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The classical theory.

Algebra of endomorphisms of vector bundles.

Moduli fixing the algebra of endomorphisms.

The results for rank 3 are part of the Ph. D. Thesis of my
student Rocı́o Rı́os Siérra.

The results for HN-length > 2 are in progress and the article
will be submitted soon in arXiv.
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Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

Let C be a smooth projective curve of genus g ≥ 2

Classical Theory

E a vector bundle over C

degree E := d = deg(det(E)), n := rk(E)

Slope of E is the rational number

µ(E) :=
d
n
.

(For higher dimensional varieties, fix a polarization H, Then

degH := c1(E) · [H]dimX−1 µH(E) :=
deg(E)H

rk(E)
)



Moduli and ednomorphisms of vector bundles

Clasical Theory

µ(E) =
d
n

Let E be a vector bundle over C and F ⊂ E a subbundle.

E is semistable if µ(F) ≤ µ(E), for all subbundles F

E is stable if µ(F) < µ(E), for all subbundles F

E is unstable (no semistable) if µ(F) > µ(E) for some
subbundle F .



Moduli and ednomorphisms of vector bundles

Clasical Theory

µ(E) =
d
n

Let E be a vector bundle over C and F ⊂ E a subbundle.

E is semistable if µ(F) ≤ µ(E), for all subbundles F

E is stable if µ(F) < µ(E), for all subbundles F

E is unstable (no semistable) if µ(F) > µ(E) for some
subbundle F .



Moduli and ednomorphisms of vector bundles

Clasical Theory

µ(E) =
d
n

Let E be a vector bundle over C and F ⊂ E a subbundle.

E is semistable if µ(F) ≤ µ(E), for all subbundles F

E is stable if µ(F) < µ(E), for all subbundles F

E is unstable (no semistable) if µ(F) > µ(E) for some
subbundle F .



Moduli and ednomorphisms of vector bundles

Clasical Theory

µ(E) =
d
n

Let E be a vector bundle over C and F ⊂ E a subbundle.

E is semistable if µ(F) ≤ µ(E), for all subbundles F

E is stable if µ(F) < µ(E), for all subbundles F

E is unstable (no semistable) if µ(F) > µ(E) for some
subbundle F .



Moduli and ednomorphisms of vector bundles

Clasical Theory

µ(E) =
d
n

Let E be a vector bundle over C and F ⊂ E a subbundle.

E is semistable if µ(F) ≤ µ(E), for all subbundles F

E is stable if µ(F) < µ(E), for all subbundles F

E is unstable (no semistable) if µ(F) > µ(E) for some
subbundle F .



Moduli and ednomorphisms of vector bundles

Clasical Theory

Filtration

Any vector bundle over C has a unique filtration, called the
Harder-Narasimhan filtration,

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E (1)

such that for 1 ≤ i ≤ m,
1 Ei/Ei−1 is semistable and
2 µ(E1) > µ(E2/E1) > · · · > µ(Em/Em−1).
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HN-filtration

If
0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E (2)

is the the Harder-Narasimhan filtration of E then
1 m := HN − lenght
2 the HN-type is σ = (µ1, . . . , µm).
3 It is of HN-simple (resp. coprime) type if Ei and Ei/Ei−1 are

simple (resp. coprime).
4 E is semistable iff the HN − lenght = 1
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Filtration for semistable bundles

Any semistable vector bundle over C has a filtration, called
Jordan-Holder filtration,

0 = E0 ⊂ E1 ⊂ · · · ⊂ Es = E (3)

such that for 1 ≤ i ≤ s.
1 Ei/Ei−1 is stable and
2 µ(E1) = µ(E2/E1) = · · · = µ(Es/Es−1).

3 Define gr(E) :=
⊕

Ei/Ei−1.
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Semistable bundles

gr(E) :=
⊕

Ei/Ei−1.

gr(E) is independent of the filtration

A semistable bundle E is called polystable if E is the direct
sum of stable bundles (of the same slope),

Two semistable bundles E and F are S-equivalent, E ∼S F iff
gr(E) � gr(F).

If E is stable gr(E) = E and E ∼S F is equivalent to E � F .
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Semistable bundles

Using GIT, Representations and Yang-Mills theory the moduli
space of stable bundles M(n, d) of rank n and degree d was
constructed, mainly by Mumford, Narasimham-Seshadri,
Ramanan, Donaldson respectively, in 1960′s − 1980′s.

M(n, d) is a quasi-projective variety of dimension
n2(g − 1) + 1.

