On the ration Departme

TCMP: Topological complexity and motion pla

Objectives

Let X be a simply-connected space and let X_0 be its rationalization We consider the rational topological comlexity and LS-category

 $TC_0(X) := TC(X_0), \ cat_0(X) := cat(X_0).$

The general goal is to study TC_0 for elliptic spaces. We say that nally) elliptic if

dim $\pi_*(X) \otimes \mathbb{Q} < \infty$ and dim $H^*(X; \mathbb{Q}) < \infty$.

Many elliptic spaces (for instance homogenuous spaces G/H) minimal Sullivan model $(\Lambda V, d)$ where **pure** means

 $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

We will say that such a space is a pure elliptic space.

Sullivan models and TC_0

• The minimal Sullivan model $(\Lambda V, d)$ of X is a cochain alg is free as a commutative graded algebra and satisfies

 $d(V)\subset \Lambda^{\geq 2}V, \quad V\cong \pi_*(X)\otimes \mathbb{Q}, \quad H^*(\Lambda V,d)=H^*$

• X is formal if there is a quasi-isomorphism

$$(\Lambda V, d) \xrightarrow{\simeq} (H^*(X; \mathbb{Q}), 0)$$

• $TC_0(X) \le n$ if and only if the projection

$$(\Lambda V \otimes \Lambda V, d) \rightarrow (\frac{\Lambda V \otimes \Lambda V}{(\ker \mu_{\Lambda V})^{n+1}}, \bar{d}),$$

where $\mu_{\Lambda V}$ is the multiplication of ΛV , admits a homotopy

al top	ological complex
aid Hamoun *, Youssef Rami au ent of Mathematics, Faculty of Sciences Centro de Matemática, Universi	
	*Email: s.hamoun@edu
	Theorem
	If X is a pure elliptic space which is formal the
	$TC_0(X) = 2cat_0(X) + 2$
	where $\chi_{\pi}(X) = \dim \pi_{even}(X) \otimes \mathbb{Q} - \dim \pi_{odd}(X)$
	 Note that, for elliptic spaces, the homotop
	$\chi_{\pi}(X) \leq 0.$
	 In the theorem above, if X is both formal then
nning	$TC_0(X) = \dim \pi_*(X)$ because in this case $cat_0(X) = \dim \pi_{odd}(X)$
ation.	Theorem
y of X:	If X is a pure elliptic coformal space, then we does $dim \pi_{odd}(X) \otimes \mathbb{Q} + L_0(X) \leq TC_0(X)$
at X is (ratio-	or, equivalently,
	$cat_0(X)+L_0(X)\leq TC_0(X)\leq 2c_0(X)$
	where $L_0(X)$ is a certain cuplength (see below)
admit a pure	Example
	For the pure elliptic coformal space $X = \frac{SO}{SU(3) \times SO}$
	$\dim \pi_{odd}(X) \otimes \mathbb{Q} = cat_0(X) = 3$
	and $TC_0(X) = 5 = \dim \pi_*(X)$
gebra which	About $L_0(X)$
$X^*(X;\mathbb{Q}).$	For a pure coformal space the differential <i>d</i> is of
	of $d_{p,q}: \Lambda^p V^{even} \otimes \Lambda^q V^{odd} \to \Lambda^{p+2} V$
	This induces a bigraduation $H^*(\Lambda V) = \bigoplus H^*_{p,q}$
	Roughly speaking $L_0(X)$ is given by
	$\max\{r:\exists \alpha_1\cdots\alpha_r\neq 0,\ \alpha_i\in F$
retraction [1].	where $(\Lambda W, d)$ is a certain extension of $(\Lambda V, d)$

xity of elliptic coformal spaces nd Lucile Vandembroucq University of Moulay Ismail, Morocco

ity of Minho, Portugal

I.umi.ac.ma

Additional results

 $\chi_{\pi}(X)$ $() \otimes \mathbb{Q}_{\cdot}$

y characteristic satisfies

and **coformal** $(dV \subset \Lambda^2 V)$,

 $X)\otimes \mathbb{Q}$ $(2)\otimes\mathbb{Q}$ ([2]).

have $) \leq \dim \pi_*(X) \otimes \mathbb{Q}$

 $cat_0(X) + \chi_{\pi}(X),$

 $\frac{V(6)}{\langle SU(3) \rangle}$ we have $L_0(X)=2,$

 $)\otimes \mathbb{Q}.$

quadratic and splits in a some

 $V^{even} \otimes \Lambda^{q-1} V^{odd}.$ $(\Lambda V).$

 $\mathcal{H}^*_{odd,*}(\Lambda W)\}$

pure elliptic spaces e.g.

where $deg(x_i)$ is even and $\alpha_{ij} \in \mathbb{Q}$. This includes spaces for which $cat_0(X) + L_0(X) < TC_0(X)$.

Work in progress/ Future work

- Study the non-pure case.

Note that for, any elliptic space X where $\pi_*(X) \otimes \mathbb{Q}$ is concentrated in odd degrees, we have [3]

- [2] tions. Trans. Amer. Math. Soc. 273 (1982).
- [3]

S.H would like to acknowledge the CNRST-Morocco, the laboratory of Pure Mathematics, Faculty of Sciences, University of Moulay Ismail for support and CMO-Oaxaca México for hospitality.

We establish $TC_0(X) = \dim \pi_*(X) \otimes \mathbb{Q}$ for some special families of coformal

$\Lambda(x_1,\cdots,x_n,y_1,\cdots,y_n,u) \quad dx_i=0, \, dy_i=x_i^2, \, du=\sum \alpha_{ij}x_ix_j$

• Investigate on the equality $TC_0(X) = \dim \pi_*(X) \otimes \mathbb{Q}$ for elliptic coformal spaces and, more generally, on the equality $TC_0(X) = 2cat_0(X) + \chi_{\pi}(X)$

 $TC_0(X) = cat_0(X) = \dim \pi_{odd}(X) \otimes \mathbb{Q} = 2cat_0(X) + \chi_{\pi}(X).$

References

Carrasquel-Vera, José Gabriel The rational sectional category of certain *maps.* Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017).

Félix, Yves; Halperin, Stephen Rational LS category and its applica-

Jessup, Barry; Murillo, Aniceto; Parent, Paul-Eugène Rational topological complexity. Algebr. Geom. Topol. 12 (2012).

Acknowledgment

