On the Segre invariant for rank 2 vector bundles on \mathbb{P}^2

Leonardo Roa-Leguizamón Universidad de los Andes, Bogota, Colombia

Moduli, Motives and Bundles - New Trends in Algebraic Geometry

September 19, 2021

Joint work with H. Torres-López and A.G. Zamora

(Universidad Autónoma de Zacatecas)

arXiv:2003.02727
Advances in Geometry DOI:10.1515/advgeom-2021-0003

Moduli space of vector bundles on surfaces

Segre Invariant

A stratification of the moduli space $M_{\mathbb{P}^2}(2; c_1, c_2)$

Applications to Brill-Noether Theory

Let X be a smooth, irreducible complex projective surface.

Definition (Mumford-Takemoto 1972)

Let H be an ample divisor on X. A vector bundle E on X is H-stable, if for all proper subbundle F,

$$\mu_{H}(F) < \mu_{H}(E)$$

where $\mu_H(\cdot) = \frac{\deg_H(\cdot)}{\operatorname{rank}(\cdot)}$ and $\deg_H(\cdot) = c_1(\cdot) \cdot H$.

Theorem (Maruyama 1977)

Let H be an ample divisor on X. There exists a moduli space $M_{X,H}(n; c_1, c_2)$ for H-stable vector bundles of rank n and fixed Chern classes $c_i \in H^{2i}(X, \mathbb{Z})$, for i = 1, 2.

Problems:

▶ Describe the geography of $M_{X,H}(n; c_1, c_2)$, i.e, given topological invariants n, c_1 and c_2 lying in the admissible range, does there exist a stable vector bundle having these invariants?

$$\Delta(n; c_1, c_2) := 2nc_2 - (n-1)c_1^2$$

- What does the moduli space look like, as an algebraic variety? Is it for example, connected, irreducible, rational or smooth?,
- ► What does it look as topological space? What is it geometry? What are the singularities of the moduli space?.

Segre invariant

Definition

Let H be an ample divisor on X. For a rank 2 vector bundle E on X the Segre invariant $S_H(E)$ is defined as

$$S_H(E) := \deg_H(E) - 2 \max\{\deg_H(L)\},\$$

where the maximum is taken over all subline bundles L of E

- ► $S_H(E) = S_H(E \otimes L)$ for all $L \in Pic(X)$.
- ▶ E is H-stable if and only if $S_H(E) > 0$.
- The Segre invariant is always a finite number. The set

$$\{deg_H(L): L \subset E, L \text{ a line bundle}\},\$$

is bounded from above.

▶ If $L \subset E$ is maximal, then

(i)
$$S_H(E) = deg_H(E) - 2 deg_H(L)$$
,

(ii) E can be written in the exact sequence

$$0 o L o E o L' \otimes I_Z o 0$$

where $L' \otimes I_Z$ is torsion free and I_Z denote the ideal sheaf of a subscheme Z of codimension 2.

Theorem (Maruyama 1976)

is open in $M_{X,H}(2; c_1, c_2)$.

$$M_{X,H}(2; c_1, c_2)$$
. The function
$$Su: M_{X,H}(2; c_2, c_3) \longrightarrow \mathbb{Z}^{>0}$$

$$S_H: M_{X,H}(2; c_1, c_2) \longrightarrow \mathbb{Z}^{>0} \ t \longmapsto S_H(\mathcal{E}_t) := deg_H(\mathcal{E}_t) - 2 \max_{L \subset \mathcal{E}_t} deg_H(L)$$

 $\{E \in M_{X,H}(2; c_1, c_2) : S_H(E) > s\}$

is well defined and lower semicontinuous. , i.e, the set

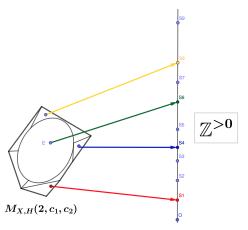
Let ξ be a family of rank 2 vector bundles parameterized by

The function

$$S_H: M_{X,H}(2; c_1, c_2) \longrightarrow \mathbb{Z}^{>0}$$

induces a stratification of the moduli space $M_{X,H}(2; c_1, c_2)$ into locally closed subsets

$$M_{X,H}(2;c_1,c_2;s):=\{E\in M_{X,H}(2;c_1,c_2):S_H(E)=s\}$$
 according to the value of s.



