2. Twisted character varieties
$G: \quad$ redaction affine algebraic group/ \mathbb{C}
We assume that $\pi_{1} X$ is finitely presented.
$y: \begin{aligned} \pi_{1} x & \rightarrow \text { Ant }(G) \\ \gamma & \mapsto\left(y_{\gamma}: G \rightarrow G\right) \quad \text { group morphism }\end{aligned}$ \leadsto gives rise to

$$
\begin{aligned}
& \text { parameterized } \mid \varphi \text {-twisted local systems on } X \\
& g_{\varphi}^{\#} \text { - torsos where } g_{\varphi}^{\#}=\left(\tilde{x} \times\left(s^{*}\right) / \pi_{1} x\right. \\
& \gamma \cdot(5, g)=\left(\gamma \cdot \xi, \xi \gamma_{\gamma}(0)\right)
\end{aligned}
$$

a). The Betti moduli space

Observation It is possible to replace twisted representations by usual representations.

Leman There is a G-equisariart injeotive map

$$
\begin{aligned}
z_{e}^{1}(\pi ; G) & \longrightarrow \operatorname{Hom}_{0}(\pi ; G \times A n t(G)) \\
e & \longmapsto \underbrace{\left(\hat{e}: r \mapsto\left(e(\gamma), \varphi_{r}\right)\right)}_{\text {extended representation }}
\end{aligned}
$$

$\overbrace{\text { extended representation (deF) }}$
Its image is claim: \hat{e} is a group orphism

Point:
The G-action on extended representations is the usual conjugacy action by G in $G \times A$ at($G)$).

$$
\begin{aligned}
& \forall g \in G \longleftrightarrow G \times \operatorname{Aut}(G) \\
& g \longmapsto\left(g, I d_{G}\right) \\
& \widehat{g \cdot e}(\gamma)=\left((g e)(\gamma), y_{\gamma}\right) \\
& =\left(g e(\gamma) \varphi_{\gamma}\left(g^{-1}\right), \varphi_{\gamma}\right) \\
& \begin{array}{c}
=(g, 1) \underbrace{\left(e^{(\gamma)}, \varphi_{\gamma}\right)}_{=\hat{e}(\gamma)}(g, 1)^{-1} \text { in } G \times \operatorname{tat}(()) \\
=\underbrace{(g)}
\end{array}
\end{aligned}
$$

Con sequence:
If $F:=I_{n-1} \subset A_{u}(G)$ is a finite group, then

$$
H_{l}^{1}\left(\pi_{1} x_{i} G\right) \simeq \operatorname{Hom}_{\varphi}\left(\pi_{1} x_{i} G \infty F\right)
$$

with G acting algebraically on the affine variety Home, $\left(\pi_{1} x ; G \times F\right)$.
So, for G reductive, we have an affine GIT quotient

$$
\left.\operatorname{Hom}_{1}\left(\pi_{1} \times ; G \times F\right) / / G\right\} \begin{aligned}
& \text { The Betti } \\
& \text { moduli space }
\end{aligned}
$$

Extended representations

$$
\varphi: \pi_{1} X \rightarrow \operatorname{Aul}(G) \quad F:=I_{m} l
$$

Denote by $X_{y} \rightarrow x$ the covering space defined by $\pi_{1} X_{p}=\operatorname{Kct} \varphi \triangleleft \pi_{1} X$.

An extended representation $\hat{e} \in \operatorname{Hom}_{\varphi}\left(\pi_{1} X ; G_{>} F\right)$ gores rise to a commutative diagram

Observation $\quad \pi_{1} x_{p}=k_{a r} \varphi$ acts trivially on G.

The set $\quad H_{\varphi}^{1}\left(\pi_{1} x ; G\right)=\operatorname{Hom}_{\rho}\left(\pi_{1} x ; G x F\right) / G$ paramaterizes:
(1) isomorphism classes of $g_{\varphi}^{\#}$-torsors (or X)

$$
g_{\varphi}^{\#}=\left(x^{2} \times G^{\#}\right) / \pi_{1} x \quad \gamma \cdot(\xi, g)=(\gamma \cdot \xi, 1 \gamma(\xi))
$$

(2) isomorphism classes of F-equivatiaut principal G-bundles (covering spaces) on X_{φ}.

$$
\begin{array}{rlrl}
p: x_{\varphi} \rightarrow & x_{\|} & & p^{*} g_{\varphi}^{\#}=x_{\varphi} \times G^{\#} \\
& & + \text { induced } F \text {-action }
\end{array}
$$

