Hodge cycles on some fibered varieties

Donu Arapura

Sept, 19, 2022

Donu Arapura

Hodge cycles on some fibered varieties

Sept, 19, 2022 1 / 15

Let X be a smooth complex projective variety. Let $H^*(X)(CH^*(X))$ denote "Betti" cohomology (the Chow group) with rational coefficients.

Let X be a smooth complex projective variety. Let $H^*(X)(CH^*(X))$ denote "Betti" cohomology (the Chow group) with rational coefficients.

Recall that one has a cycle map

 $\Box^p: CH^p(X) \to H^{2p}(X)$

The image is the space of algebraic cycles.

There is a natural constraint on algebraic cycles

$$\operatorname{im} \Box^p \subseteq \underbrace{H^{2p}(X) \cap H^{pp}}_{\operatorname{Hodge cycles}}$$

• • • • • • • • • •

There is a natural constraint on algebraic cycles

$$\operatorname{im} \Box^{p} \subseteq \underbrace{H^{2p}(X) \cap H^{pp}}_{\operatorname{Hodge cycles}}$$

The Hodge conjecture asserts that equality holds.

< □ > < 凸

There are some related conjectures.

Image: A math a math

There are some related conjectures.

• Suppose X defined over a finitely generated field k. The Tate conjecture says *roughly* that the image of the cycle map in *l*-adic cohomology equals the Galois invariant part.

There are some related conjectures.

- Suppose X defined over a finitely generated field k. The Tate conjecture says *roughly* that the image of the cycle map in ℓ-adic cohomology equals the Galois invariant part.
- There is a variant of these conjectures due to Jannsen which makes sense of quasiprojective varieties.

When X is fibered, one can try to break up the cycle map along the map.

When X is fibered, one can try to break up the cycle map along the map.

Set up

Suppose that $f : X \to Y$ is a surjective morphism. Let $U \subset Y$ the complement of the discriminant, and $V = f^{-1}U$.

(This notation is fixed for the rest of the talk.)

When X is fibered, one can try to break up the cycle map along the map.

Set up

Suppose that $f : X \to Y$ is a surjective morphism. Let $U \subset Y$ the complement of the discriminant, and $V = f^{-1}U$.

(This notation is fixed for the rest of the talk.)

The Leray filtration L is a filtration on cohomology of V such that

$$Gr_L^b H^a(V) \cong H^b(U, R^{a-b}f_*\mathbb{Q})$$

Pulling back the Leray filtration to $CH^*(V)$ allows us to break up the cycle map

Pulling back the Leray filtration to $CH^*(V)$ allows us to break up the cycle map

 $\Box^{p,i}: Gr^{i}_{L}CH^{p}(V) \to \text{Hodge cycles in } H^{i}(U, R^{2p-i}f_{*}\mathbb{Q})$

(the right side carries a mixed Hodge structure.)

Pulling back the Leray filtration to $CH^*(V)$ allows us to break up the cycle map

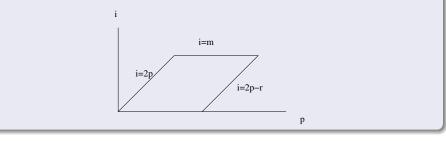
 $\Box^{p,i}: Gr^i_L CH^p(V) \to \text{Hodge cycles in } H^i(U, R^{2p-i}f_*\mathbb{Q})$

(the right side carries a mixed Hodge structure.)

There is a similar map $\Box_{\ell}^{p,i}$ for ℓ -adic cohomology.

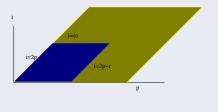
Theorem (A, 2022)

Let $n = \dim X$, $m = \dim Y$, r = n - m. The Hodge (Tate) conjecture holds for V if $\Box^{p,i}$ ($\Box^{p,i}_{\ell}$) is surjective for (p,i) in the closed parallelogram



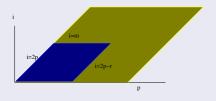
Proof.

Use the Leray spectral sequence to write down the obvious region where theorem holds (in yellow).



Proof.

Use the Leray spectral sequence to write down the obvious region where theorem holds (in yellow).



Then use Hard Lefcshetz twice to cut size to blue region.

When n = 4 can use further tricks to reduce region to single point.

When n = 4 can use further tricks to reduce region to single point.

Corollary

If X is a fourfold, then the Hodge conjecture holds for X if $\Box^{2,m}$ is surjective.

When n = 4 can use further tricks to reduce region to single point.

Corollary

If X is a fourfold, then the Hodge conjecture holds for X if $\Box^{2,m}$ is surjective.

For the rest of the talk, I want to turn to examples.

Theorem (A 2019)

The Hodge (and Tate) conjecture holds for the universal genus 2 curve with level structure.

Theorem (A 2019)

The Hodge (and Tate) conjecture holds for the universal genus 2 curve with level structure.

Sketch.

Let $Y = \overline{M}_{2,N}$ be the Deligne-Mumford compactification of the moduli space of genus 2 curves with level N structure. Then $m = \dim Y = 3$

Theorem (A 2019)

The Hodge (and Tate) conjecture holds for the universal genus 2 curve with level structure.