A stratification of the moduli space $M_{\mathbb{P}^2}(2; c_1, c_2)$

- As $Pic(\mathbb{P}^2) \cong \mathbb{Z}$, there is a unique notion of stability for \mathbb{P}^2 .
 - ightharpoonup E is H-stable if and only if it is aH-stable, for $a \in \mathbb{N}$.
- We will use

$$c_1(\cdot) := \mathsf{deg}_{\mathsf{H}}(\cdot) = c_1(\cdot) \cdot \mathcal{O}_{\mathbb{P}^2}(1)$$

to denote the degree with respect to $\mathcal{O}_{\mathbb{P}^2}(1)$.

We will write

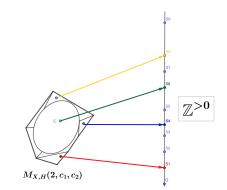
$$S(E) := c_1(E) - 2 \max_{\mathcal{O}_{\mathbb{P}^2}(k) \subset E} \{\mathcal{O}_{\mathbb{P}^2}(k)\}$$

to denote the Segre invariant of the vector bundle E of rank 2 on \mathbb{P}^2 .

▶ Since $S(E) = S(E \otimes L)$ for any line bundle L, we assume that E has degree $c_1 \in \{-1, 0\}$ and second Chern class c_2 .

For convenience, we restrict our attention to the case $c_1 = 0$; and the Segre invariant can be written as

$$egin{aligned} S(E) &:= c_1(E) - 2 \max_{\mathcal{O}_{\mathbb{P}^2}(k) \subset E} \{\mathcal{O}_{\mathbb{P}^2}(k)\} \ &= -2 \max_{\mathcal{O}_{\mathbb{P}^2}(k) \subset E} \{\mathcal{O}_{\mathbb{P}^2}(k)\} \end{aligned}$$



$$S: M_{\mathbb{P}^2}(2; 0, c_2) \longmapsto \mathbb{Z}^{>0}$$

$$t \longmapsto S(\xi_t) = -2 \max_{\mathcal{O}_{\mathbb{P}^2}(-k) \subset E} \mathcal{O}_{\mathbb{P}^2}(-k) = 2k$$

$$M_{\mathbb{P}^2}(2;0,c_2;2k) := \{E \in M_{\mathbb{P}^2}(2;0,c_2) : S_H(E) = 2k\}$$

Questions

- ▶ Q1: Which possible values can the function $S_H(E)$ take?
- Q2: For which values of k are the strata non-empty?
- ▶ Q3: What is the dimension of the stratum $M_{X,H}(2; 0, c_2; 2k)$? Is it irreducible?
- Q4: What is the Segre invariant of a general bundle in the moduli space?
- Q5: Applications to Brill-Noether Theory.

Theorem (—, Torres-López, Zamora 2021)

Let $c_2 \ge 2$ and $k \in \mathbb{N}$. Then a vector bundle $E \in M_{\mathbb{P}^2}(2,0,c_2)$ with S(E) = 2k exists if and only if $k^2 + k \le c_2$. Furthermore, E fits in an exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^2}(k) \otimes I_Z \longrightarrow 0,$$

with $Z \subset \mathbb{P}^2$ of codimension 2 and $\mathcal{O}_{\mathbb{P}^2}(-k) \subset E$ maximal. Moreover, $M_{\mathbb{P}^2}(2; 0, c_2; 2k)$ is an irreducible variety of dimension:

$$\begin{cases} 3c_2 + k^2 + 3k - 2, & \text{if } c_2 > k^2 + 3k + 1 \\ 4c_2 - 3, & \text{if } c_2 \le k^2 + 3k + 1. \end{cases}$$

$$\dim M_{\mathbb{P}^2}(2;0,c_2)=4c_2-3.$$

Sketch of the proof

Theorem (Serre correspondence)

Let $Z \subset X$ be a local complete intersection of codimension two in the projective non-singular surface X, and let L and M be line bundles on X. Then there exists an extension

$$0\longrightarrow L\longrightarrow E\longrightarrow M\otimes I_Z\longrightarrow 0$$

such that E is locally free if and only if the pair $(L^{-1}\otimes M\otimes \omega_X,Z)$ satisfy the Cayley-Bacharach property:

(CB) if
$$Z' \subset Z$$
 is a sub-scheme with $I(\tilde{Z}) = I(Z) - 1$ and $s \in H^0(L^{-1} \otimes M \otimes \omega_X)$ with $s|_{\tilde{Z}} = 0$, then $s|_{Z} = 0$.