Examples

$$
A: D \rightarrow \operatorname{Mat}_{a}\left(r \times r_{1} \mathbb{C}\right)
$$

(i)

$$
\begin{aligned}
& M: D \rightarrow G L(r, c) \\
& L_{\rightarrow} \forall z, M(z)=\left(U_{1}(z), \ldots, U_{r}(z)\right)
\end{aligned}
$$

is a basis of solutions
For the $O D E \quad U^{\prime}(z)=A(z) \cup(z)$

$$
X_{i}=[\Delta /\langle\sigma\rangle] \text { Here, } \pi_{\wedge} \theta=\{1\} \text { and } \pi_{1}^{\text {obb }} x \simeq\langle 0\rangle
$$

symmetry: $\left.\begin{array}{c}t \\ A(-z)=A(z) \\ M^{\prime}(z)=A(z) M(z)\end{array}\right\} \Rightarrow\left(t M(-z)^{-1}\right)^{\prime}=t\left(\frac{d}{d z}\left(M(-z)^{-1}\right)\right)$

$$
={ }^{t} M(-z)^{-1}{ }^{r} M^{\prime}(-z)^{t} M(-z)^{-1}
$$

$$
=t^{t} A(-z)^{t} M(-z)^{-1}
$$

$$
=A(z) 5 M(-z)^{-1}
$$

The trivial crossed morphism $e: \pi_{1} x \rightarrow G L(r, \sigma)$ induces a non-trivial extended representation $\hat{e}: \underset{=-\langle\sigma\rangle}{\pi_{1} x} \rightarrow\left(\mathcal{L}(r i \alpha)_{x}\langle\sigma\rangle\right.$.
(ii) $\langle\sigma\rangle$ acts or $G l(r i a)$ via $g \mapsto \mathrm{t}^{-1}$. We set :

$$
g_{\alpha 0\rangle}=\left(Y \times G L(r ; \sigma)^{\#}\right) /\langle\sigma\rangle
$$

[(locally trivial) group covering of X, only isotrivial weer $\left.F_{i x_{\sigma}}(y) \neq \varnothing\right]$
|anti-invariart local systems on $y \mid$ $\left\{\begin{array}{l}\uparrow \\ 1 \rightarrow \pi_{1} y \rightarrow \pi_{1} x \rightarrow\langle\sigma\rangle \rightarrow 1 \\ 1 \rightarrow(\mathcal{L} ;(\sigma) \rightarrow G(r ; \sigma) y(\sigma) \rightarrow\langle\sigma\rangle \rightarrow 1\end{array}\right\}$
b). Stability

Recall that we have a Betti moduli space

$$
\operatorname{Hom}_{\varphi}\left(\pi_{1} x_{i} G \times F\right) / G \quad F:=\operatorname{In}_{n} \varphi \subset \operatorname{Aut}(G)
$$

defined as an affine GIT quotient.
\rightarrow points $=$ closed $G_{\text {-orbits }}$ in Home $\left(\pi_{1} X ; G_{x} F\right)$
ais what is the representation - Theoretic characterization of stability?

ON CHARACTER VARIETIES WITH NON-CONNECTED STRUCTURE GROUPS
arXiv: 1912.04360
CHING SHE
3): February 2022
G : affine algebraic group $/ \mathbb{C}$,

$$
[G \subset G L(v)
$$

reductive (not necessarily connected) $\left.\lim _{G} V<+\infty\right]$

Examples: $G L(r ; \mathbb{C}), S L(r, \sigma), P G L(r ; \mathbb{C})$,

$$
O(r, \sigma), \mu_{r}(\mathbb{C}), \widehat{V}_{r}
$$

G_{0} : neutral component of G
$F \subset$ Ant (G) : Finite group of automorphisms of G

$$
\begin{aligned}
& \hat{G}:=G \times F \\
& V:=\hat{G} \times \cdots \times \hat{G}
\end{aligned}
$$

Observation: $\hat{G}_{0}=G_{0}$
a fine variety, with \hat{G} acting diagonally by corjingation

In our context, it is the diagonal G-action on $\hat{G} x-\ldots x \hat{G}$ that matters:

If $r_{1}, \ldots, \gamma_{r}$ geretate $\pi:=\pi_{i} X$,
then we have a G-equivariant closed embedding

$$
\begin{aligned}
& Z_{e}^{1}(\pi ; G)=\operatorname{Hom}_{y}(\pi ; \hat{G} \bar{G} F) \longrightarrow \hat{G} \times \ldots \times \hat{G} \\
& e{ }_{e}^{4} \leftrightarrow \hat{e}=(e, y) \longmapsto\left(e^{\left(y_{1}\right)}, y_{r_{1}}, \cdots, e^{\left(r_{n}\right)}, y_{r}\right)
\end{aligned}
$$

whose image is an affine sub-variaty of $\hat{G} \times \ldots \times \hat{G}$.
The Betti moduli space Home, $\left(\pi x_{;} G x F\right)$ is in bijection with a set of closed G-orbits in $\hat{G} \times \ldots \times \hat{G}$.