Sketch.

Let $Y = \overline{M}_{2,N}$ be the Deligne-Mumford compactification of the moduli space of genus 2 curves with level N structure. Then $m = \dim Y = 3$

Let $f : X \to Y$ be the universal genus 2 curve. Then n = 4.

Sketch (cont.)

One checks that

Hodge cycles $\subset Gr_F^2 H^3(U, R^1 f_*\mathbb{C}) = 0$

Sketch (cont.)

One checks that

Hodge cycles
$$\subset Gr_F^2 H^3(U, R^1 f_* \mathbb{C}) = 0$$

This uses a description of Gr^2 as the hypercohomology an explicit complex, plus work of Faltings-Chai to show it's acyclic.

Sketch (cont.)

One checks that

Hodge cycles
$$\subset Gr_F^2 H^3(U, R^1 f_*\mathbb{C}) = 0$$

This uses a description of Gr^2 as the hypercohomology an explicit complex, plus work of Faltings-Chai to show it's acyclic.

Therefore $\Box^{2,3}$ is trivially surjective, so HC follows. (Tate requires more.)

Suppose that D is a quaternion division algebra over a totally real field, split at exactly one real place. Let $G = D_1^*$ be the units of norm 1. Fix a torsion free arithmetic group $\Gamma \subset G(\mathbb{Q})$. It acts on \mathbb{H} through the natural representation of $G(\mathbb{R}) \to SL_2(\mathbb{R})$.

Suppose that D is a quaternion division algebra over a totally real field, split at exactly one real place. Let $G = D_1^*$ be the units of norm 1. Fix a torsion free arithmetic group $\Gamma \subset G(\mathbb{Q})$. It acts on \mathbb{H} through the natural representation of $G(\mathbb{R}) \to SL_2(\mathbb{R})$.

The Shimura curve $Y = \mathbb{H}/\Gamma$ can be viewed as a moduli space of abelian varieties with some extra structure. In particular, Y carries a natural family of abelian varietes $\mathcal{A} \to Y$.

Theorem (A, 2022)

The Hodge and Tate conjectures holds for X.

Theorem (A, 2022)

The Hodge and Tate conjectures holds for X.

Idea.

One needs to check that the main criterion applies.

Theorem (A, 2022)

The Hodge and Tate conjectures holds for X.

Idea.

One needs to check that the main criterion applies. In half the cases, I check this using invariant theory.

Theorem (A, 2022)

The Hodge and Tate conjectures holds for X.

Idea.

One needs to check that the main criterion applies. In half the cases, I check this using invariant theory. In the remaining cases, I check this with the help of a vanishing theorem deduced from work of Viehweg and Zuo. Given a semistable elliptic surface $\mathcal{E} \to Y$, the fibre product $\mathcal{E} \times_Y \ldots \times_Y \mathcal{E}$ has toroidal singularities. Fix a toroidal resolution X. We want to understand when the Hodge conjecture holds for X.

Given a semistable elliptic surface $\mathcal{E} \to Y$, the fibre product $\mathcal{E} \times_Y \ldots \times_Y \mathcal{E}$ has toroidal singularities. Fix a toroidal resolution X. We want to understand when the Hodge conjecture holds for X.

Theorem (A, 2022)

If $\mathcal{E} = \mathcal{E}_{\lambda}$ is a general member of a family of semistable elliptic surfaces satisfying a suitable nondegeneracy condition, then the Hodge conjecture holds for X.

Given a semistable elliptic surface $\mathcal{E} \to Y$, the fibre product $\mathcal{E} \times_Y \ldots \times_Y \mathcal{E}$ has toroidal singularities. Fix a toroidal resolution X. We want to understand when the Hodge conjecture holds for X.

Theorem (A, 2022)

If $\mathcal{E} = \mathcal{E}_{\lambda}$ is a general member of a family of semistable elliptic surfaces satisfying a suitable nondegeneracy condition, then the Hodge conjecture holds for X.

The nondegeneracy condition above is that a certain Kodaira-Spencer map

$$\kappa_{\lambda}: Gr_{F}^{1}H^{1}(U_{\lambda}, R^{1}f_{\lambda*}\mathbb{C}) \rightarrow Gr_{F}^{0}H^{1}(U_{\lambda}, R^{1}f_{\lambda*}\mathbb{C}) \otimes \Omega_{\lambda}^{1}$$

is injective for some λ .

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• There are nontrivial examples where the nondegeneracy holds.

- There are nontrivial examples where the nondegeneracy holds.
- The idea of proof is similar to earlier ones.

- There are nontrivial examples where the nondegeneracy holds.
- The idea of proof is similar to earlier ones. One wants to check the main criterion using combination of invariant theory plus a suitable vanishing theorem.

- There are nontrivial examples where the nondegeneracy holds.
- The idea of proof is similar to earlier ones. One wants to check the main criterion using combination of invariant theory plus a suitable vanishing theorem.

In this case, the vanishing theorem is deduced from the nondegeneracy condition.