Intersection Betti numbers of the GIT quotient of

quartic plane curves

Juan Vásquez Aquino
CIMAT
BIRS - CMO
Moduli, Motives and Bundles - New Trends in Algebraic Geometry

September, 2022

Introduction

Plan of the talk: Kirwan's techniques for cohomology of GIT quotients.

- Space of quartic plane curves
- An equivariantly perfect stratification (HKKN)
- Cohomology of quotients (equivariant cohomology)
- Partial desingularization (Kirwan blow-up)
- Intersection Betti numbers

Space of quartic plane curves

Let $X=\mathbb{P}\left(\mathbb{C}[x, y, z]_{4}\right)$ and $G=\mathrm{SL}_{3}(\mathbb{C})$. Then consider

$$
\begin{aligned}
G \times X & \rightarrow X \\
(g, F(x, y, z)) & \mapsto F\left(g^{-1}(x, y, z)\right) .
\end{aligned}
$$

- We are interested in the GIT quotient

$$
X / / G=\operatorname{Proj} R(X)^{G}
$$

- This is an irreducible projective variety of dimension 6.

GIT of quartic plane curves

- $R(X)^{G}$ is generated by 13 homogeneous invariant polynomials.
- To construct the GIT quotient we first eliminate a closed subset $X^{u n}$ from X.
- A point $x \in X$ is unstable if $f(x)=0$ for every $f \in R(X)^{G}$.
- $X \backslash X^{u n}:=X^{s s}$ is the open subset of semistable points.

The GIT quotient is

$$
X^{s s} \rightarrow X / / G:=\operatorname{Proj} R(X)^{G} .
$$

Stability of quartic plane curves

We can characterize all the quartics according to their stability.

- Semistable quartics:
- Smooth quartics (stable)
- Quartics with ordinary double points (stable)
- Tacnodal quartics (strictly semistable)
- $\left\{0^{2}, 00,0 \mathrm{X}\right\}$ (strictly semistable)
- Unstable quartics:
- Quartics with a triple point or a product of 4 concurrent lines.

Figure: Diagram of weights and unstable set

Figure: Diagram of weights and unstable set

Kirwan's Stratification

Theorem (Kirwan)
There exists a stratification $\left\{S_{\beta}: \beta \in \mathcal{B}\right\}$ of X such that

- The unique open stratum is $S_{0}=X^{s s}$.
- S_{β} is a non singular, locally closed subvariety for every $0 \neq \beta \in \mathcal{B}$.
- For $\beta \neq 0, \overline{S_{\beta}} \subseteq \bigcup_{\beta \leq \beta^{\prime}} S_{\beta^{\prime}}$.
- This stratification is perfectly equivariant.

Stratification of unstable quartics

Stratum Dim Characterization

S_{1}	2	l^{4} : line of multiplicity 4

$S_{2} \quad 4 \quad l_{1}^{3} l_{2}$: product of a triple line and other line
$S_{3} \quad 6$ products $l_{1} l_{2} l_{3} l_{4}, l_{1}^{2} l_{2} l_{3}, l_{1}^{2} l_{2}^{2}$ of concurrent lines
$S_{4} \quad 6$ product of an irreducible conic and a double tangent line
$S_{5} \quad 7$ product of a cuspidal cubic and a tangent line at the cusp
$S_{6} \quad 8 \quad$ irreducible quartic with a simple cusp of multiplicity 3
Table: Classification of unstable quartic plane curves

Stratification of unstable quartics

Stratum	Dim	Characterization
S_{7}	7	product of a conic and a non tangent double line
S_{8}	8	product of a nodal cubic and a tangent line at the node
S_{9}	9	quartic with a triple point with two branches meeting transversely, one of them is smooth
		and the other one is a cuspidal curve at the point
S_{10}	10	quartic plane curve with an ordinary triple point
S_{11}	9	product of a non-singular cubic with a tangent line at a flex point

