Some linked families

Lilia Montserrat Vite Escobedo
Instituto de Matemáticas, Oaxaca
Universidad Nacional Autónoma de México

BIRS-CMO Moduli, Motives and Bundles - New Trends in Algebraic Geometry, September 27th, 2022

Motivation

Motivation

Motivation

Motivation

Motivation

3 points
$\mathbb{P}^{2[3]} \rightarrow$ parametrizes sets of three points in the projective plane.

$$
N_{\mathbb{R}}^{1}\left(\mathbb{P}^{2[3]}\right)
$$

Motivation

3 points
$\mathbb{P}^{2[3]} \rightarrow$ parametrizes sets of three points in the projective plane.

$$
N_{\mathbb{R}}^{1}\left(\mathbb{P}^{2[3]}\right)
$$

Motivation

3 points
$\mathbb{P}^{2[3]} \rightarrow$ parametrizes sets of three points in the projective plane.

$$
N_{\mathbb{R}}^{1}\left(\mathbb{P}^{2[3]}\right)
$$

$$
D_{1}=H-\frac{\Delta}{2}
$$

Motivation

6 points
$\mathbb{P}^{2[6]} \rightarrow$ parametrizes sets of six points in the projective plane.

$$
N_{\mathbb{R}}^{1}\left(\mathbb{P}^{2[6]}\right)
$$

Motivation

$$
\frac{r(r+1)}{2} \text { points }
$$

$\mathbb{P}^{2\left[\frac{r(r+1)}{2}\right]} \rightarrow$ parametrizes sets of $\frac{r(r+1)}{2}$ points in the projective plane.

$$
N_{\mathbb{R}}^{1}\left(\mathbb{P}^{2\left[\frac{r(r+1)}{2}\right]}\right)
$$

Motivación

$$
D_{1}=H-\frac{\Delta}{2}
$$

P^{2}
 ambient
 space

$Z \subset \mathbb{P}^{2}$ object

"residual points" tool
"Points in an extremal divisor are residual to points in an extremal divisor

Courvas

We only consider locally Cohen-Macaulay (lcm) pure one-dimensional subschemes of \mathbb{P}_{k}^{3}. That means, we consider curves that may be singular, reducible, or not reduced, but they must not have embedded or isolated points.

Figure: locally Cohen-Macaulay curves

Liaison Theory

Definition

Two curves C and C^{\prime} in \mathbb{P}^{3} are linked by a complete intersection of two surfaces $X \cap Y$ if $\mathscr{C}^{\prime}=X \cap Y-\mathscr{C}$ as divisors on X
*The curves C and C^{\prime} belong in the same linkage class if there exists a finite family of curves C_{0}, \ldots, C_{n} such that C_{i} is linked with C_{i+1} for all i, with $C_{0}=C$ and $C_{n}=C^{\prime}$.

Y

Liaison Theory

Definition

The Hartshorne-Rao module or deficiency module of a curve C in P^{3} is the module

$$
M_{C}:=\bigoplus_{n \in \mathbb{Z}} H^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{C}(n)\right)
$$

Theorem (P. Rao (1979))

- Two curves C and C^{\prime} are in the same linkage class if and only if their Hartshorne-Rao-modules are isomorphic (except for a degree translation)
- For every $S=\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$-module of finite length M, there exists a no singular irreducible curve $C \subseteq \mathbb{P}^{3}$, with Hartshorne-Rao module isomorphic to M (except for a degree translation).

ACM curves

Proposition (F. Gaeta)
A curve C is an ACM (aritmetically Cohen-Macaulay) curve if and only if its Hartshorne-Rao-module is trivial $\left(M_{C}=0\right)$.

Why are ACM curves relevant?

- An ACM curve is always:

A determinantal curve

A smooth point on its Hilbert Scheme

Example

A curve C of type (a, b) on a nonsingular quadric surface in \mathbb{P}_{k}^{3} is $A C M$ if and only if $|a-b| \leq 1$.

For every positive integer r, fix:

$$
d_{r}:=\frac{r(r+1)}{2} \quad \text { y } \quad g_{r}:=\frac{r(r+1)(2 r-5)}{6}+1
$$

Let $\mathscr{H}_{r}^{\text {lcm }}$ the set of locally Cohen-Macaulay curves of degree d_{r} and genus g_{r} and define:

$$
\mathscr{H}_{r}:=\overline{\mathscr{H}_{r}^{l c m}}=\operatorname{Hilb}_{d_{r} t+\left(1-g_{r}\right)}^{3}
$$

Theorem (-)

The Hilbert scheme \mathscr{H}_{r} has an unique component that parametrizes ACM curves. Furthermore, this component is generically smooth of dimension $2 r(r+1)$

Let \mathscr{C}_{r} be the family of ACM curves in \mathscr{H}_{r}.

