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Introduction

Plan of the talk: Kirwan’s techniques for cohomology of GIT

quotients.

▸ Space of quartic plane curves

▸ An equivariantly perfect stratification (HKKN)

▸ Cohomology of quotients (equivariant cohomology)

▸ Partial desingularization (Kirwan blow-up)

▸ Intersection Betti numbers
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Space of quartic plane curves

Let X = P(C[x, y, z]4) and G = SL3(C). Then consider

G ×X →X

(g,F (x, y, z))↦ F (g−1(x, y, z)).

▸ We are interested in the GIT quotient

X//G = ProjR(X)G.

▸ This is an irreducible projective variety of dimension 6.
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GIT of quartic plane curves

▸ R(X)G is generated by 13 homogeneous invariant

polynomials.

▸ To construct the GIT quotient we first eliminate a closed

subset Xun from X.

▸ A point x ∈X is unstable if f(x) = 0 for every f ∈ R(X)G.

▸ X ∖Xun ∶=Xss is the open subset of semistable points.

The GIT quotient is

Xss →X//G ∶= ProjR(X)G.
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Stability of quartic plane curves

We can characterize all the quartics according to their stability.

▸ Semistable quartics:

▸ Smooth quartics (stable)

▸ Quartics with ordinary double points (stable)

▸ Tacnodal quartics (strictly semistable)

▸ {O2, OO, OX} (strictly semistable)

▸ Unstable quartics:

▸ Quartics with a triple point or a product of 4 concurrent lines.

5 / 23



y4

xy3

x2y2

x3y

x4

x3z

x2z2

xz3

z4

yz3

y2z2

xy2z

x2yz

xyz2

0

rooths
weights

y3z

Figure: Diagram of weights and unstable set
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Kirwan’s Stratification

Theorem (Kirwan)

There exists a stratification {Sβ ∶ β ∈ B} of X such that

▸ The unique open stratum is S0 =Xss.

▸ Sβ is a non singular, locally closed subvariety for every

0 ≠ β ∈ B.

▸ For β ≠ 0, Sβ ⊆ ⋃β≤β′ Sβ′ .

▸ This stratification is perfectly equivariant.

8 / 23



Stratification of unstable quartics

Stratum Dim Characterization

S1 2 l4: line of multiplicity 4

S2 4 l31l2: product of a triple line and other line

S3 6 products l1l2l3l4, l21l2l3, l
2
1l

2
2 of concurrent lines

S4 6 product of an irreducible conic and a double tangent line

S5 7 product of a cuspidal cubic and a tangent line at the cusp

S6 8 irreducible quartic with a simple cusp of multiplicity 3

Table: Classification of unstable quartic plane curves
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Stratification of unstable quartics

Stratum Dim Characterization

S7 7 product of a conic and a non tangent double line

S8 8 product of a nodal cubic and a tangent line at the node

S9 9 quartic with a triple point with two branches

meeting transversely, one of them is smooth

and the other one is a cuspidal curve at the point

S10 10 quartic plane curve with an ordinary triple point

S11 9 product of a non-singular cubic with a

tangent line at a flex point

Table: Classification of unstable quartic plane curves
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Stratification of unstable quartics

(a) S4 of dim. 6 (b) S5 of dim. 7 (c) S6 of dim. 8 (d) S7 of dim. 7 (e) S8 of dim. 8

(f) S9 of dim. 9 (g) S10 of dim. 10 (h) S10 (i) S11 of dim. 9

Figure: Some unstable strata
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Cohomology of GIT quotients

Theorem (Kirwan)

If for every point x ∈Xss the stabilizer of x is finite, then

H∗(X//G;Q) ≅H∗
G(Xss;Q), and

PGt (Xss) = PGt (X) − ∑
0≠β∈B

t2d(β)PGt (Sβ),

where d(β) = codim(Sβ). Moreover,

▸ PGt (X) = Pt(X)Pt(BG) if G is connected.

▸ PGt (Sβ) = P Stab(β)
t (Zssβ ) for a closed subvariety Zβ of X.
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The GIT quotient is singular

Unfortunately, for quartic plane curves, Pt(X//G) ≠ PGt (Xss).

PGt (Xss) = 1 + t2 + 3t4 + 5t6 + 5t8 + 4t10 + 2t12.

