Projective manifolds whose tangent bundle is Ulrich (with V. Benedetti, Y. Prieto, and S. Troncoso)

Pedro Montero

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA VALPARAÍSO, CHILE

Moduli, Motives and Bundles – New Trends in Algebraic Geometry (Oaxaca 2022)

- MOTIVATION AND PRELIMINARIES
 CONSTRUCTING ULRICH BUNDLES
 RESULTS
- Some ingredients
- Sketch of proof

Classical question: Given $X = \{F = 0\} \subseteq \mathbf{P}^{n+1}(\mathbf{C})$ smooth hypersurface,

Can we find a matrix of linear forms (ℓ_{ij}) such that $F = \det(\ell_{ij})$?

Let $d = \deg(X)$. The first positive answers were:

- If $\dim(X) = 1$, this is always possible (Dixon, 1902).
- If $\dim(X) = 2$, this is always possible when d = 1 (linear algebra), d = 2 (since $X \cong \{x_0x_1 - x_2x_3 = 0\}$), and d = 3 (Cayley, 1869). However, we will see that for $d \ge 4$ the answers is **no**, in general.

 \land If dim $(X) \ge 3$, then $F = det(\ell_{ij})$ defines a **singular** hypersurface. Thus, we rather consider the following question:

Given a smooth hypersurface as before, can we find $r \in \mathbb{N}^{\geq 1}$ and a matrix of linear forms (ℓ_{ij}) such that $F^r = \det(\ell_{ij})$?

§1. Motivation and preliminaries

Beauville (2000): Let $X = \{F = 0\} \subseteq \mathbf{P}^{n+1}(\mathbf{C})$ be a smooth hypersurface of $\deg(X) = d$. Then, for any $r \in \mathbf{N}^{\geq 1}$ we have

 $F^{r} = \det(\ell_{ij}) \Leftrightarrow \begin{array}{c} \text{There is } E \to X \text{ vector bundle of rank } r \text{ admitting} \\ 0 \to \mathcal{O}_{\mathbf{P}^{n+1}}(-1)^{\oplus rd} \xrightarrow{\ell} \mathcal{O}_{\mathbf{P}^{n+1}}^{\oplus rd} \to E \to 0 \text{ linear resolution.} \end{array}$

Theorem (Eisenbud-Schreyer-Weyman, 2003)

Let $X \hookrightarrow \mathbf{P}^{N}(\mathbf{C})$ be a smooth projective polarized *n*-fold, and $E \to X$ be a rank *r* vector bundle. The following are equivalent:

 There is a linear resolution 0 → O_{P^N}(-N+n)^{⊕a_{N-n}} → ... → O_{P^N}(-1)^{⊕a₁} → O^{⊕a₀}_{P^N} → E → 0.
 If π : X → Pⁿ is a finite linear projection, then π_{*}E is trivial.
 H[•](X, E(-j)) = 0 for every j ∈ {1,...,n}.
 Hⁱ(X, E(-i)) = H^j(X, E(-j-1)) = 0 for every i ≥ 1 and j ≤ n − 1.

In that case, we say that E is a **Ulrich bundle**.

Some interesting consequences:

Let $E \to X$ be an Ulrich bundle with respect to an embedding $X \hookrightarrow \mathbf{P}^N$ (i.e., with respect to a very ample divisor $H \subseteq X$). Then,

1 E is arithmetically Cohen-Macaulay (aCM) w.r.t. H, i.e.,

 $\mathrm{H}^{i}(X, E(jH)) = 0$ for all $j \in \mathbb{Z}$ and 0 < i < n.

Moreover, $h^0(X, E) = \operatorname{rk}(E) \operatorname{deg}(X)$ where $\operatorname{deg}(X) = H^n \in \mathbb{N}^{\geq 1}$.

- **2** *E* is 0-regular (Castelnuovo-Mumford), thus **globally generated**.
- If $Y \in |\mathcal{O}_X(1)|$ is a smooth hyperplane section, then $E|_Y$ is an Ulrich bundle w.r.t. $\mathcal{O}_X(1)|_Y$.

§1. Motivation and preliminaries

● *E* is **slope semi-stable** with respect to *H*, i.e., for every non-zero subsheaf $\mathcal{F} \subseteq E$ we have $\mu_H(\mathcal{F}) \leq \mu_H(E)$, where

$$\mu_H(\mathcal{F}) \stackrel{\text{def}}{=} \frac{c_1(\mathcal{F}) \cdot H^{n-1}}{\operatorname{rk}(\mathcal{F})} \in \mathbf{Q}.$$

Conjecture (Bernd Ulrich, 1984)

Every smooth projective variety $X \hookrightarrow \mathbf{P}^N$ carry an Ulrich bundle.