Examples

- $r=1$

$$
\begin{gathered}
d_{1}=1 \quad \begin{array}{l}
g_{1}=0 \\
\text { Lines in } \mathbb{P}^{3}
\end{array} \\
\overline{\mathscr{C}_{1}}=\mathscr{H}_{1} \equiv \mathrm{G}(1,3) \quad \operatorname{rank}\left(\operatorname{Pic}\left(\mathscr{H}_{1}\right) \otimes \mathbb{Q}\right)=1 \\
\text { Is minimal }
\end{gathered}
$$

- $r=2$

$$
d_{2}=3 \quad g_{2}=0
$$

$$
\text { twisted cubics in } \mathbb{P}^{3}
$$

$\overline{\mathscr{C}_{2}}=\mathscr{H}_{2}$ is a smooth irreducible scheme of dimension 12

$$
\operatorname{rank}\left(\operatorname{Pic}\left(\mathscr{H}_{2}\right) \otimes \mathbb{Q}\right)=2
$$

(Dawei Chen, Mori's program for the Kontsevich moduli

$$
\text { space } \left.\bar{M}_{0,0}\left(\mathbb{P}^{3}, 3\right)\right)
$$

The case \mathscr{H}_{3}

We know that \mathscr{H}_{3} is reducible and we found three components:
$\overline{\mathscr{C}_{3}}\left\{\begin{array}{l}\text { It is an irreducible component of dimension } 24 . \\ \text { The generic element is an ACM curve. } \\ \text { It is generically smooth. }\end{array}\right.$
$\overline{\mathscr{R}_{3}}\left\{\begin{array}{l}\text { It is an irreducible component of dimension } 24 . \\ \text { The generic element is the union of a conic and a plane quartic. } \\ \text { It is generically smooth. }\end{array}\right.$
$\mathscr{E}_{3}\left\{\begin{array}{l}\text { It is a irreducible component of dimension } 30 . \\ \text { The generic element is an extremal curve. } \\ \text { It is generically no reduced. }\end{array}\right.$

Notation

Notation

Given a family of curves \mathscr{C} on \mathscr{H}_{r}, we denote by $\mathscr{L}_{r+1} \mathscr{C}$ to the family of curves liked to the elements of \mathscr{C} by the complete intersection of two surfaces of degree $r+1$.

Let D_{r-1} be the family of curves in \mathscr{H}_{r} that lies in a surface of degree $r-1$.

$$
Z \subset \mathbb{P}^{2} \quad \text { object } \quad C \subseteq \mathbb{P}^{3}\left(C \in \mathscr{H}_{r}\right)
$$

"residual points" tool "linked curves"

$$
\mathscr{L} D_{r-1}=D_{r} ?
$$

False! The elements on $\mathscr{L} D_{r-1}$ do not lie on a surface of degree r.

Results

Lemma (-)

- If r is an odd number, then:

$$
\mathscr{L}^{r-3} \mathscr{C}^{h}=D_{r-1}
$$

- If r is an even number, then:

$$
\mathscr{L}^{r-3} \mathscr{A}=D_{r-1}
$$

In particular

$$
\mathscr{L}^{2} D_{r-1}=D_{r+1}
$$

Results

Proposition (-)

- If r is an odd number, then:

$$
\overline{\mathscr{L}^{r-3} \mathscr{C}^{h}} \subseteq \overline{\mathscr{C}_{r}}
$$

- If r is an even number, then:

$$
\overline{\mathscr{L}^{r-3} \mathscr{A}} \subseteq \overline{\mathscr{C}_{r}}
$$

Results

Theorem (-)

The classes $\overline{\mathscr{A}}$ and $\overline{\mathscr{C}^{h}}$ on $N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)$ are linearly independent and generate a face of the effective cone:

$$
\operatorname{Eff}\left(\overline{\mathscr{C}_{3}}\right) \subseteq N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)
$$

Corolary (-)

The dimension of the vector space $N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)$ is 3 .

Results

Theorem (-)

The classes $\overline{\mathscr{A}}$ and $\overline{\mathscr{C}^{h}}$ on $N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)$ are linearly independent and generate a face of the effective cone:

$$
\operatorname{Eff}\left(\overline{\mathscr{C}_{3}}\right) \subseteq N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)
$$

Corolary (-)

The dimension of the vector space $N_{\mathbb{R}}^{1}\left(\overline{\mathscr{C}_{3}}\right)$ is 3 .
¡Thank you!