Complete reducibility
Def A closed subgroup PCG is called parabolic if G / P is complete.

There is a spictable short exact sequence with reductive quotient

$$
\imath \rightarrow R_{u}(P) \rightarrow P^{<} \rightarrow L_{p} \rightarrow 1
$$

A closed subgroup $H \subset G$ is called completely reducible if, for all parabolic subgroup $P \subset G$,

$$
H \subset P \Rightarrow 7 \text { a Levi factor } L \subset P
$$

such that $H C L$
$\underset{\text { char. } O}{\Longleftrightarrow} H$ is a reductive subgroup of G

Theorem (Richardson)
Take $x=\left(x_{1}, \ldots, x_{2}\right) \in \hat{G} \times \cdots \times \hat{G}$
and let $H(n)$ be the zariski-closure of

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle \subset \hat{G}
$$

Then the following statements are equivalent:
(i) $H(x)$ is completely reducible in \widehat{G}.
(ii) $\hat{G}_{0} \cdot x$ is closed in \hat{G}^{n}
(iii) $\underbrace{\hat{G}}_{\text {Finite union of copies of } \hat{G}_{0} \cdot x}$

Application to extended representations
Recall First that Home $\left(\pi_{i} x_{i} G \times F\right)$ embeds onto a G-invariant closed subset $S \subset(G \times F)^{n}$.
Also, G has finite index in $\hat{G}:=G \times F$. In particular, if $x \in S, \quad G \cdot x$ closed in $S \Longleftrightarrow \vec{G} \cdot x$ dosed in \hat{G}^{n}.
Theorem Let $\hat{e} \in H_{l} m_{y}\left(\pi_{n} x_{i} G \notin F\right)$ be an extended representation.
Let $H(\hat{e})=\hat{e}^{\left(\pi_{1} x\right)} \subset G_{x} F$.
Then $G \cdot \hat{e}$ is closed in Hon, $\left(\pi_{n}, X_{i} G y F\right)$ if
$H(\hat{p})$ is a completely reducible subgionp of $G \times F$:
$\Longleftrightarrow \forall P$ parabolic, $\hat{e}\left(\pi_{1} x\right) \subset P \Rightarrow \hat{e}\left(\pi_{1} x\right) \subset L_{P}$.

Stability
GIT-stubility: $G \cdot \hat{e}$ is closed in $S:=\operatorname{Hom}_{p}\left(\pi_{1} X_{i} G \times F\right)$ and $\operatorname{stab}_{G}(\hat{e}) / \underbrace{\operatorname{Stab}_{G}(S)}_{=n \operatorname{Stab}_{G}(\hat{e})}$ is Finite.

$$
=\prod_{\hat{e} \in s} \operatorname{Stab}_{f}(\hat{e})
$$

Richardson's results also give a representation-theoretic characterization of GIT stability:
\hat{e} is GIT-stable VF $\underbrace{\nrightarrow \text { properablic } P \subset G, H(\hat{e}) \subset P}_{\text {such a subgroup } H \subset G}$. is called irreducible.

Observations:
(i) H irreducible $\Rightarrow H$ completely reducible.
and
\hat{e} stable $\Rightarrow \hat{e}$ polystable
(ii) When Home $H\left(\pi_{n} \times ; G \times F\right)$ is identified with a closed sub-variety of $\hat{G} \times \cdots \times \hat{G}$,

$$
\begin{array}{r}
\operatorname{stab}_{G}(\hat{e}) \simeq \underbrace{\left.\left.\operatorname{stab}_{\underline{p}}\right)\right) \subset z_{\hat{G}}(H(\hat{e}))}_{\underset{\mathcal{L}}{ }\left(x_{1}, \ldots, x_{n}\right) \subset z_{\hat{G}}\left(a_{1}, \ldots, x_{n}\right)} \\
\operatorname{since} H(\hat{e})=\overline{\left\langle x_{1}, \ldots, x_{n}\right\rangle} \text { in in } \hat{G} .
\end{array}
$$

c). Integrable connections

Starting with a complex algebraic group G and an action $y=\pi_{1} X \rightarrow$ Aut (G), one can construct:
(i) a group covering $g_{\rho}^{\#}:=\left(X_{X}, G^{\#}\right) / \prod_{1} x$ discrete form G

$$
g_{\varphi}^{\#} \text {-torsors }=: ~ p \text {-twisted }
$$

Lats via
G-local systems

$$
r \cdot(\xi, g)=(r \xi, q(\xi))
$$

(ii) a group bundle $g_{1}:=(\tilde{X} \times G) / \pi_{1} x$ \leadsto which g_{ρ}-torsos "come from" g_{ρ}^{*}-torisors?

