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Motivational example :

Theorem (“Manin-Mumford conjecture”)
Let A = Λ\Cg be an abelian variety of dimension g. Let Z ⊂ A be a
subvariety containing a Zariski dense set Σ of torsion points. Then Z is a
translate of an abelian subvariety by a torsion point.

Torsion points are also called special and translates of abelian
subvarieties by torsion points special subvarieties.
Equivalently a subvariety of A contains a finite number of maximal
special subvarieties.
The weakly special subvarieties - translates of abelian subvarieties by
arbitrary points - also play an important role.
The statement is motivated by the Mordell-Lang conjecture (which
contains the Mordell’s conjecture).

This theorem has a large number of very different proofs since 1983 (the
first proof was given by Michel Raynaud).
The one that is most relevant to us is the one by Pila-Zannier (2006)
that uses o-minimality and functional transcendence.



Conjecture (André-Oort, theorem ( ?) 2021)
Let S be a Shimura variety and Σ ⊂ S a set of special points. Irreducible
components of the Zariski closure of Σ are special subvarieties.

Latest result : the conjecture holds in full generality (via o-minimal
approach).

The first nontrivial case : the case of a product two modular curves.
The statement is that if a curve C in C× C contains an infinite set of
special points (pairs of CM elliptic curves) and both projections are
dominant, then C = Y0(n) for some n (equivalently, defined by a
modular polynomial Φn).

Bas Edixhoven proved this under GRH in 1996, his method generalised to
the general case (under GRH). J. Pila proved it in 2006 unconditionally
using the o-minimal theory and functional transcendence that was a
starting point.



The Pila-Zannier approach can be summarised thus.
Let

π : H×H −→ C× C

and F × F ⊂ H×H the usual fundamental domain.
Let C be a curve in C× C containing an infinite set of special points.
One shows that
I π is definable in an o-minimal structure (Ran,exp in this case) when

restricted to F × F .
I The height of ‘pre-special points’ is bounded in terms of the

‘discriminant of the special points’.
I The Galois orbits grow as a power of the discriminant (easy in this

case).
I Pila-Wilkie counting theorem implies the existence of a positive

dimensional semi-algebraic in the preimage of C
I One concludes using a functional transcendence result.



o-minimality

A structure S over R is a collections of subsets Sn of Rn for each n ≥ 1
such that
1. Sn contains all semialgebraic sets, in particular ∅ and Rn are in Rn

for each n.
2. If A,B are in Sn, then A ∪ B and A ∩ B are in Sn and Rn\A.
3. If A ∈ Sn and B ∈ Sm, then A× B is in Sn+m.
4. Let A ∈ Sn+m and p : Rn+m −→ Rn be the projection. Then

p(A) ∈ Sn.
A subset A of Rn is definable in S is A ∈ Sn.
A structure is called o-minimal if the only definable sets in R1 are finite
unions of points and open intervals i.e. exactly the semialgebraic sets.
Let A ∈ Sn and B ∈ Sm. A function A −→ B is definable in S if its graph
in A× B is definable (i.e. element of Sn+m).
We already know that all semialgebraic sets form an o-minimal structure.



The most important property is the following :

Theorem
A definable set in an o-minimal structure has finitely many connected
components and each component is definable.
One can use this to prove for example that the graph of sin(x) is not
definable (intersect with the line y = 0 for example). On the other hand,
the restrcition to any bounded interval will be definable in an o-minimal
structure.



Some important o-minimal structures.

I All semialgebraic sets. Sometimes this structure is denoted by R.
I Rexp. This structure includes all sets defined using the real

exponential function : in this structure, the graph of the real
exponential is definable.
For example the subset of R2 : {(x , y) : y = x2ex3 + x5} is definable
in Rexp.
That Rexp is o-minimal is a theorem of Wilkie.

I Ran. This structure contains all sets defined by ‘restricted analytic
functions’. A function f : [−1, 1]n −→ R is a restrcited analytic
function if it is a restriction of a real analytic function defined in a
neighbourhood of [−1, 1]n.
This structure is o-minimal by a theorem of Van den Dries and
(independently) Gabrielov.

I Ran,exp. This structure includes both the real exponential functions
and restricted analytic functions.



Pila-Wilkie theorem

Let H be the usual height of a rational number is defined as follows
(H( a

b ) = max(|a|, |b|) where a and b are coprime.)

For (x1, . . . , xn) ∈ Qn, we define H(x1, . . . , xn) = max(H(x1), . . . ,H(xn)).

For X ⊂ Rn and T ∈ R+, define X (Q,T ) = {x ∈ X ∩Qn : H(x) ≤ T}.
This is a finite set, let N(X ,T ) = |X (Q,T )|.

PIla-Wilkie theorem concerns itself with estimating N(X ,T ) for sets X
definable in an o-minimal structure.
Firstly, in general N(X ,T ) can be large : if X = Rn, then N(X ,T ) grows
like a polynomial of degree n in T .
However, Rn is of course semialgebraic. Pila-Wilkie theorem says that if
one removes from X all positive dimensional semi-algebraic subsets, there
are very few rational points up to height T on what remains of X .