Claim: If $k^2 + k \le c_2$, then there exists a vector bundle $E \in M_{\mathbb{P}^2}(2, 0, c_2)$ with S(E) = 2k.

- Let $Z \subset \mathbb{P}^2$ of codimension two such that Z is not contained in any curve of degree 2k-1.
- ▶ The pair $(\mathcal{O}_{\mathbb{P}^2}(2k-3), Z)$ satisfies the Cayley-Bacharach property. We have an extension

$$0\longrightarrow \mathcal{O}_{\mathbb{P}^2}(-k)\longrightarrow E\longrightarrow \mathcal{O}_{\mathbb{P}^2}(k)\otimes I_Z\longrightarrow 0$$

where E is locally free. Moreover, since Z is not contained in any curve of degree 2k-1 it follows that

$$h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(k) \otimes I_Z) = h^0(\mathbb{P}^2, E) = 0.$$

Therefore, the vector bundle *E* is stable.

$$\mathcal{O}_{\mathbb{P}^2}(-I)$$

$$\downarrow$$

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-k) \longrightarrow E \longrightarrow \mathcal{O}_{\mathbb{P}^2}(k) \otimes I_Z \longrightarrow 0$$

We assume that there exists $\mathcal{O}_{\mathbb{P}^2}(-I)$, I < k

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-k+1) \to E(1) \to \mathcal{O}_{\mathbb{P}^2}(k+1) \otimes I_Z \to 0.$$

Since l < k it follows that:

$$h^0(E(I)) = h^0(\mathcal{O}_{\mathbb{P}^2}(k+I) \otimes I_Z) \leq h^0(\mathcal{O}_{\mathbb{P}^2}(2k-1) \otimes I_Z) = 0.$$

This implies that $\mathcal{O}_{\mathbb{P}^2}(-l)$ is not a subbundle of E. Thus $\mathcal{O}_{\mathbb{P}^2}(-k)$ is maximal and

$$S(E) = -2c_1(\mathcal{O}_{\mathbb{P}^2}(-k)) = 2k.$$

If $E \in M_{\mathbb{P}^2}(2; c_1, c_2; 2k)$, then E can be written in the exact sequence

$$0\longrightarrow \mathcal{O}_{\mathbb{P}^2}(-k)\longrightarrow E\longrightarrow \mathcal{O}_{\mathbb{P}^2}(k)\otimes I_Z\longrightarrow 0$$

where I(Z) denotes the length of Z. Therefore,

$$\dim M_{\mathbb{P}^2}(2;0,c_2;2k) = \dim Hilb^{I(Z)}(\mathbb{P}^2) +$$

$$\dim Ext^1(\mathcal{O}_{\mathbb{P}^2}(k) \otimes I_Z, \mathcal{O}_{\mathbb{P}^2}(-k)) - \dim \mathbb{P}H^0(E(k)) - 1.$$

$$= \begin{cases} 3c_2 + k^2 + 3k - 2, & \text{if } c_2 > k^2 + 3k + 1 \\ 4c_2 - 3, & \text{if } c_2 \le k^2 + 3k + 1. \end{cases}$$

Corollary

Let r, c_2 and $k \in \mathbb{N}$ such that $c_2 \geq r^2 + 2$. Then a vector bundle $E \in M_{\mathbb{P}^2}(2, 2r, c_2)$ with S(E) = 2k exists if and only if $k^2 + k + r^2 \leq c_2$. Furthermore, E fits in an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^2}(r-k) \to E \to \mathcal{O}_{\mathbb{P}^2}(r+k) \otimes I_Z \to 0.$$

Moreover, $M_{\mathbb{P}^2}(2; 2r, c_2; 2k)$ is an irreducible variety of dimension

$$\begin{cases} 3c_2 - 3r^2 + k^2 + 3k - 2, & \text{if } c_2 > r^2 + k^2 + 3k + 1 \\ 4c_2 - 4r^2 - 3, & \text{if } c_2 \le r^2 + k^2 + 3k + 1. \end{cases}$$

$$\dim M_{\mathbb{P}^2}(2; 2r, c_2) = 4c_2 - 4r^2 - 3.$$

Applications to Brill-Noether Theory

Let $M_{\mathbb{P}^2}(2; c_1, c_2)$ be the moduli space of stable vector bundles of rank 2 on \mathbb{P}^2 with fixed Chern classes c_1 , c_2 .

