On the Segre invariant for rank 2 vector bundles on \mathbb{P}^{2}

Leonardo Roa-Leguizamón
Universidad de los Andes, Bogota, Colombia

Moduli, Motives and Bundles - New Trends in Algebraic Geometry
September 19, 2021

Joint work with H. Torres-López and A.G. Zamora (Universidad Autónoma de Zacatecas)

arXiv:2003.02727
Advances in Geometry DOI:10.1515/advgeom-2021-0003

Moduli space of vector bundles on surfaces

Segre Invariant

A stratification of the moduli space $M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right)$

Applications to Brill-Noether Theory

Let X be a smooth, irreducible complex projective surface.

Definition (Mumford-Takemoto 1972)

Let H be an ample divisor on X. A vector bundle E on X is H-stable, if for all proper subbundle F,

$$
\mu_{H}(F)<\mu_{H}(E)
$$

where $\mu_{H}(\cdot)=\frac{\operatorname{deg}_{H}(\cdot)}{\operatorname{rank}(\cdot)}$ and $\operatorname{deg}_{H}(\cdot)=c_{1}(\cdot) \cdot H$.

Theorem (Maruyama 1977)
Let H be an ample divisor on X. There exists a moduli space $M_{X, H}\left(n ; c_{1}, c_{2}\right)$ for H-stable vector bundles of rank n and fixed Chern classes $c_{i} \in H^{2 i}(X, \mathbb{Z})$, for $i=1,2$.

Problems:

- Describe the geography of $M_{X, H}\left(n ; c_{1}, c_{2}\right)$, i.e, given topological invariants n, c_{1} and c_{2} lying in the admissible range, does there exist a stable vector bundle having these invariants?

$$
\Delta\left(n ; c_{1}, c_{2}\right):=2 n c_{2}-(n-1) c_{1}^{2}
$$

- What does the moduli space look like, as an algebraic variety? Is it for example, connected, irreducible, rational or smooth?,
- What does it look as topological space? What is it geometry? What are the singularities of the moduli space?.

Segre invariant

Definition

Let H be an ample divisor on X. For a rank 2 vector bundle E on X the Segre invariant $S_{H}(E)$ is defined as

$$
S_{H}(E):=\operatorname{deg}_{H}(E)-2 \max \left\{\operatorname{deg}_{H}(L)\right\},
$$

where the maximum is taken over all subline bundles L of E

- $S_{H}(E)=S_{H}(E \otimes L)$ for all $L \in \operatorname{Pic}(X)$.
- E is H-stable if and only if $S_{H}(E)>0$.
- The Segre invariant is always a finite number. The set

$$
\left\{\operatorname{deg}_{H}(L): L \subset E, L \text { a line bundle }\right\}
$$

is bounded from above.

- If $L \subset E$ is maximal, then
(i) $S_{H}(E)=\operatorname{deg}_{H}(E)-2 \operatorname{deg}_{H}(L)$,
(ii) E can be written in the exact sequence

$$
0 \rightarrow L \rightarrow E \rightarrow L^{\prime} \otimes I_{Z} \rightarrow 0
$$

where $L^{\prime} \otimes I_{Z}$ is torsion free and I_{Z} denote the ideal sheaf of a subscheme Z of codimension 2.

Theorem (Maruyama 1976)

Let ξ be a family of rank 2 vector bundles parameterized by $M_{X, H}\left(2 ; c_{1}, c_{2}\right)$. The function

$$
\begin{aligned}
& S_{H}: M_{X, H}\left(2 ; c_{1}, c_{2}\right) \longrightarrow \mathbb{Z}^{>0} \\
& t \longmapsto S_{H}\left(\mathcal{E}_{t}\right):=\operatorname{deg}_{H}\left(\mathcal{E}_{t}\right)-2 \max _{L \subset \mathcal{E}_{t}} \operatorname{deg}_{H}(L)
\end{aligned}
$$

is well defined and lower semicontinuous., i.e, the set

$$
\left\{E \in M_{X, H}\left(2 ; c_{1}, c_{2}\right): S_{H}(E)>s\right\}
$$

is open in $M_{X, H}\left(2 ; c_{1}, c_{2}\right)$.