Definition
Let X ⊂ Rn, the algebraic part X alg of X is defined as the union of all
infinite, connected semialgebraic subsets Y ⊂ X. The transcendental part
X tr is X\X alg .
We can now state Pila-Wilkie point counting theorem.

Theorem (Pila-Wilkie)
Let X ⊂ Rn be a set definable in some o-minimal structure. Let ε > 0.
There exists C = C(X , ε) > 0 so that for T ≥ 1, we have

N(X tr ,T ) ≤ CT ε

Pila-Wilkie theorem extends to countng points defined over more general
number fields.



For a subset X ⊂ Rn and k ≥ 1, we define

Nk(X ,T ) = |{x = (x1, . . . , xn) ∈ X ∩Qn : deg(xi ) ≤ k,H(x) ≤ T}|

We can now state the version of Pila-Wilkie theorem for number fields :

Theorem (Pila-Wilkie, v2)
Let X ⊂ Rn be a set definable in some o-minimal structure. Let k ≥ 1.
Let ε > 0. There exists C = C(X , k, ε) > 0 so that for T ≥ 1, we have

Nk(X tr ,T ) ≤ CT ε

Further questions : Can one replace T ε by a polynomial in log(T ) ? Can
we say something about the constant C ? Is, for example. it is polynomial
in k ? These questions will be discussed in the lectures by Binyamini and
Schmidt.



Shimura varieties.

A Shimura datum is a pair (G ,X ) where G is a reductive group over Q
and X is a G(R) orbit in Hom(S,GR) of an element x0 satisfying certain
conditions sufficient to ensure that X is a finite union of Hermitian
symmetric domains (it is usually not connected).
An example is (GL2,H±).

Let (G ,X ) be a Shimura datum, G is a reductive group over Q, K a
compact open subgroup of G(Af ).
The Shimura variety associated to this data is :

ShK (G ,X ) = G(Q)\X × G(Af )/K

It admits a canonical model over an explicitly described number field
E (G ,X ).



Let X+ be a connected component of X and Γ = G(Q)+ ∩ K .
Let S = Γ\X+. It is quasi-projective (Baily-Borel).
By the usual abuse of language we will still be calling S a Shimura
variety, and it admits a canonical model over a (well defined) abelian
finite extension of E (G ,X ).
Special subvarieties correspond to inclusions of Shimura subdata :
(G ′,X ′) ⊂ (G ,X ) and special points to (T , x) ⊂ (G ,X ) where T is a
torus. The smallest such torus T is called the Mumford-Tate group of
T . Special points are defined over explicitly described number fields.

Weakly special subvarieties : those of the form
S1 × {x} ⊂ S1 × S2 ⊂ S. They can be characterised as ‘bi-algebraic’
subvarieties.



Ag , the moduli space of principally polarised abelian
varieties.

Let

π : Hg = {τ ∈ Mg (C), τ = τ t , Im(τ) > 0} −→ Ag = Sp(2g ,Z)\Hg ,

be the uniformising map.
Then Ag is a moduli space for principally polarised Abelian varieties of
dimension g ,

π(τ) = Aτ = Cg/(Zg ⊕ τZg ).

and Ag is a quasi-projective algebraic variety defined over Q.
Special points correspond to CM abelian varieties.
An abelian variety of dimension g has CM if and only if End(A)⊗Q
contains a commutative Q-algebra of dimension 2g.
A Shimura variety S is of abelian type if it admits a finite Shimura
morphism S ′ −→ S where S ′ is a special subvariety of Ag .



Ingredients of the proof of AO

I Definability : π : X −→ S is definable in Ran,exp when restricted to a
suitable fundamental domain F . (Klingler-Ullmo-Y)

I Functional transcendence (hyperbolic Ax-Lindemann theorem) : if
W is an algebraic subset of X , then π(W )Zar is weakly special.
(Klingler-Ullmo-Y)

I Bounds on height of ‘prespecial points’ (Daw-Orr)
I Lower bounds for Galois orbits of special points (many authors).
I “geometric André-Oort” : assume Z ⊂ S contains a Zariski dense set

of > 0 dimensional weakly special subvarieties, then Z = S1 × Z ′
where S1 × S2 ⊂ S is a special subvariety and Z ′ ⊂ S2. (Ullmo,
Richard-Ullmo)



Lower bounds for Galois orbits

Let s ∈ S be a special point corresponding to the inclusion of Shimura
data (T , x) ⊂ (G ,X ) where T is the Mumford-Tate group of x .
Assume G adjoint, let L be the splitting field of T . It is a CM field.
Let Km

T be the maximal compact subgroup of T (Af ) and
KT = K ∩ T (Af ).
Define the discriminant of s as

ds = |Km
T /KT ||discr(L)|

Lower bounds conjecture

[Q(s) : Q]� dδs
where δ depends on S only.
Ex. E an elliptic curve with CM by OL (L imaginary quadratic) then
[Q(E ) : Q]� d1/4

L .
For Ag it was conjectured by Bas Edixhoven in 1999.