Table: Classification of unstable quartic plane curves

Stratification of unstable quartics

(e) S_{8} of dim. 8

Figure: Some unstable strata

Cohomology of GIT quotients

Theorem (Kirwan)
If for every point $x \in X^{s s}$ the stabilizer of x is finite, then $H^{*}(X / / G ; \mathbb{Q}) \cong H_{G}^{*}\left(X^{s s} ; \mathbb{Q}\right)$, and

$$
P_{t}^{G}\left(X^{s s}\right)=P_{t}^{G}(X)-\sum_{0 \neq \beta \in \mathcal{B}} t^{2 d(\beta)} P_{t}^{G}\left(S_{\beta}\right),
$$

where $d(\beta)=\operatorname{codim}\left(S_{\beta}\right)$. Moreover,

- $P_{t}^{G}(X)=P_{t}(X) P_{t}(B G)$ if G is connected.
- $P_{t}^{G}\left(S_{\beta}\right)=P_{t}^{\text {Stab }(\beta)}\left(Z_{\beta}^{s s}\right)$ for a closed subvariety Z_{β} of X.

The GIT quotient is singular

Unfortunately, for quartic plane curves, $P_{t}(X / / G) \neq P_{t}^{G}\left(X^{s s}\right)$.

$$
P_{t}^{G}\left(X^{s s}\right)=1+t^{2}+3 t^{4}+5 t^{6}+5 t^{8}+4 t^{10}+2 t^{12}
$$

There exists quartic plane curves with stabilizer of positive dimension. The GIT quotient is singular at the following places:

- $\left\{\left(y^{2}-x z\right)^{2}\right\}$ with stabilizer $S O(3)$.
- $\mathbb{P}\left\{a x^{2} z^{2}+b x y^{2} z+c y^{4}\right\}$ with stabilizer $T=\left\{\left(t, 1, t^{-1}\right) \mid t \in \mathbb{C}^{*}\right\}$.

Partial desingularization of the GIT quotient

We can solve these singularities by a sequence of blow-ups over $X^{s s}$ (Kirwan blow-up, [Kir85])

$$
X_{1} \xrightarrow{\pi_{1}} X_{2}^{s s} \xrightarrow{\pi_{2}} \cdots \xrightarrow{\pi_{r-1}} X_{r}^{s s} \xrightarrow{\pi_{r}} X^{s s},
$$

which induces a sequence of blow-ups over the GIT quotient

$$
X_{1} / / G \xrightarrow{\pi_{1}} X_{2} / / G \xrightarrow{\pi_{2}} \cdots \xrightarrow{\pi_{r-1}} X_{r} / / G \xrightarrow{\pi_{r}} X / / G,
$$

such that the last blow-up is a partial desingularization of $X / / G$.

Kirwan blow-up

To construct a Kirwan blow-up, consider the following:

- Take $R:=(\operatorname{Stab}(x))_{0}$ for some $x \in X^{s s}$.
- R is a reductive subgroup of G.
- Define $Z_{R}^{s s}:=\left\{x \in X^{s s} \mid x\right.$ is fixed by $\left.R\right\}$.
- $G Z_{R}^{s s}$ is a G-invariant, non-singular, closed subvariety of $X^{s s}$.

Let Y be the blow-up of $X^{s s}$ over $G Z_{R}^{s s}$. There exists a G-action on Y such that R doesn't occur as a stabilizer in Y.

Kirwan blow-up

The cohomology of the blow-up $Y \rightarrow X^{s s}$ of $X^{s s}$ along $G Z_{R}^{s s}$ is given by

$$
H_{G}^{\star}(Y ; \mathbb{Q}) \cong H_{G}^{*}\left(X^{s s} ; \mathbb{Q}\right) \oplus H_{G}^{*}(E ; \mathbb{Q}) / H_{G}^{\star}\left(G Z_{R}^{s s} ; \mathbb{Q}\right)
$$

Lemma (Kirwan)
The GIT quotient

$$
Y^{s s} \rightarrow Y / / G
$$

is the blow-up of $X / / G$ over $G Z_{R}^{s s} / / G:=Z_{R} / / N$.

