius invariants (in
a derived sense) :

Locsysarithm
Ĝ :=

(
Locsysrestr

Ĝ
)Frob

.

They show that Locsysarithm
Ĝ is a quasi-compact, algebraic derived stack, locally

almost of finite type. The classical stack associated to it by forgetting the derived
structure is S/Ĝ . They construct an object Drinf in a DG-category of quasi-coherent
sheaves on Locsysarithm

Ĝ which allows to recover all the HI,W , not only as cohomology
groups with action of Weil(X )I , but as objects in a DG-category of lisse sheaves on X I

(equipped with partial Frobenius morphisms).
For each elliptic σ as above there is an embedding of a connected component
pt/Sσ → Locsysarithm

Ĝ and the restriction of Drinf to pt/Sσ is exactly Aσ.