For any $t \geq 0$, the subvariety of $M_{\mathbb{P}^2}(2; c_1, c_2)$ defined as

$$W^{t}(2; c_{1}, c_{2}) := \{ E \in M_{\mathbb{P}^{2}}(2; c_{1}, c_{2}) : h^{0}(\mathbb{P}^{2}, E) \geq t \}$$

is called the t-Brill-Noether locus of the moduli space $M_{\mathbb{P}^2}(2; c_1, c_2)$.

(Costa, Miro-Roig 2008)

- For any $t \ge 0$, $W^t(2; c_1, c_2)$ has structure of determinantal variety.
- ▶ Each non-empty irreducible component of $W^t(2; c_1, c_2)$ has dimension greater or equal to the Brill-Noether number on \mathbb{P}^2

$$\rho^{t}(2;c_{1},c_{2}):=4c_{2}-c_{1}^{2}-3-t\left(t-\frac{c_{1}^{2}}{2}-\frac{3c_{1}}{2}+c_{2}-2\right).$$

Theorem (—, Torres-López, Zamora 2021)

Let r, k, c_2 be integers. Assume,

$$t=\frac{(r-k+2)(r-k+1)}{2}.$$

Let $E \in M_{\mathbb{P}^2}(2; 2r, c_2; 2k)$. Then

$$\begin{cases} E \notin W^{1}(2; 2r, c_{2}), & \text{if } r < k \\ E \in W^{t}(2; 2r, c_{2}), & \text{if } r \geq k. \end{cases}$$

Moreover, the Brill-Noether number

$$\rho^{t}(2, 2r, c_{2}) < \dim M_{\mathbb{P}^{2}}(2, 2r, c_{2}; 2k) \leq \dim W^{t}(2, 2r, c_{2})$$

for $c_2 >> 0$.

$$0\longrightarrow \mathcal{O}_{\mathbb{P}^2}(r-k)\longrightarrow E\longrightarrow \mathcal{O}_{\mathbb{P}^2}(r+k)\otimes I_Z\longrightarrow 0,$$

Theorem (—, Torres-López, Zamora 2021)

Let
$$r, k, c_2 \in \mathbb{N}$$
Assume $r^2 + 2 \le c_2$ and $k < r$. Then, a vector bundle

$$E \in M_{\mathbb{P}^2}(2;2r,c_2,2k)$$
 exists such that

$$h^0(\mathbb{P}^2, E) \ge (r-k)^2 + 4(r-k) + 3.$$

$$h^0(\mathbb{P}^2, E) \ge (r - k)^2 + 4(r - k) + 3.$$
Assume $r > 2$, $3k^2 - 4k + r^2 + 2 < c_2$ and $k < r$. Let

$$t=(r-k)^2+4(r-k)+3$$
. Then, $dim\ W^t(2;2r,c_2)\geq$

 $\begin{cases} 2c_2 + 2k^2 - 2r^2 + 4k - 2, & \text{if } c_2 > k^2 + 3k + r^2 + 1 \\ k^2 + 3c_2 + k - r^2 - 3, & \text{if } c_2 \le k^2 + 3k + r^2 + 1. \end{cases}$

Assume
$$r \ge 2$$
, $3k^2 - 4k + r^2 + 2 < c_2$ and $k < r$. Let $t = (r - k)^2 + 4(r - k) + 3$. Then,

Weak Brill-Noether

Definition

The moduli space $M_{X,H}(n;c_1,c_2)$ satisfies weak Brill-Noether if the general sheaf in $M_{X,H}(n;c_1,c_2)$ has at most one nonzero cohomology group.

Theorem (Göttsche, Hirschowitz 1994)

Suppose that $c_1>0$ and $c_2=2+\frac{c_1^2+3c_1}{2}$. Then the moduli space $M_{\mathbb{P}^2}(2,c_1,c_2)$ satisfies weak Brill-Noether.

Let k=r+1, then the stratum $M_{\mathbb{P}^2}(2;2r,c_2;2k)$ is open and $h^0(\mathbb{P}^2,E)=0$ for any $E\in M_{\mathbb{P}^2}(2;2r,c_2;2k)$.

Thank you for your attention!!