The function

$$
S_{H}: M_{X, H}\left(2 ; c_{1}, c_{2}\right) \longrightarrow \mathbb{Z}^{>0}
$$

induces a stratification of the moduli space $M_{X, H}\left(2 ; c_{1}, c_{2}\right)$ into locally closed subsets

$$
M_{X, H}\left(2 ; c_{1}, c_{2} ; s\right):=\left\{E \in M_{X, H}\left(2 ; c_{1}, c_{2}\right): S_{H}(E)=s\right\}
$$

according to the value of s.

A stratification of the moduli space $M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right)$

- As $\operatorname{Pic}\left(\mathbb{P}^{2}\right) \cong \mathbb{Z}$, there is a unique notion of stability for \mathbb{P}^{2}.
- E is H-stable if and only if it is $a H$-stable, for $a \in \mathbb{N}$.
- We will use

$$
c_{1}(\cdot):=\operatorname{deg}_{H}(\cdot)=c_{1}(\cdot) \cdot \mathcal{O}_{\mathbb{P}^{2}}(1)
$$

to denote the degree with respect to $\mathcal{O}_{\mathbb{P}^{2}}(1)$.

- We will write

$$
S(E):=c_{1}(E)-2 \max _{\mathcal{O}_{\mathbb{P}^{2}}(k) \subset E}\left\{\mathcal{O}_{\mathbb{P}^{2}}(k)\right\}
$$

to denote the Segre invariant of the vector bundle E of rank 2 on \mathbb{P}^{2}.

- Since $S(E)=S(E \otimes L)$ for any line bundle L, we assume that E has degree $c_{1} \in\{-1,0\}$ and second Chern class c_{2}.
For convenience, we restrict our attention to the case $c_{1}=0$; and the Segre invariant can be written as

$$
\begin{aligned}
S(E) & :=c_{1}(E)-2 \max _{\mathcal{O}_{\mathbb{P}^{2}}(k) \subset E}\left\{\mathcal{O}_{\mathbb{P}^{2}}(k)\right\} \\
& =-2 \max _{\mathcal{O}_{\mathbb{P}^{2}}(k) \subset E}\left\{\mathcal{O}_{\mathbb{P}^{2}}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S: M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2}\right) \longmapsto \mathbb{Z}^{>0} \\
& t \longmapsto S\left(\xi_{t}\right)=-2 \max _{\mathcal{O}_{\mathbb{P}^{2}}(-k) \subset E} \mathcal{O}_{\mathbb{P}^{2}}(-k)=2 k \\
& M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2} ; 2 k\right):=\left\{E \in M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2}\right): S_{H}(E)=2 k\right\}
\end{aligned}
$$

Questions

- Q1: Which possible values can the function $S_{H}(E)$ take?
- Q2: For which values of k are the strata non-empty ?
- Q3: What is the dimension of the stratum $M_{X, H}\left(2 ; 0, c_{2} ; 2 k\right)$? Is it irreducible?
- Q4: What is the Segre invariant of a general bundle in the moduli space?
- Q5: Applications to Brill-Noether Theory.

Theorem (-, Torres-López, Zamora 2021)

Let $c_{2} \geq 2$ and $k \in \mathbb{N}$. Then a vector bundle $E \in M_{\mathbb{P}^{2}}\left(2,0, c_{2}\right)$ with $S(E)=2 k$ exists if and only if $k^{2}+k \leq c_{2}$. Furthermore, E fits in an exact sequence:

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(k) \otimes I_{Z} \longrightarrow 0
$$

with $Z \subset \mathbb{P}^{2}$ of codimension 2 and $\mathcal{O}_{\mathbb{P}^{2}}(-k) \subset E$ maximal. Moreover, $M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2} ; 2 k\right)$ is an irreducible variety of dimension:

$$
\begin{cases}3 c_{2}+k^{2}+3 k-2, & \text { if } c_{2}>k^{2}+3 k+1 \\ 4 c_{2}-3, & \text { if } c_{2} \leq k^{2}+3 k+1\end{cases}
$$

$$
\operatorname{dim} M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2}\right)=4 c_{2}-3
$$

Sketch of the proof

Theorem (Serre correspondence)