The moduli of S-equivalent classes M̃(n, d) is a projective
variety and M(n, d) ⊂ M̃(n, d).

If (n, d) are coprime M̃(n, d) = M(n.d)
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M(n, d)

M(n, d) is smooth

Some desingularations of M̃(n, d) have been constructed, e.g.
Francis Kirwan.

Construction as moduli stacks Bund(n, d) stack

New construction of ”good moduli spaces” by Jarod Alper,
Daniel Halpern-Leistner, Jochen Heinloth
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Clasical Theory

Semistable and unstable bundles

From the Harder-Narasimhan or the Jordan-Holder filtration
we have that unstable or semistable no-stable bundles can be
constructed as a successive extensions of stable or
semistable bundles.

We want to construct the moduli using the extension.

The first step is when the indecomposable bundle E is an
extension

ρ : 0→ E1 → E → E2 → 0

of two semistable vector bundles.
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If gr(E) = E1 ⊕ E2

Let E1 and E2 be two stable bundles with µ(E, 1) = µ(E2)

Given ρ : 0→ E1 → E → E2 → 0, E is semistable and
gr(E) = E1 ⊕ E2,

Since E1 and E2 are simple,

M(E1,E2) := P(T),

where T = H1(C ,E1 ⊗ E∗2)parameterize the isomorphic
classes of indecomposable vector bundles that are extensions
of E2 by E1.

Moreover, there is a universal extension and a universal family
G(F ,G) parameterized by P(T).
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Moreover, there is a universal extension and a universal family
G(F ,G) parameterized by P(T).
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The S-equivalence

Note that all the extensions ρ : 0→ E1 → E → E2 → 0 give
S-equivalent bundles.

Also the direct sum F = E1 ⊕ E2 has gr(F) = E1 ⊕ E2 and
E ∼S E1 ⊕ E2.

However, End(E) , End(F).

The S-equivalence identifies bundles with different algebra of
endomorphisms.
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parameterized by Mi , where Ei ∈ Mi .
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—– Non-simple semistable vector bundles over a curve, Math.
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In general

Given two vector bundles F and G, denote by T the vector
space T := H1(C ,F ⊗ G∗) Hence

M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G)

parameterize the isomorphic classes of vector bundles that
are extensions of G by F .

We want to describe
M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Given two vector bundles F and G, denote by T the vector
space T := H1(C ,F ⊗ G∗)

Hence

M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G)

parameterize the isomorphic classes of vector bundles that
are extensions of G by F .

We want to describe
M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Given two vector bundles F and G, denote by T the vector
space T := H1(C ,F ⊗ G∗) Hence

M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G)

parameterize the isomorphic classes of vector bundles that
are extensions of G by F .

We want to describe
M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Given two vector bundles F and G, denote by T the vector
space T := H1(C ,F ⊗ G∗) Hence

M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G)

parameterize the isomorphic classes of vector bundles that
are extensions of G by F .

We want to describe
M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

To describe M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).

If F and G are simple,

M(F ,G) := P(T),

where T = H1(C ,F ⊗ G∗). Moreover, there is a universal
extension and a universal family G(F ,G) parameterized by
P(T).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

To describe M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).

If F and G are simple,

M(F ,G) := P(T),

where T = H1(C ,F ⊗ G∗). Moreover, there is a universal
extension and a universal family G(F ,G) parameterized by
P(T).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

To describe M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).

If F and G are simple,

M(F ,G) := P(T),

where T = H1(C ,F ⊗ G∗). Moreover, there is a universal
extension and a universal family G(F ,G) parameterized by
P(T).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

To describe M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).

If F and G are simple,

M(F ,G) := P(T),

where T = H1(C ,F ⊗ G∗).

Moreover, there is a universal
extension and a universal family G(F ,G) parameterized by
P(T).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

To describe M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F) × Aut(G).

If F and G are simple,

M(F ,G) := P(T),

where T = H1(C ,F ⊗ G∗). Moreover, there is a universal
extension and a universal family G(F ,G) parameterized by
P(T).



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Let G1 a family of vector bundles parameterized by S1 such
that for some s ∈ S1, (G1)s = F

Similar with G, let G2 be such family of vector bundles
parameterized by S2.



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Let G1 a family of vector bundles parameterized by S1 such
that for some s ∈ S1, (G1)s = F

Similar with G, let G2 be such family of vector bundles
parameterized by S2.



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Let G1 a family of vector bundles parameterized by S1 such
that for some s ∈ S1, (G1)s = F

Similar with G, let G2 be such family of vector bundles
parameterized by S2.



