The André-Oort conjecture - an overview.

Andrei Yafaev, UCL
Talk at BIRS, CMO, Oaxaca, September 2022

Motivational example :

> Theorem ("Manin-Mumford conjecture")
> Let $A=\Lambda \backslash \mathbb{C}^{g}$ be an abelian variety of dimension g. Let $Z \subset A$ be a subvariety containing a Zariski dense set Σ of torsion points. Then Z is a translate of an abelian subvariety by a torsion point.

Torsion points are also called special and translates of abelian subvarieties by torsion points special subvarieties.
Equivalently a subvariety of A contains a finite number of maximal special subvarieties.
The weakly special subvarieties - translates of abelian subvarieties by arbitrary points - also play an important role.
The statement is motivated by the Mordell-Lang conjecture (which contains the Mordell's conjecture).

This theorem has a large number of very different proofs since 1983 (the first proof was given by Michel Raynaud).
The one that is most relevant to us is the one by Pila-Zannier (2006) that uses o-minimality and functional transcendence.

Conjecture (André-Oort, theorem (?) 2021)

Let S be a Shimura variety and $\Sigma \subset S$ a set of special points. Irreducible components of the Zariski closure of Σ are special subvarieties.

Latest result : the conjecture holds in full generality (via o-minimal approach).

The first nontrivial case : the case of a product two modular curves. The statement is that if a curve C in $\mathbb{C} \times \mathbb{C}$ contains an infinite set of special points (pairs of CM elliptic curves) and both projections are dominant, then $C=Y_{0}(n)$ for some n (equivalently, defined by a modular polynomial Φ_{n}).

Bas Edixhoven proved this under GRH in 1996, his method generalised to the general case (under GRH). J. Pila proved it in 2006 unconditionally using the o-minimal theory and functional transcendence that was a starting point.

The Pila-Zannier approach can be summarised thus.
Let

$$
\pi: \mathbb{H} \times \mathbb{H} \longrightarrow \mathbb{C} \times \mathbb{C}
$$

and $\mathcal{F} \times \mathcal{F} \subset \mathbb{H} \times \mathbb{H}$ the usual fundamental domain.
Let C be a curve in $\mathbb{C} \times \mathbb{C}$ containing an infinite set of special points.
One shows that

- π is definable in an o-minimal structure $\left(\mathbb{R}_{\text {an, exp }}\right.$ in this case) when restricted to $\mathcal{F} \times \mathcal{F}$.
- The height of 'pre-special points' is bounded in terms of the 'discriminant of the special points'.
- The Galois orbits grow as a power of the discriminant (easy in this case).
- Pila-Wilkie counting theorem implies the existence of a positive dimensional semi-algebraic in the preimage of C
- One concludes using a functional transcendence result.

o-minimality

A structure S over \mathbb{R} is a collections of subsets S_{n} of \mathbb{R}^{n} for each $n \geq 1$ such that

1. S_{n} contains all semialgebraic sets, in particular \emptyset and \mathbb{R}^{n} are in \mathbb{R}^{n} for each n.
2. If A, B are in S_{n}, then $A \cup B$ and $A \cap B$ are in S_{n} and $\mathbb{R}^{n} \backslash A$.
3. If $A \in S_{n}$ and $B \in S_{m}$, then $A \times B$ is in S_{n+m}.
4. Let $A \in S_{n+m}$ and $p: \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^{n}$ be the projection. Then $p(A) \in S_{n}$.
A subset A of \mathbb{R}^{n} is definable in S is $A \in S_{n}$.
A structure is called o-minimal if the only definable sets in \mathbb{R}^{1} are finite unions of points and open intervals i.e. exactly the semialgebraic sets. Let $A \in S_{n}$ and $B \in S_{m}$. A function $A \longrightarrow B$ is definable in S if its graph in $A \times B$ is definable (i.e. element of S_{n+m}).
We already know that all semialgebraic sets form an o-minimal structure.

The most important property is the following :
Theorem
A definable set in an o-minimal structure has finitely many connected components and each component is definable.
One can use this to prove for example that the graph of $\sin (x)$ is not definable (intersect with the line $y=0$ for example). On the other hand, the restrcition to any bounded interval will be definable in an o-minimal structure.

Some important o-minimal structures.