Let $Z \subset X$ be a local complete intersection of codimension two in the projective non-singular surface X, and let L and M be line bundles on X. Then there exists an extension

$$
0 \longrightarrow L \longrightarrow E \longrightarrow M \otimes I_{Z} \longrightarrow 0
$$

such that E is locally free if and only if the pair $\left(L^{-1} \otimes M \otimes \omega_{X}, Z\right)$ satisfy the Cayley-Bacharach property:
$(C B)$ if $Z^{\prime} \subset Z$ is a sub-scheme with $I(\tilde{Z})=I(Z)-1$ and $s \in H^{0}\left(L^{-1} \otimes M \otimes \omega_{X}\right)$ with $\left.s\right|_{\tilde{Z}}=0$, then $\left.s\right|_{Z}=0$.

Claim: If $k^{2}+k \leq c_{2}$, then there exists a vector bundle $E \in M_{\mathbb{P}^{2}}\left(2,0, c_{2}\right)$ with $S(E)=2 k$.

- Let $Z \subset \mathbb{P}^{2}$ of codimension two such that Z is not contained in any curve of degree $2 k-1$.
- The pair $\left(\mathcal{O}_{\mathbb{P}^{2}}(2 k-3), Z\right)$ satisfies the Cayley-Bacharach property. We have an extension

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(k) \otimes I_{Z} \longrightarrow 0
$$

where E is locally free. Moreover, since Z is not contained in any curve of degree $2 k-1$ it follows that

$$
h^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(k) \otimes I_{Z}\right)=h^{0}\left(\mathbb{P}^{2}, E\right)=0
$$

Therefore, the vector bundle E is stable.

We assume that there exists $\mathcal{O}_{\mathbb{P}^{2}}(-l), l<k$

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-k+I) \rightarrow E(I) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(k+I) \otimes I_{Z} \rightarrow 0
$$

Since $l<k$ it follows that:

$$
h^{0}(E(I))=h^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(k+I) \otimes I_{Z}\right) \leq h^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(2 k-1) \otimes I_{Z}\right)=0
$$

This implies that $\mathcal{O}_{\mathbb{P}^{2}}(-I)$ is not a subbundle of E. Thus $\mathcal{O}_{\mathbb{P}^{2}}(-k)$ is maximal and

$$
S(E)=-2 c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(-k)\right)=2 k .
$$

If $E \in M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2} ; 2 k\right)$, then E can be written in the exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(k) \otimes I_{Z} \longrightarrow 0
$$

where $I(Z)$ denotes the length of Z. Therefore,

$$
\begin{aligned}
& \operatorname{dim} M_{\mathbb{P}^{2}}\left(2 ; 0, c_{2} ; 2 k\right)=\operatorname{dim} \operatorname{Hilb}^{\prime(Z)}\left(\mathbb{P}^{2}\right)+ \\
& \quad \operatorname{dim} E x t^{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(k) \otimes I_{Z}, \mathcal{O}_{\mathbb{P}^{2}}(-k)\right)-\operatorname{dim} \mathbb{P} H^{0}(E(k))-1 . \\
& \quad= \begin{cases}3 c_{2}+k^{2}+3 k-2, & \text { if } c_{2}>k^{2}+3 k+1 \\
4 c_{2}-3, & \text { if } c_{2} \leq k^{2}+3 k+1 .\end{cases}
\end{aligned}
$$

Corollary

Let r, c_{2} and $k \in \mathbb{N}$ such that $c_{2} \geq r^{2}+2$. Then a vector bundle $E \in M_{\mathbb{P}^{2}}\left(2,2 r, c_{2}\right)$ with $S(E)=2 k$ exists if and only if $k^{2}+k+r^{2} \leq c_{2}$. Furthermore, E fits in an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(r-k) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(r+k) \otimes I_{Z} \rightarrow 0
$$

Moreover, $M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2} ; 2 k\right)$ is an irreducible variety of dimension

$$
\begin{cases}3 c_{2}-3 r^{2}+k^{2}+3 k-2, & \text { if } c_{2}>r^{2}+k^{2}+3 k+1 \\ 4 c_{2}-4 r^{2}-3, & \text { if } c_{2} \leq r^{2}+k^{2}+3 k+1\end{cases}
$$

$$
\operatorname{dim} M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2}\right)=4 c_{2}-4 r^{2}-3 .
$$

Applications to Brill-Noether Theory

Let $M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right)$ be the moduli space of stable vector bundles of rank 2 on \mathbb{P}^{2} with fixed Chern classes c_{1}, c_{2}.