Algebraic structure on X .
X can be embedded as an open semialgebraic bounded subset in Cn

where n = dim(X ) (Harish-Chandra).
(Think of the open unit disc inside C - this is the Harish-Chandra
realisation of the upper-half plane).
We then call a subset W of X algebraic if W is the intersection of an
algebraic subset of Cn and irreducible if it is an irreducible analytic
component of such an intersection.
We have a transcendental map π : X −→ S between two algebraic
objects.
Functional transcendence (Ax-Lindemann) : if W is an algebraic
subset of X , then π(W )Zar is weakly special.
Equivalently : for Z ⊂ S algebraic, maximal algebraic subsets of π−1(Z )
are precisely components of preimages of weakly special subvarieties
contained in Z .

This in particular implies a bi-algebraic characterisation of weakly
special subvarieties : Z ⊂ S (algebraic) is weakly special if and only if an
analytic component of π−1(Z ) is algebraic. In other words weakly
specials are characterised as being bi-agebraic.



Sketch of the proof of André-Oort.

Let S be a Shimura variety, Z ⊂ S a subvariety containing a Zariski
dense set Σ of special points. Consider π : X −→ S and F a suitable
fundamental domain.
Let Z̃ := F ∩ π−1Z . This is a definable set by definability of the
restriction of π to F .
For s ∈ Σ, let x ∈ F be such that π(x) = s and let ds be the
discriminant of s. Note : ds is unbounded as s ranges through Σ.
By lower bounds for the Galois orbits : [Q(s) : Q)]� dδs . Furthermore for
any x ∈ F with s = π(x) ∈ Gal(Q/Q) · s, by Daw-Orr, H(x)� dαs .
Thus Z contains � dδs points of uniformly bounded degree and height
� dαs . By Pila-Wilkie and Ax-Lindemann, through any s with ds large
enough, there passes a weakly special subvariety.
One concludes using ‘geometric André-Oort’.



Lower bounds for Galois orbits in the case of Ag .

Let A be an abelian variety of dimension g with everywhere semistable
reduction over a number field L. Let hF (A) be its Faltings height.
Suppose that A is simple and has CM by OE where E is a CM field of
degree 2 dim(A).
Andreatta, Goren, Howard, Madapusi-Pera and independently by Yuan
and Zhang have proved an ‘average Colmez formula’ which implies that

∀ε > 0, hF (A)�ε dεE
J. Tsimerman combined this with the following :
Masser-Wustholz isogeny estimates :
Let A and B be two abelian varieties of dimension g over a number field
L, isogeneous over C. Let N be the minimal degree of an isogeny
between A and B over C. Then

N �g max(hF (A), [L : Q])cg

where cg depends only on g .



... to deduce the “Edixhoven’s conjecture” :

[Q(A) : Q]� dδg
E

This implies A-O for all Shimura varieties of abelian type.



The problem with generalising this is that there is no evident (even
conjectural analogue) of the Masser-Wustholz theorem for general
Shimura varieties.
Harry Schmidt had an idea of using point counting to approach this kind
of problem.
This requires a significantly stronger version of Pila-Wilkie theorem,
obtained by G. Biniyamini.



Biniyamini’s point counting

Let π : X −→ S be the uniformisation of a Shimura variety. Let E be its
number field of definition. Consider X × S ⊂ Cn × S and let h be some
(logarithmic !) Weil height function on Cn × X .
Let ZS = {(x , s) : x ∈ F , s = π(x)} ⊂ X × S.

ZS(f , h) = {(x , s) ∈ ZS : [E (x , s) : E ] ≤ f , h(x , s) ≤ h}

Biniyamini’s theorem

|ZS(f , h)| � f AhB

where A and B depend on S only.



Lower bounds for Galois orbits.

Let x be a special point of F and s = π(x).
Consider S(s), the smallest zero dimensional Shimura variety containing
s.
Its size is the class group of T which is bounded below by dαs . All
elements of S(s) are defined over a field of degree bounded by f .
Conjecture - Biniyamini, Schmidt, Y With respect to some Weil
height h on S,

h(s)�ε dεx
Theorem of Daw-Orr

H(x)� log(dx )

where C is some constant.
It follows that h(x , s)� dεx for all (x , s) in F × S with s = π(x) ∈ S(s).



Theorem (Ullmo-Y, Tsimerman)

|S(s)| � dδg
x

The point x is algebraic and its degree is uniformly bounded. We
therefore have :

dδg
x � f Adεx

This implies a lower bound for f of required type.
Theorem (Pila-Shankar- Tsimerman, Esnault, Groechenig)
The height conjecture is true.