There exists quartic plane curves with stabilizer of positive

dimension. The GIT quotient is singular at the following places:

▸ {(y2 − xz)2} with stabilizer SO(3).

▸ P{ax2z2+bxy2z+cy4} with stabilizer T = {(t,1, t−1) ∣ t ∈ C∗}.
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Partial desingularization of the GIT quotient

We can solve these singularities by a sequence of blow-ups over

Xss (Kirwan blow-up, [Kir85])

X1
π1 // Xss

2
π2 // ⋯ πr−1 // Xss

r
πr // Xss,

which induces a sequence of blow-ups over the GIT quotient

X1//G
π1 // X2//G

π2 // ⋯ πr−1 // Xr//G
πr // X//G ,

such that the last blow-up is a partial desingularization of X//G.
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Kirwan blow-up

To construct a Kirwan blow-up, consider the following:

▸ Take R ∶= (Stab(x))0 for some x ∈Xss.

▸ R is a reductive subgroup of G.

▸ Define ZssR ∶= {x ∈Xss ∣ x is fixed by R}.

▸ GZssR is a G-invariant, non-singular, closed subvariety of Xss.

Let Y be the blow-up of Xss over GZssR . There exists a G-action

on Y such that R doesn’t occur as a stabilizer in Y .
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Kirwan blow-up

The cohomology of the blow-up Y →Xss of Xss along GZssR is

given by

H∗
G(Y ;Q) ≅H∗

G(Xss;Q)⊕H∗
G(E;Q)/H∗

G(GZssR ;Q).

Lemma (Kirwan)

The GIT quotient

Y ss → Y //G

is the blow-up of X//G over GZssR //G ∶= ZR//N .
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Cohomology of the desingularization

For quartic plane curves, we have the following:

X1
π1 // Xss

3
π3 // Xss .

▸ X3 is the blow-up of Xss over GZssSO(3).

▸ X1 is the blow-up of Xss
3 over GZ̃ssT .

This induces a sequence of blow-ups

X1//G
π1 // X3//G

π3 // X//G .

Every semistable point in X1 has finite stabilizer and

Pt(X1//G) = PGt (Xss
1 )
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Intersection cohomology of the GIT quotient

The intersection Betti numbers of the GIT quotients X//G and

Y //G are related by ([Kir86])

dim(IH i(X//G;Q)) = dim(IH i(Y //G;Q))

− ∑
p+q=i

dim[Hp(ZR//N(R)0;Q)⊗ IHt(q)(PNx//R;Q)]π0N(R).

Y ss //

π

��

Y //G

πG

��

Ess
1 Q

bb

//
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��

E//G
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::

πG
��

GZssRmM

||

// ZR//N
r�

$$
Xss // X//G
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Intersection Betti numbers of the GIT quotient

For the blow-ups on the GIT quotient of quartic plane curve, the

intersection Betti numbers are given by:

X1//G
π1

��

IPt(X1//G) = 1 + 3t2 + 5t4 + 6t6 + 5t8 + 3t10 + t12.

X3//G
π3

��

IPt(X3//G) = 1 + 2t2 + 4t4 + 4t6 + 4t8 + 2t10 + t12.

X//G IPt(X//G) = 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12.
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Intersection Betti numbers of the GIT quotient

Theorem (– 2022)

The Betti numbers of the partial desingularization X1//G of the

GIT quotient of quartic plane curves are given by

Pt(X1//G) = 1 + 3t2 + 5t4 + 6t6 + 5t8 + 3t10 + t12.

Theorem (– 2022)

The intersection Betti numbers of the GIT quotient X//G of

quartic plane curves are given by

IPt(X//G) = 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12.
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Intersection Betti numbers of the GIT quotient

Let F2 be the space of holomorphic foliatitions on P2 of degree 2.

F2 is a projective variety of dimension 14.

Theorem (C. Reynoso, – 2022)

The intersection Betti numbers of the GIT quotient F2//SL3(C)
are given by

IPt(F2//G) = 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12.

There is a birational morphism F2 →X [Esteves and Marchisio].

How are the GIT quotients F2//G and X//G related?
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Sicarú zedatu guidxi Lula’ (Welcome to Oaxaca)

Xquixepe laatu (Thank you)
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