For any $t \geq 0$, the subvariety of $M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right)$ defined as

$$
W^{t}\left(2 ; c_{1}, c_{2}\right):=\left\{E \in M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right): h^{0}\left(\mathbb{P}^{2}, E\right) \geq t\right\}
$$

is called the t-Brill-Noether locus of the moduli space $M_{\mathbb{P}^{2}}\left(2 ; c_{1}, c_{2}\right)$.
(Costa, Miro-Roig 2008)

- For any $t \geq 0, W^{t}\left(2 ; c_{1}, c_{2}\right)$ has structure of determinantal variety.
- Each non-empty irreducible component of $W^{t}\left(2 ; c_{1}, c_{2}\right)$ has dimension greater or equal to the Brill-Noether number on \mathbb{P}^{2}

$$
\rho^{t}\left(2 ; c_{1}, c_{2}\right):=4 c_{2}-c_{1}^{2}-3-t\left(t-\frac{c_{1}^{2}}{2}-\frac{3 c_{1}}{2}+c_{2}-2\right) .
$$

Theorem (-, Torres-López, Zamora 2021)

Let r, k, c_{2} be integers. Assume,

$$
t=\frac{(r-k+2)(r-k+1)}{2}
$$

Let $E \in M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2} ; 2 k\right)$. Then

$$
\begin{cases}E \notin W^{1}\left(2 ; 2 r, c_{2}\right), & \text { if } r<k \\ E \in W^{t}\left(2 ; 2 r, c_{2}\right), & \text { if } r \geq k\end{cases}
$$

Moreover, the Brill-Noether number

$$
\rho^{t}\left(2,2 r, c_{2}\right)<\operatorname{dim} M_{\mathbb{P}^{2}}\left(2,2 r, c_{2} ; 2 k\right) \leq \operatorname{dim} W^{t}\left(2,2 r, c_{2}\right)
$$

for $c_{2} \gg 0$.

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(r-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(r+k) \otimes I_{Z} \longrightarrow 0
$$

Theorem (-, Torres-López, Zamora 2021)

Let $r, k, c_{2} \in \mathbb{N}$

- Assume $r^{2}+2 \leq c_{2}$ and $k<r$. Then, a vector bundle $E \in M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2}, 2 k\right)$ exists such that

$$
h^{0}\left(\mathbb{P}^{2}, E\right) \geq(r-k)^{2}+4(r-k)+3 .
$$

- Assume $r \geq 2,3 k^{2}-4 k+r^{2}+2<c_{2}$ and $k<r$. Let $t=(r-k)^{2}+4(r-k)+3$. Then, $\operatorname{dim} W^{t}\left(2 ; 2 r, c_{2}\right) \geq$

$$
\begin{cases}2 c_{2}+2 k^{2}-2 r^{2}+4 k-2, & \text { if } c_{2}>k^{2}+3 k+r^{2}+1 \\ k^{2}+3 c_{2}+k-r^{2}-3, & \text { if } c_{2} \leq k^{2}+3 k+r^{2}+1\end{cases}
$$

Weak Brill-Noether

Definition

The moduli space $M_{X, H}\left(n ; c_{1}, c_{2}\right)$ satisfies weak Brill-Noether if the general sheaf in $M_{X, H}\left(n ; c_{1}, c_{2}\right)$ has at most one nonzero cohomology group.

Theorem (Göttsche, Hirschowitz 1994)

Suppose that $c_{1}>0$ and $c_{2}=2+\frac{c_{1}^{2}+3 c_{1}}{2}$. Then the moduli space $M_{\mathbb{P}^{2}}\left(2, c_{1}, c_{2}\right)$ satisfies weak Brill-Noether.

Let $k=r+1$, then the stratum $M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2} ; 2 k\right)$ is open and $h^{0}\left(\mathbb{P}^{2}, E\right)=0$ for any $E \in M_{\mathbb{P}^{2}}\left(2 ; 2 r, c_{2} ; 2 k\right)$.

Thank you for your attention!!