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

Let G1 a family of vector bundles parameterized by S1 such
that for some s ∈ S1, (G1)s = F

Similar with G, let G2 be such family of vector bundles
parameterized by S2.



Moduli and ednomorphisms of vector bundles

Clasical Theory

In general

As before we will have a sheaf

R1 := R1
p23

(p∗12G1 ⊗ p∗13G
∗
2)

over S1 × S2.

The problem is that dim(T = H1(C ,F ⊗ G∗)) can change
when we vary F or G in S1 or S2.

We can control it using flattering stratifications.
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In a work with Rocı́o Rı́os Sı́erra we use the above
construction to describe moduli spaces of unstable bundles of
HN-lenght 2.

and in her Ph. D. thesis she consider the case of rank3.

E is unstable and is an extension ρ : 0→ E1 → E → E2 → 0
with E1 and E2 semistables

0 ⊂ E1 ⊂ E the HN-filtration and

µ(E1) > µ(E) > µ(E2).
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Hence dimHom(E2,E1) = h0(E∗2 ⊗ E1) is a problem on the
”twisted Brill-Noether theory”.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Unstable bundles

Let E be unstable of HN-lenght 2

The Harder-Narasimhan filtration gives the sequence

0→ E1
ı
→ E

℘
→ E2 → 0

In this case µ(E1) > µ(E2)

Hence dimHom(E2,E1) = h0(E∗2 ⊗ E1) is a problem on the
”twisted Brill-Noether theory”.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Unstable bundles

Let E be unstable of HN-lenght 2

The Harder-Narasimhan filtration gives the sequence

0→ E1
ı
→ E

℘
→ E2 → 0

In this case µ(E1) > µ(E2)

Hence dimHom(E2,E1) = h0(E∗2 ⊗ E1) is a problem on the
”twisted Brill-Noether theory”.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Unstable bundles

Let E be unstable of HN-lenght 2

The Harder-Narasimhan filtration gives the sequence

0→ E1
ı
→ E

℘
→ E2 → 0

In this case µ(E1) > µ(E2)

Hence dimHom(E2,E1) = h0(E∗2 ⊗ E1) is a problem on the
”twisted Brill-Noether theory”.



Moduli and ednomorphisms of vector bundles

Clasical Theory

As before we have

Rµ := R
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p23
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∗
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over M1 ×M2

In this case we use the flattering stratification given by the
twistead Brill-Noether theory.

In general, given 0→ G
ı
→ E

p
→ F → 0 any

0 , f ∈ H0(C ,F∗ ⊗ G)

0 // G ı // E
p // F //

f

ee 0

defines a nilpotent endomorphism φ = ı ◦ f ◦ p ∈ END(E).

Hence, dimEND(E) ≥ 1 + h0(F∗ ⊗ G).
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Unstable bundles of HN-lenght 2

Theorem —–, R. Rios Sierra (Theorem A)

Uµ1(n, d, k) the subset of indecomposable vector bundles of
HN-length 2 of coprime type σ = (µ1, µ2) and
dimEND(E) = 1 + k

If E ∈ Uµ1(n, d, k) and 0→ E1
ı
→ E

p
→ F1 → 0 then

k = h0(F∗1 ⊗ E1) i.e. dimEnd(E) = 1 + h0(F∗1 ⊗ E1).

Moreover,

End(E) � C[x1, . . . , xk ]/(x1, . . . , xk )
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Stratification on M1 ×M2

The twisted Brill-Noether locus Bk (U1,U2) ⊂ M1 ×M2 is

Bk (U1,U2) = {(E1,E∗2) ∈ M1 ×M2 : h0(E1 ⊗ E∗2) ≥ k }

The twisted Brill-Noether loci define a stratification by closed
subsets.

M1 ×M2 ⊃ B1(U1,U2) · · · ⊃ Bk (U1,U2) ⊃ Bk+1(U1,U2) ⊃

Sing(Bk (U1,U2)) ⊂ Bk+1(U1,U2).

In some cases, Sing(Bk (U1,U2)) = Bk+1(U1,U2).
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and the projective structure makes it a coarse moduli space.

Moreover, Uµ1(n, d, 0) is a fine moduli space. There exists a
universal family G of simple unstable bundles parameterised
by Uµ1(n, d, 0)
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∗
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Hi(Uµ1(n, d, k),C) � Hi(Yk ,C) for i ≥ 1.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Theorem (——-, R. Rios Sierra) (2021)

Moreover, if Yk is irreducible and smooth of dimension ρ, then
Uµ1(n, d, k) is irreducible and smooth of dimension ρ+ h1 − 1
with h1 = k − d0 + n0(g − 1).