- All semialgebraic sets. Sometimes this structure is denoted by $\overline{\mathbb{R}}$.
- $\mathbb{R}_{\text {exp }}$. This structure includes all sets defined using the real exponential function : in this structure, the graph of the real exponential is definable.
For example the subset of $\mathbb{R}^{2}:\left\{(x, y): y=x^{2} e^{x^{3}}+x^{5}\right\}$ is definable in $\mathbb{R}_{\text {exp }}$.
That $\mathbb{R}_{\text {exp }}$ is o-minimal is a theorem of Wilkie.
- $\mathbb{R}_{\text {an }}$. This structure contains all sets defined by 'restricted analytic functions'. A function $f:[-1,1]^{n} \longrightarrow \mathbb{R}$ is a restrcited analytic function if it is a restriction of a real analytic function defined in a neighbourhood of $[-1,1]^{n}$.
This structure is o-minimal by a theorem of Van den Dries and (independently) Gabrielov.
- $\mathbb{R}_{\text {an,exp }}$. This structure includes both the real exponential functions and restricted analytic functions.

Pila-Wilkie theorem

Let H be the usual height of a rational number is defined as follows $\left(H\left(\frac{a}{b}\right)=\max (|a|,|b|)\right.$ where a and b are coprime.)

For $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}$, we define $H\left(x_{1}, \ldots, x_{n}\right)=\max \left(H\left(x_{1}\right), \ldots, H\left(x_{n}\right)\right)$.
For $X \subset \mathbb{R}^{n}$ and $T \in \mathbb{R}_{+}$, define $X(\mathbb{Q}, T)=\left\{x \in X \cap \mathbb{Q}^{n}: H(x) \leq T\right\}$.
This is a finite set, let $N(X, T)=|X(\mathbb{Q}, T)|$.
Plla-Wilkie theorem concerns itself with estimating $N(X, T)$ for sets X definable in an o-minimal structure.
Firstly, in general $N(X, T)$ can be large : if $X=\mathbb{R}^{n}$, then $N(X, T)$ grows like a polynomial of degree n in T.
However, \mathbb{R}^{n} is of course semialgebraic. Pila-Wilkie theorem says that if one removes from X all positive dimensional semi-algebraic subsets, there are very few rational points up to height T on what remains of X.

Definition

Let $X \subset \mathbb{R}^{n}$, the algebraic part $X^{\text {alg }}$ of X is defined as the union of all infinite, connected semialgebraic subsets $Y \subset X$. The transcendental part $X^{t r}$ is $X \backslash X^{a l g}$.
We can now state Pila-Wilkie point counting theorem.
Theorem (Pila-Wilkie)
Let $X \subset \mathbb{R}^{n}$ be a set definable in some o-minimal structure. Let $\epsilon>0$. There exists $C=C(X, \epsilon)>0$ so that for $T \geq 1$, we have

$$
N\left(X^{t r}, T\right) \leq C T^{\epsilon}
$$

Pila-Wilkie theorem extends to countng points defined over more general number fields.

For a subset $X \subset \mathbb{R}^{n}$ and $k \geq 1$, we define

$$
N_{k}(X, T)=\left|\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in X \cap \overline{\mathbb{Q}}^{n}: \operatorname{deg}\left(x_{i}\right) \leq k, H(x) \leq T\right\}\right|
$$

We can now state the version of Pila-Wilkie theorem for number fields :
Theorem (Pila-Wilkie, v2)
Let $X \subset \mathbb{R}^{n}$ be a set definable in some o-minimal structure. Let $k \geq 1$. Let $\epsilon>0$. There exists $C=C(X, k, \epsilon)>0$ so that for $T \geq 1$, we have

$$
N_{k}\left(X^{t r}, T\right) \leq C T^{\epsilon}
$$

Further questions: Can one replace T^{ϵ} by a polynomial in $\log (T)$? Can we say something about the constant C ? Is, for example. it is polynomial in k ? These questions will be discussed in the lectures by Binyamini and Schmidt.

Shimura varieties.

A Shimura datum is a pair (G, X) where G is a reductive group over \mathbb{Q} and X is a $G(\mathbb{R})$ orbit in $\operatorname{Hom}\left(\mathbb{S}, G_{\mathbb{R}}\right)$ of an element x_{0} satisfying certain conditions sufficient to ensure that X is a finite union of Hermitian symmetric domains (it is usually not connected).
An example is $\left(\mathrm{GL}_{2}, \mathbb{H}^{ \pm}\right)$.
Let (G, X) be a Shimura datum, G is a reductive group over \mathbb{Q}, K a compact open subgroup of $G\left(\mathbb{A}_{f}\right)$.
The Shimura variety associated to this data is :

$$
S h_{K}(G, X)=G(\mathbb{Q}) \backslash X \times G\left(\mathbb{A}_{f}\right) / K
$$

It admits a canonical model over an explicitly described number field $E(G, X)$.

Let X^{+}be a connected component of X and $\Gamma=G(\mathbb{Q})^{+} \cap K$.
Let $S=\Gamma \backslash X^{+}$. It is quasi-projective (Baily-Borel).
By the usual abuse of language we will still be calling S a Shimura variety, and it admits a canonical model over a (well defined) abelian finite extension of $E(G, X)$.
Special subvarieties correspond to inclusions of Shimura subdata :
$\left(G^{\prime}, X^{\prime}\right) \subset(G, X)$ and special points to $(T, x) \subset(G, X)$ where T is a torus. The smallest such torus T is called the Mumford-Tate group of T. Special points are defined over explicitly described number fields.