Cohomology of the desingularization

For quartic plane curves, we have the following:

$$
X_{1} \xrightarrow{\pi_{1}} X_{3}^{s s} \xrightarrow{\pi_{3}} X^{s s}
$$

- X_{3} is the blow-up of $X^{s s}$ over $G Z_{S O(3)}^{s s}$.
- X_{1} is the blow-up of $X_{3}^{s s}$ over $G \tilde{Z}_{T}^{s s}$.

This induces a sequence of blow-ups

$$
X_{1} / / G \xrightarrow{\pi_{1}} X_{3} / / G \xrightarrow{\pi_{3}} X / / G
$$

Every semistable point in X_{1} has finite stabilizer and

$$
P_{t}\left(X_{1} / / G\right)=P_{t}^{G}\left(X_{1}^{s s}\right)
$$

Intersection cohomology of the GIT quotient

The intersection Betti numbers of the GIT quotients $X / / G$ and $Y / / G$ are related by ([Kir86]) $\operatorname{dim}\left(I H^{i}(X / / G ; \mathbb{Q})\right)=\operatorname{dim}\left(I H^{i}(Y / / G ; \mathbb{Q})\right)$
$-\sum_{p+q=i} \operatorname{dim}\left[H^{p}\left(Z_{R} / / N(R)_{0} ; \mathbb{Q}\right) \otimes I H^{t(q)}\left(\mathbb{P} \mathcal{N}_{x} / / R ; \mathbb{Q}\right)\right]^{\pi_{0} N(R)}$.

Intersection Betti numbers of the GIT quotient

For the blow-ups on the GIT quotient of quartic plane curve, the intersection Betti numbers are given by:

$X_{1} / / G$	$I P_{t}\left(X_{1} / / G\right)=1+3 t^{2}+5 t^{4}+6 t^{6}+5 t^{8}+3 t^{10}+t^{12}$
$\downarrow^{\pi_{1}}$	
$X_{3} / / G$	$I P_{t}\left(X_{3} / / G\right)=1+2 t^{2}+4 t^{4}+4 t^{6}+4 t^{8}+2 t^{10}+t^{12}$
$\downarrow^{\pi_{3}}$	
$X / / G$	$I P_{t}(X / / G)=1+t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}+t^{12}$.

Intersection Betti numbers of the GIT quotient

Theorem (- 2022)
The Betti numbers of the partial desingularization $X_{1} / / G$ of the GIT quotient of quartic plane curves are given by

$$
P_{t}\left(X_{1} / / G\right)=1+3 t^{2}+5 t^{4}+6 t^{6}+5 t^{8}+3 t^{10}+t^{12} .
$$

Theorem (- 2022)
The intersection Betti numbers of the GIT quotient $X / / G$ of quartic plane curves are given by

$$
I P_{t}(X / / G)=1+t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}+t^{12} .
$$

Intersection Betti numbers of the GIT quotient

Let \mathcal{F}_{2} be the space of holomorphic foliatitions on \mathbb{P}^{2} of degree 2 .
\mathcal{F}_{2} is a projective variety of dimension 14 .
Theorem (C. Reynoso, - 2022)
The intersection Betti numbers of the GIT quotient $\mathcal{F}_{2} / / \mathrm{SL}_{3}(\mathbb{C})$ are given by

$$
I P_{t}\left(\mathcal{F}_{2} / / G\right)=1+t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}+t^{12}
$$

There is a birational morphism $\mathcal{F}_{2} \rightarrow X$ [Esteves and Marchisio]. How are the GIT quotients $\mathcal{F}_{2} / / G$ and $X / / G$ related?

References

冨 Frances Clare Kirwan．
Cohomology of quotients in symplectic and algebraic geometry， volume 31.

Princeton University Press， 1984.
围 Frances Clare Kirwan．
Partial desingularisations of quotients of nonsingular varieties and their Betti numbers．

Annals of mathematics，122（1）：41－85， 1985.
围 Frances Clare Kirwan．
Rational intersection cohomology of quotient varieties．
Inventiones mathematicae，86（3）：471－505， 1986.

Sicarú zedatu guidxi Lula' (Welcome to Oaxaca) Xquixepe laatu (Thank you)