 \triangle Even in the (few) cases where the answer is known to be positive, it is interesting (and challenging) to determine the **Ulrich complexity**

 $uc(X) := \min\{r \in \mathbb{N}^{\geq 1} \text{ s.t. there is a rank } r \text{ Ulrich bundle } E \to X\}.$

Some (actually, many of the) known cases:

- On \mathbf{P}^n , $E = \mathcal{O}_{\mathbf{P}^n}^{\oplus r}$ is a rank r Ulrich bundle.
- ② On the quadric $\mathbf{Q}^n \subseteq \mathbf{P}^{n+1}$, the spinor bundles $S \to \mathbf{Q}^n$ are Ulrich bundles (of rank $2^{[n-1/2]}$).
- Let X ⊆ Pⁿ⁺¹ be a smooth hypersurface of degree d ≥ 2 with Pic(X) ≅ ZO_X(1) (c.f. Noether-Lefschetz). Then, no line bundle L ≅ O_X(a) is Ulrich:

Otherwise, $h^0(X, \mathcal{L}(-1)) = 0$ and $h^0(X, \mathcal{L}) = \operatorname{rk}(\mathcal{L}) \operatorname{deg}(X) = d$ would tell us that $h^0(X, \mathcal{O}_X(a-1)) = 0$ and $h^0(X, \mathcal{O}_X(a)) \neq 0$, and hence a = 0. This would imply that d = 1, which is impossible.

On the other hand, we have the following result:

(**Backelin-Herzog-Ulrich**, 1991): Every smooth complete intersection $X \subseteq \mathbf{P}^N$ admits an Ulrich bundle.

§1. Motivation and preliminaries

- Gr(k,n) have equivariant Ulrich bundles (**Costa-Miró-Roig**, 2015). There are partial results for rational homogeneous spaces G/P.
- (ESW, 2003): Every curve C admits an Ulrich line bundle, since it is enough to check the vanishing h⁰(C, E(−1)) = h¹(C, E(−1)) = 0. If L is a general line bundle of degree g − 1, then E = L(1) works¹.
- Some minimal surfaces:
 - (a) $\kappa(S) = -\infty$ (Casanellas-Hartshorne, Miró-Roig-Pons-Llopins).
 - (b) $\kappa(S) = 0$ (Beauville, Aprodu-Farkas-Ortega, Faenzi).
 - (c) Some surfaces with $\kappa(S) = 1$ (Miró-Roig-Pons-Llopins).
 - (d) Some surfaces with $\kappa(S) = 2$ (Casnati, Lopez).

Some Fano threefolds with $Pic(X) \cong \mathbb{ZO}_X(1)$ (Beauville, 2017).

¹This allows us to retrieve Dixon's result!

§2. Constructing Ulrich BUNDLES

§2. Constructing Ulrich bundles

Besides commutative algebra methods, for surfaces we have:

- One of the second se
- 2 Cayley-Bacharach and Hartshorne-Serre construction (cf. Beauville).
- O Deformation theory arguments (cf. Faenzi).
- Sumerical characterization via Chern classes (cf. Casnati).

Cayley-Bacharach (CB) property

A finite subscheme Z of a smooth surface $S \hookrightarrow \mathbf{P}^N$ verify **CB** w.r.t. $\mathcal{O}_S(1)$ if: for every $C \in |\mathcal{O}_S(1)|$, the condition $Z \setminus \{\text{pt}\} \subseteq C$ implies that $Z \subseteq C$.

Output: In that case, the Hartshorne-Serre construction give us

$$0 \longrightarrow \mathcal{O}_S(K_S) \longrightarrow E \longrightarrow \mathcal{I}_Z \otimes \mathcal{O}_S(1) \longrightarrow 0, \tag{(*)}$$

where E is a rank 2 vector bundle (!) and $det(E) = O_S(K_S + H)$.

§2. Constructing Ulrich bundles

Idea of the method:

Considering suitable $Z \subseteq S \subseteq \mathbf{P}^N$ (e.g. N + 2 general points) we get (*). Tensoring by some convenient line bundle \mathcal{L} , we can produce an Ulrich bundle $E \otimes \mathcal{L}$ in many cases.

How to guess the right $\mathcal{L} \in \operatorname{Pic}(S)$?