Weakly special subvarieties : those of the form $S_{1} \times\{x\} \subset S_{1} \times S_{2} \subset S$. They can be characterised as 'bi-algebraic' subvarieties.

\mathcal{A}_{g}, the moduli space of principally polarised abelian

 varieties.Let

$$
\pi: \mathbb{H}_{g}=\left\{\tau \in M_{g}(\mathbb{C}), \tau=\tau^{t}, \operatorname{Im}(\tau)>0\right\} \longrightarrow \mathcal{A}_{g}=\operatorname{Sp}(2 g, \mathbb{Z}) \backslash \mathbb{H}_{g}
$$

be the uniformising map.
Then \mathcal{A}_{g} is a moduli space for principally polarised Abelian varieties of dimension g,

$$
\pi(\tau)=A_{\tau}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g} \oplus \tau \mathbb{Z}^{g}\right)
$$

and \mathcal{A}_{g} is a quasi-projective algebraic variety defined over \mathbb{Q}. Special points correspond to CM abelian varieties. An abelian variety of dimension g has CM if and only if $\operatorname{End}(A) \otimes \mathbb{Q}$ contains a commutative \mathbb{Q}-algebra of dimension 2 g .
A Shimura variety S is of abelian type if it admits a finite Shimura morphism $S^{\prime} \longrightarrow S$ where S^{\prime} is a special subvariety of \mathcal{A}_{g}.

Ingredients of the proof of AO

- Definability: $\pi: X \longrightarrow S$ is definable in $\mathbb{R}_{\text {an, exp }}$ when restricted to a suitable fundamental domain \mathcal{F}. (Klingler-Ullmo-Y)
- Functional transcendence (hyperbolic Ax-Lindemann theorem) : if W is an algebraic subset of X, then $\pi(W)^{Z a r}$ is weakly special. (Klingler-Ullmo-Y)
- Bounds on height of 'prespecial points' (Daw-Orr)
- Lower bounds for Galois orbits of special points (many authors).
- "geometric André-Oort" : assume $Z \subset S$ contains a Zariski dense set of >0 dimensional weakly special subvarieties, then $Z=S_{1} \times Z^{\prime}$ where $S_{1} \times S_{2} \subset S$ is a special subvariety and $Z^{\prime} \subset S_{2}$. (Ullmo, Richard-Ullmo)

Lower bounds for Galois orbits

Let $s \in S$ be a special point corresponding to the inclusion of Shimura data $(T, x) \subset(G, X)$ where T is the Mumford-Tate group of x. Assume G adjoint, let L be the splitting field of T. It is a CM field. Let K_{T}^{m} be the maximal compact subgroup of $T\left(\mathbb{A}_{f}\right)$ and $K_{T}=K \cap T\left(\mathbb{A}_{f}\right)$.
Define the discriminant of s as

$$
d_{s}=\left|K_{T}^{m} / K_{T}\right||\operatorname{discr}(L)|
$$

Lower bounds conjecture

$$
[\mathbb{Q}(s): \mathbb{Q}] \gg d_{s}^{\delta}
$$

where δ depends on S only.
Ex. E an elliptic curve with CM by O_{L} (L imaginary quadratic) then $[\mathbb{Q}(E): \mathbb{Q}] \gg d_{L}^{1 / 4}$.
For \mathcal{A}_{g} it was conjectured by Bas Edixhoven in 1999 .

Algebraic structure on X.

X can be embedded as an open semialgebraic bounded subset in \mathbb{C}^{n} where $n=\operatorname{dim}(X)$ (Harish-Chandra).
(Think of the open unit disc inside \mathbb{C} - this is the Harish-Chandra realisation of the upper-half plane).
We then call a subset W of X algebraic if W is the intersection of an algebraic subset of \mathbb{C}^{n} and irreducible if it is an irreducible analytic component of such an intersection.
We have a transcendental map $\pi: X \longrightarrow S$ between two algebraic objects.
Functional transcendence (Ax-Lindemann) : if W is an algebraic subset of X, then $\pi(W)^{Z a r}$ is weakly special.
Equivalently : for $Z \subset S$ algebraic, maximal algebraic subsets of $\pi^{-1}(Z)$ are precisely components of preimages of weakly special subvarieties contained in Z.

This in particular implies a bi-algebraic characterisation of weakly special subvarieties : $Z \subset S$ (algebraic) is weakly special if and only if an analytic component of $\pi^{-1}(Z)$ is algebraic. In other words weakly specials are characterised as being bi-agebraic.