If Uµ1(n, d, k) is non-empty, Bk (U1,U
∗
2) is non-empty.

If Yk is irreducible and smooth then
Hi(Uµ1(n, d, k),C) � Hi(Yk ,C) for i ≥ 1.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Theorem (——-, R. Rios Sierra) (2021)

Moreover, if Yk is irreducible and smooth of dimension ρ, then
Uµ1(n, d, k) is irreducible and smooth of dimension ρ+ h1 − 1
with h1 = k − d0 + n0(g − 1).

If Uµ1(n, d, k) is non-empty, Bk (U1,U
∗
2) is non-empty.

If Yk is irreducible and smooth then
Hi(Uµ1(n, d, k),C) � Hi(Yk ,C) for i ≥ 1.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Theorem (——-, R. Rios Sierra) (2021)

Moreover, if Yk is irreducible and smooth of dimension ρ, then
Uµ1(n, d, k) is irreducible and smooth of dimension ρ+ h1 − 1
with h1 = k − d0 + n0(g − 1).

If Uµ1(n, d, k) is non-empty, Bk (U1,U
∗
2) is non-empty.

If Yk is irreducible and smooth then
Hi(Uµ1(n, d, k),C) � Hi(Yk ,C) for i ≥ 1.



Moduli and ednomorphisms of vector bundles

Clasical Theory

Problems when they are not simple

Ei are not simple
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The problem is to describe Aut(F) when dimAut(F) > 1, with
F indecomposable.

M(F ,G) := H1(C ,F ⊗ G∗)/Aut(F).
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They give a relation between ρ1 and ρ2.

The relation gives a diagram

Parameterize a diagram, not just one extension.
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in some cases is a fine moduli space, in others there exists a
local universal family.

—- Moduli of endomorphisms of semistable vector bundles
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Problems to describe H1(C ,F ⊗ G∗)/Aut(F)

Atiyah End(E) = (Id) + Nil(E)

E is simple if End(E) = (Id)

Stable bundles are simple but not all the simples are stable.

The simple bundles form an algebraic space (Gunning,
Artin,..) and there is a universal S family.

—- If E is semistable and indecomposable

dimEnd(E) ≤ 1 +
n(n − 1)

2
.

—— and Rocı́o Rı́os we give also a bound for dimEnd(E)
using the HN-filtration.
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Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3 and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Moduli space

Indecomposable semistable

Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3 and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Moduli space

Indecomposable semistable

Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3

and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Moduli space

Indecomposable semistable

Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3 and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Moduli space

Indecomposable semistable

Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3 and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Moduli space

Indecomposable semistable

Let

SS(n, d, i) := {E : E semistable dimEnd(E) = i}/ �

For i ≤ 3 and for some cases exists fine moduli space for
SS(n, d, i)

For others there exists local universal family.

—– Vector bundles of type T3 over a curve. J. Algebra 169
(1994).



Moduli and ednomorphisms of vector bundles

Clasical Theory

Unstable bundles

Unstable bundles of HN-length 2
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If they are stable a no coprime we an use the étale covering of
the moduli where the universal family exists and proceed as
before.
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0→ E1
ı
→ E

℘
→ E2 → 0

If e.g.E1 is no simple and 1 < dimEnd(E) ≤ 3, we can use
the previous results and when there is a universal family we
proceed as before.

Note that in some cases H1(C ,F ⊗ G∗)/Aut(F) is a
grassmannian and we consider the universal bundle over it.
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1 Fi = Ei/Ei−1 is semistable and
2 µ(E1) > µ(E2/E1) > µ(E3/E2).
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Aim is to parameterise the extensions 0→ E2
ı
→ E

p
→ F2 → 0

Note that E2 is unstable and simple with HN-lenght = 2 and
F2 is stable.

By Theorem B, there exists a universal family G of simple
unstable bundles parameterised by Uµ1(n, d, 0).

Since F2 is stable, we have the universal familyU
parameterized by M(d(F2), rk(F2)).
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As before we use the families G andU to give a stratification
of Uµ1(n, d, 0) ×M(d(F2), rk(F2)).

Under certain conditions, the simple bundles will have a fine
moduli.

We can use induction to construct the moduli space of simple
bundles for any HN-length ≥ 2 (to appear in arxiv).
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