(Casnati, 2017): Let $E \to S$ be a rank r vector bundle on the polarized surface $S \to \mathbf{P} \operatorname{H}^0(S, \mathcal{O}_S(H)) \cong \mathbf{P}^N$. Then, E is an Ulrich bundle iff $\operatorname{H}^0(S, E(-H)) = \operatorname{H}^2(S, E(-2H)) = 0$. $\circ c_1(E) \cdot H = \frac{r}{2}(K_S + 3H) \cdot H$.

• $c_2(E) = \frac{1}{2}(c_1^2(E) - c_1(E) \cdot K_S) - r(H^2 - \chi(S, \mathcal{O}_S)).$

Remark (Lopez, 2020): If $(X, \mathcal{O}_X(H))$ is a polarized *n*-fold $(n \ge 2)$ with $\operatorname{Pic}(X) \cong \mathbb{Z}$, then for a rank *r* Ulrich bundle $E \to X$ we have

$$c_1(E) = \frac{r}{2}(K_X + (n+1)H).$$

§2. Constructing Ulrich bundles

Our starting point: Find a numerical characterization on 3-folds.

Slope Lemma (BMPT):

Let $(X, \mathcal{O}_X(H))$ be a polarized *n*-fold $(n \ge 2)$, then for a rank *r* Ulrich bundle $E \to X$ we have

$$\frac{c_1(E) \cdot H^{n-1}}{r} \stackrel{\text{def}}{=} \mu_H(E) = \frac{1}{2} (K_X + (n+1)H) \cdot H^{n-1}$$

For 3-folds we have the following (cf. Ciliberto-Flamini-Knutsen, 2022):

Proposition (BMPT):

Let $E \to X$ be a rank r vector bundle on the polarized 3-fold $X \to \mathbf{P} \operatorname{H}^{0}(X, \mathcal{O}_{X}(H)) \cong \mathbf{P}^{N}$. Then, E is an Ulrich bundle iff some identities "à la Casnati" hold (i.e., some cohomology groups have to vanish, and some identities involving $c_{1}(E) \cdot H^{2}$, $c_{2}(E) \cdot H$ and $c_{3}(E)$).

§3. Results

Key observation:

The Slope Lemma should be useful to study positivity of the tangent bundle (cf. Boucksom-Demailly-Păun-Peternell and Campana-Păun).

Natural question: In regard to the complexity of constructing Ulrich bundles, manifolds with canonically attached Ulrich bundles should be special. The starting point should be:

If T_X or Ω^1_X is an Ulrich bundle, what can we say about $X \hookrightarrow \mathbf{P}^N$?

Example (curves): Let $C \hookrightarrow \mathbf{P}^N$ be a degree $d = \deg(H)$ curve of genus g.

- If $\Omega^1_C \cong \mathcal{O}_C(K_C)$ Ulrich, $0 = h^1(K_C H) = h^0(H) = N + 1 \implies \leftarrow$
- If $T_C \cong \mathcal{O}_C(-K_C)$ Ulrich, then $0 = h^1(-K_C H) = h^0(2K_C + H)$. The latter is $\neq 0$ if $g \ge 1$ by Riemann-Roch.

• If $C \cong \mathbf{P}^1$, we easily check that only d = 3 works (twisted cubic).

§3. Results

Example (surfaces): Let $S \hookrightarrow \mathbf{P}^N$ be a degree $d = H^2$ surface. • If Ω_S^1 Ulrich, the Slope Lemma implies that $c_1(\Omega_S^1) \cdot H \stackrel{\text{def}}{=} K_S \cdot H = 3H^2 + K_S \cdot H$, i.e., $H^2 = 0 \implies$

Definition (ESW, 2003):

An Ulrich bundle $E \to X$ on the *n*-fold $(X, \mathcal{O}_X(H))$ is **Ulrich special**^{*a*} if $\operatorname{rk}(E) = 2$ and $\det(E) \cong \mathcal{O}_X(K_X + (n+1)H)$.

^{*a*}(Beauville, 2000): $X = \{F = 0\} \subseteq \mathbf{P}^{n+1}$ with F = Pf(M) iff $\exists E \to X$ Ulrich special.

• If T_S Ulrich special, $c_1(T_S) \stackrel{\text{def}}{=} -K_S = K_S + 3H$ and hence $-2K_S = 3H$. In particular, S is a **del Pezzo surface** (i.e., $-K_S$ ample) and thus $\operatorname{Pic}(S) \cong \mathbb{Z}^{\rho}$ is torsion-free $\rightsquigarrow -K_S = 3A$ for A ample.

