Intersection Betti numbers of the GIT quotient of quartic plane curves

Juan Vásquez Aquino

CIMAT

BIRS - CMO

Moduli, Motives and Bundles - New Trends in Algebraic Geometry

September, 2022

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Plan of the talk: Kirwan's techniques for cohomology of GIT quotients.

- Space of quartic plane curves
- An equivariantly perfect stratification (HKKN)
- Cohomology of quotients (equivariant cohomology)
- Partial desingularization (Kirwan blow-up)
- Intersection Betti numbers

Let $X = \mathbb{P}(\mathbb{C}[x, y, z]_4)$ and $G = SL_3(\mathbb{C})$. Then consider

 $G \times X \to X$ $(g, F(x, y, z)) \mapsto F(g^{-1}(x, y, z)).$

We are interested in the GIT quotient

$$X//G = \operatorname{Proj} R(X)^G.$$

This is an irreducible projective variety of dimension 6.

GIT of quartic plane curves

- R(X)^G is generated by 13 homogeneous invariant polynomials.
- To construct the GIT quotient we first eliminate a closed subset X^{un} from X.
- A point $x \in X$ is unstable if f(x) = 0 for every $f \in R(X)^G$.
- $X \smallsetminus X^{un} \coloneqq X^{ss}$ is the open subset of semistable points. The GIT quotient is

$$X^{ss} \to X//G \coloneqq \operatorname{Proj} R(X)^G$$

We can characterize all the quartics according to their stability.

- Semistable quartics:
 - Smooth quartics (stable)
 - Quartics with ordinary double points (stable)
 - Tacnodal quartics (strictly semistable)
 - ▶ {0², 00, 0X} (strictly semistable)
- Unstable quartics:
 - Quartics with a triple point or a product of 4 concurrent lines.

Figure: Diagram of weights and unstable set $\langle z \rangle$, $\langle z \rangle$, $z \in \mathbb{R}$

Figure: Diagram of weights and unstable set (a) (a) (a) (a) (a)

Theorem (Kirwan)

There exists a stratification $\{S_{\beta} : \beta \in \mathcal{B}\}$ of X such that

- The unique open stratum is $S_0 = X^{ss}$.
- S_β is a non singular, locally closed subvariety for every 0 ≠ β ∈ B.
- For $\beta \neq 0$, $\overline{S_{\beta}} \subseteq \bigcup_{\beta \leq \beta'} S_{\beta'}$.
- This stratification is perfectly equivariant.

Stratum	Dim	Characterization
S_1	2	l^4 : line of multiplicity 4
S_2	4	$l_1^3 l_2$: product of a triple line and other line
S_3	6	products $l_1 l_2 l_3 l_4$, $l_1^2 l_2 l_3$, $l_1^2 l_2^2$ of concurrent lines
S_4	6	product of an irreducible conic and a double tangent line
S_5	7	product of a cuspidal cubic and a tangent line at the cusp
S_6	8	irreducible quartic with a simple cusp of multiplicity 3

Table: Classification of unstable quartic plane curves

Stratum	Dim	Characterization
S_7	7	product of a conic and a non tangent double line
S_8	8	product of a nodal cubic and a tangent line at the node
S_9	9	quartic with a triple point with two branches
		meeting transversely, one of them is smooth
		and the other one is a cuspidal curve at the point
S_{10}	10	quartic plane curve with an ordinary triple point
S_{11}	9	product of a non-singular cubic with a
		tangent line at a flex point

Table: Classification of unstable quartic plane curves

Stratification of unstable quartics

Figure: Some unstable strata

Theorem (Kirwan)

If for every point $x \in X^{ss}$ the stabilizer of x is finite, then $H^*(X//G; \mathbb{Q}) \cong H^*_G(X^{ss}; \mathbb{Q})$, and

$$P_t^G(X^{ss}) = P_t^G(X) - \sum_{0 \neq \beta \in \mathcal{B}} t^{2d(\beta)} P_t^G(S_\beta),$$

where $d(\beta) = codim(S_{\beta})$. Moreover,

• $P_t^G(X) = P_t(X)P_t(BG)$ if G is connected.

• $P_t^G(S_\beta) = P_t^{\text{Stab}(\beta)}(Z_\beta^{ss})$ for a closed subvariety Z_β of X.

Unfortunately, for quartic plane curves, $P_t(X//G) \neq P_t^G(X^{ss})$.

$$P_t^G(X^{ss}) = 1 + t^2 + 3t^4 + 5t^6 + 5t^8 + 4t^{10} + 2t^{12}.$$

There exists quartic plane curves with stabilizer of positive dimension. The GIT quotient is singular at the following places:

• $\{(y^2 - xz)^2\}$ with stabilizer SO(3).

▶
$$\mathbb{P}{ax^2z^2 + bxy^2z + cy^4}$$
 with stabilizer $T = {(t, 1, t^{-1}) | t \in \mathbb{C}^*}$.