Connection on a g_{ρ}-torsor
First, given a g_{e}-torsor ε, define its adjoint bundle

$$
\operatorname{ad}(\varepsilon):=\left(\varepsilon_{x} L_{i c}\left(g_{\rho}\right)\right) / g_{\rho}
$$

where Lie $\left(g_{\rho}\right)=(\tilde{x} \times \underline{g}) / \pi_{1} x$
with $\pi_{A} X$ acting on g rio

$$
\begin{aligned}
& T_{1} x \xrightarrow{\varphi} A_{u} t(f) \rightarrow \operatorname{Aart}^{(g)} \\
& \gamma \mapsto \varphi_{r} \mapsto \alpha_{e} \varphi_{\gamma}
\end{aligned}
$$

Second, denote by At (E) the bundle of g_{1}-invariant vector fields on ε

Then there is a short exad sequence of redo bundle,

$$
0 \rightarrow \mathrm{ad}(\varepsilon) \rightarrow A t(\varepsilon)^{k} \rightarrow T x \rightarrow 0
$$

Definition A connection on the g_{y}-torsor ε is a splitting of the short exact sequence above.

Theorem There is a connection on ε if and orly if (II Aticath) the class of the extension above is Trivial in $H^{\wedge}\left(X, \frac{H_{0 n}\left(\tau x_{i} \operatorname{ad}(\varepsilon)\right)}{\Omega_{x}^{1} \otimes \operatorname{ad}(\varepsilon)}\right) \underset{L_{\Delta} \operatorname{din}_{c} x=1}{H^{0}\left(x_{i a d}(\varepsilon)\right)^{*}}$.

Let is retake the short exact sequence

$$
0 \rightarrow \operatorname{ad}(\varepsilon) \rightarrow A t(\varepsilon) \rightarrow T x \rightarrow 0
$$

Locally, we haw:

$$
\begin{aligned}
0 \rightarrow U \times g & \left.\rightarrow A t(\xi)\right|_{U} \rightarrow T U \rightarrow 0 \\
& A^{4}\left(\left.\xi\right|_{U}\right)
\end{aligned}
$$

so, a $\underbrace{\text { local trivialization of }\left.\Sigma\right|_{U}}_{\text {section of } \varepsilon \varepsilon_{U}}$ defines a connection on $\varepsilon /_{U}$.
If one can define a correction on ε by gluing such corrections on $\varepsilon /_{u}$, then the reacting connection on ε is called integrable. $\quad[$ automatic if dine $X=7$].

Torsors defined by twisted representations $\quad y, \pi_{n} x \rightarrow$ Ant (G)
e: $\pi_{n} x \rightarrow G \quad$ a p-twisted representation $v(\rho)=(\tilde{x} \times G) / \pi_{1} x \quad$ where $\pi_{1} x$ acts via

$$
\left.r \cdot(\zeta, h)=(\gamma \cdot\}, e^{(\gamma) c_{\gamma}}(\omega)\right)
$$

has a canonical integrable
connection, which is $\pi_{n} X$-inratiant
\rightarrow it descends to $v(e)$
Theorem Conversely, a g_{y}-torso with integrable
(Il Aliyah) connection cones from a y-twisted representation $e=\pi_{n} X \rightarrow G$.

Riemann -Hilbert correspondence
given $\quad y \leq \pi_{i} x \rightarrow \operatorname{Aut}(G)$,
there is a correspondence

$$
\begin{aligned}
& \underbrace{g_{\text {" }}}_{\substack{ \\
g_{\varphi} \text {-twisted -torsos } \\
\text { G-tucal systems" }}} \rightarrow \underbrace{\left\{\begin{array}{c}
g_{y} \text {-tintiontable with convection }
\end{array}\right\}}_{\text {Flat } g_{y} \text {-torsos" }} \\
& \text { G-lucal systems" } \\
& \text { [topological objects] [analytic objects] }
\end{aligned}
$$

$\sim \Delta$ both are paramaterited by $H_{y}^{1}\left(\pi_{1} X ; G\right)$