Sketch of the proof of André-Oort.

Let S be a Shimura variety, $Z \subset S$ a subvariety containing a Zariski dense set Σ of special points. Consider $\pi: X \longrightarrow S$ and \mathcal{F} a suitable fundamental domain.
Let $\widetilde{Z}:=\mathcal{F} \cap \pi^{-1} Z$. This is a definable set by definability of the restriction of π to \mathcal{F}.
For $s \in \Sigma$, let $x \in \mathcal{F}$ be such that $\pi(x)=s$ and let d_{s} be the discriminant of s. Note : d_{s} is unbounded as s ranges through Σ. By lower bounds for the Galois orbits : $[\mathbb{Q}(s): \mathbb{Q})] \gg d_{s}^{\delta}$. Furthermore for any $x \in \mathcal{F}$ with $s=\pi(x) \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot s$, by Daw-Orr, $H(x) \ll d_{s}^{\alpha}$. Thus Z contains $\gg d_{s}^{\delta}$ points of uniformly bounded degree and height $\ll d_{s}^{\alpha}$. By Pila-Wilkie and Ax-Lindemann, through any s with d_{s} large enough, there passes a weakly special subvariety.
One concludes using 'geometric André-Oort'.

Lower bounds for Galois orbits in the case of \mathcal{A}_{g}.

Let A be an abelian variety of dimension g with everywhere semistable reduction over a number field L. Let $h_{F}(A)$ be its Faltings height. Suppose that A is simple and has CM by O_{E} where E is a CM field of degree $2 \operatorname{dim}(A)$.
Andreatta, Goren, Howard, Madapusi-Pera and independently by Yuan and Zhang have proved an 'average Colmez formula' which implies that

$$
\forall \epsilon>0, h_{F}(A) \ll_{\epsilon} d_{E}^{\epsilon}
$$

J. Tsimerman combined this with the following :

Masser-Wustholz isogeny estimates :

Let A and B be two abelian varieties of dimension g over a number field L, isogeneous over \mathbb{C}. Let N be the minimal degree of an isogeny between A and B over \mathbb{C}. Then

$$
N<_{g} \max \left(h_{F}(A),[L: \mathbb{Q}]\right)^{c_{g}}
$$

where c_{g} depends only on g.
... to deduce the "Edixhoven's conjecture" :

$$
[\mathbb{Q}(A): \mathbb{Q}] \gg d_{E}^{\delta_{g}}
$$

This implies A-O for all Shimura varieties of abelian type.

The problem with generalising this is that there is no evident (even conjectural analogue) of the Masser-Wustholz theorem for general Shimura varieties.
Harry Schmidt had an idea of using point counting to approach this kind of problem.
This requires a significantly stronger version of Pila-Wilkie theorem, obtained by G. Biniyamini.

Biniyamini's point counting

Let $\pi: X \longrightarrow S$ be the uniformisation of a Shimura variety. Let E be its number field of definition. Consider $X \times S \subset \mathbb{C}^{n} \times S$ and let h be some (logarithmic!) Weil height function on $\mathbb{C}^{n} \times X$. Let $Z_{S}=\{(x, s): x \in \mathcal{F}, s=\pi(x)\} \subset X \times S$.

$$
Z_{S}(f, h)=\left\{(x, s) \in Z_{S}:[E(x, s): E] \leq f, h(x, s) \leq h\right\}
$$

Biniyamini's theorem

$$
\left|Z_{S}(f, h)\right| \ll f^{A} h^{B}
$$

where A and B depend on S only.

Lower bounds for Galois orbits.

Let x be a special point of \mathcal{F} and $s=\pi(x)$.
Consider $S(s)$, the smallest zero dimensional Shimura variety containing s.

Its size is the class group of T which is bounded below by d_{s}^{α}. All elements of $S(s)$ are defined over a field of degree bounded by f. Conjecture - Biniyamini, Schmidt, Y With respect to some Weil height h on S,

$$
h(s) \lll d_{x}^{\epsilon}
$$

Theorem of Daw-Orr

$$
H(x) \ll \log \left(d_{x}\right)
$$

where C is some constant.
It follows that $h(x, s) \ll d_{x}^{\epsilon}$ for all (x, s) in $\mathcal{F} \times S$ with $s=\pi(x) \in S(s)$.

Theorem (Ullmo-Y, Tsimerman)

$$
|S(s)| \gg d_{x}^{\delta_{g}}
$$

The point x is algebraic and its degree is uniformly bounded. We therefore have :

$$
d_{x}^{\delta_{g}} \ll f^{A} d_{x}^{\epsilon}
$$

This implies a lower bound for f of required type.
Theorem (Pila-Shankar- Tsimerman, Esnault, Groechenig)
The height conjecture is true.