We can solve these singularities by a sequence of blow-ups over X^{ss} (Kirwan blow-up, [Kir85])

$$X_1 \xrightarrow{\pi_1} X_2^{ss} \xrightarrow{\pi_2} \cdots \xrightarrow{\pi_{r-1}} X_r^{ss} \xrightarrow{\pi_r} X^{ss},$$

which induces a sequence of blow-ups over the GIT quotient

$$X_1//G \xrightarrow{\pi_1} X_2//G \xrightarrow{\pi_2} \cdots \xrightarrow{\pi_{r-1}} X_r//G \xrightarrow{\pi_r} X//G ,$$

such that the last blow-up is a partial desingularization of X//G.

To construct a Kirwan blow-up, consider the following:

- Take $R := (\operatorname{Stab}(x))_0$ for some $x \in X^{ss}$.
- R is a reductive subgroup of G.
- Define $Z_R^{ss} \coloneqq \{x \in X^{ss} \mid x \text{ is fixed by } R\}.$
- GZ_R^{ss} is a G-invariant, non-singular, closed subvariety of X^{ss} .

Let Y be the blow-up of X^{ss} over GZ_R^{ss} . There exists a G-action on Y such that R doesn't occur as a stabilizer in Y.

The cohomology of the blow-up $Y \to X^{ss}$ of X^{ss} along GZ_R^{ss} is given by

 $H^*_G(Y;\mathbb{Q}) \cong H^*_G(X^{ss};\mathbb{Q}) \oplus H^*_G(E;\mathbb{Q})/H^*_G(GZ^{ss}_R;\mathbb{Q}).$

Lemma (Kirwan)

The GIT quotient

 $Y^{ss} \to Y //G$

is the blow-up of X//G over $GZ_R^{ss}//G \coloneqq Z_R//N$.

Cohomology of the desingularization

For quartic plane curves, we have the following:

$$X_1 \xrightarrow{\pi_1} X_3^{ss} \xrightarrow{\pi_3} X^{ss}$$

- X_3 is the blow-up of X^{ss} over $GZ^{ss}_{SO(3)}$.
- X_1 is the blow-up of X_3^{ss} over $G\tilde{Z}_T^{ss}$.

This induces a sequence of blow-ups

$$X_1//G \xrightarrow{\pi_1} X_3//G \xrightarrow{\pi_3} X//G$$
.

Every semistable point in X_1 has finite stabilizer and

$$P_t(X_1//G) = P_t^G(X_1^{ss})$$

The intersection Betti numbers of the GIT quotients X//G and Y//G are related by ([Kir86])

 $\dim(IH^i(X//G;\mathbb{Q})) = \dim(IH^i(Y//G;\mathbb{Q}))$

 $-\sum_{p+q=i}\dim[H^p(Z_R//N(R)_0;\mathbb{Q})\otimes IH^{t(q)}(\mathbb{P}\mathcal{N}_x//R;\mathbb{Q})]^{\pi_0N(R)}.$

For the blow-ups on the GIT quotient of quartic plane curve, the intersection Betti numbers are given by:

$$\begin{array}{ll} X_1//G & IP_t(X_1//G) = 1 + 3t^2 + 5t^4 + 6t^6 + 5t^8 + 3t^{10} + t^{12}. \\ & \swarrow^{\pi_1} \\ X_3//G & IP_t(X_3//G) = 1 + 2t^2 + 4t^4 + 4t^6 + 4t^8 + 2t^{10} + t^{12}. \\ & \swarrow^{\pi_3} \\ X//G & IP_t(X//G) = 1 + t^2 + 2t^4 + 2t^6 + 2t^8 + t^{10} + t^{12}. \end{array}$$

Theorem (- 2022)

The Betti numbers of the partial desingularization $X_1//G$ of the GIT quotient of quartic plane curves are given by

$$P_t(X_1//G) = 1 + 3t^2 + 5t^4 + 6t^6 + 5t^8 + 3t^{10} + t^{12}.$$

Theorem (- 2022)

The intersection Betti numbers of the GIT quotient X//G of quartic plane curves are given by

$$IP_t(X//G) = 1 + t^2 + 2t^4 + 2t^6 + 2t^8 + t^{10} + t^{12}.$$

イロト 不得下 イヨト イヨト 二日

Let \mathcal{F}_2 be the space of holomorphic foliatitions on \mathbb{P}^2 of degree 2. \mathcal{F}_2 is a projective variety of dimension 14.

Theorem (C. Reynoso, - 2022)

The intersection Betti numbers of the GIT quotient $\mathcal{F}_2//\operatorname{SL}_3(\mathbb{C})$ are given by

$$IP_t(\mathcal{F}_2//G) = 1 + t^2 + 2t^4 + 2t^6 + 2t^8 + t^{10} + t^{12}.$$

There is a birational morphism $\mathcal{F}_2 \to X$ [Esteves and Marchisio]. How are the GIT quotients $\mathcal{F}_2//G$ and X//G related?

References

Frances Clare Kirwan.

Cohomology of quotients in symplectic and algebraic geometry, volume 31.

Princeton University Press, 1984.

Frances Clare Kirwan.

Partial desingularisations of quotients of nonsingular varieties and their Betti numbers.

Annals of mathematics, 122(1):41-85, 1985.

Frances Clare Kirwan.

Rational intersection cohomology of quotient varieties.

Inventiones mathematicae, 86(3):471–505, 1986.

Sicarú zedatu guidxi Lula' (Welcome to Oaxaca) Xquixepe laatu (Thank you)