(Kobayashi-Ochiai): $S \cong \mathbf{P}^2$. In particular, we deduce that $\mathcal{O}_S(H) \cong \mathcal{O}_{\mathbf{P}^2}(2)$, i.e., $S \cong \mathbf{P}^2 \hookrightarrow \mathbf{P}^5$ (Veronese surface).

Main Theorem (Benedetti-M.-Prieto-Troncoso)

Let $X \hookrightarrow \mathbf{P} \operatorname{H}^0(X, \mathcal{O}_X(H)) \cong \mathbf{P}^N$ be a smooth projective *n*-fold. Then,

- The cotangent bundle Ω^1_X is **never** Ulrich.
- The tangent bundle T_X is Ulrich if and only if $(X, \mathcal{O}_X(H))$ is the twisted cubic $(\mathbf{P}^1, \mathcal{O}_{\mathbf{P}^1}(3))$ or the Veronese surface $(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(2))$.

§4. Some ingredients

For surfaces, we can give a quick proof (not using Campana-Păun theorem) by means of Reider's solution to Fujita conjecture:

• (Reider, 1988): If D is a nef divisor on S s.t. $D^2 \ge 9$, then $K_S + D$ is very ample unless D satisfies some precise numerical restrictions.

For the general case, we need the following:

- $T_{\mathbf{P}^n}$ is never Ulrich if $n \ge 3$: $h^0(T_{\mathbf{P}^n}) = \dim \mathfrak{sl}_{n+1} > nH^n = nd^n$.
- If Ω_X^1 or T_X is Ulrich, then the Slope Lemma implies that X is rationally connected (Campana-Păun, 2019) $\sim \Omega_X^1$ is not Ulrich.
- If T_X is globally, then X ≅ A × G/P is a homogeneous variety (Borel-Remmert, 1962) ~ X ≅ G/P (since rationally connected).
- Slope Lemma: $d = H^n$ is a multiple of n+2 (resp. $\frac{n+2}{2}$) if n odd (resp. n even). In particular, dim Lie(Aut°(X)) = $h^0(X, T_X) \ge \frac{n(n+2)}{2}$.

§4. Some ingredients $(G/P \text{ with } \operatorname{Pic}(G/P) \cong \mathbf{Z})$

Lie algebra g	Dynkin diagram	$\dim_{\mathbb{C}}\mathfrak{g}$	$n = \dim_{\mathbb{C}}(G/P_r)$								
$A_{\ell} \ (\ell \ge 1)$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ \ell - 1 \\ \ell \end{array} \begin{array}{c} 0 \\ 0 \\ \ell \end{array}$	$\ell^2 + 2\ell$	$r(\ell + 1 - r)$								
$B_{\ell} \ (\ell \ge 2)$	$\begin{array}{c} 0 \\ 1 \\ 2 \\ \ell - 2 \\ \ell - 1 \\ \ell \end{array} \begin{array}{c} 0 \\ \ell \\$	$2\ell^2 + \ell$	$\frac{r}{2}(4\ell + 1 - 3r)$								
$C_{\ell} \ (\ell \ge 3)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2\ell^2 + \ell$	$\frac{r}{2}(4\ell+1-3r)$								
$D_{\ell} \ (\ell \ge 4)$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ \ell - 3 \\ \ell \end{array} \begin{pmatrix} 0 \\ \ell - 2 \\ 0 \\ \ell \\ \ell$	$2\ell^2 - \ell$	$\frac{r}{2}(4\ell-1-3r)$								
E_6		78	r n	1 16	2 21	3 25	4 29	5 25	6 16		
<i>E</i> ₇	$\begin{array}{c} & & 2 \\ \bullet & \bullet & \bullet & \bullet \\ 1 & 3 & 4 & 5 & 6 & 7 \end{array}$	133	r n	1 33	2 42	3 47	4 53	5 50	6 42	7 27	
E_8	2 	248	r n	1 78	2 92	3 98	4 106	5 104	6 97	7 83	8 57
F_4	o—o≻o—o 1 2 3 4	52	$r \\ n$	1 15	2 20	3 20	4 15				
G_2	a ≥a 1 2	14	r n	1 5	2 5						

§5. Sketch of Proof

§5. Sketch of Proof (surfaces)

Let $S \hookrightarrow \mathbf{P} \operatorname{H}^0(S, \mathcal{O}_S(H)) \cong \mathbf{P}^N$ be a surface with T_S Ulrich. Then,

- Slope Lemma: $2K_S \cdot H = -3H^2 < 0$, i.e., K_S is not pseudo-effective, and thus $\kappa(S) = -\infty$. Actually, $S \sim_{\text{bir}} \mathbf{P}^2$ (rationally connected).
- **2** A general curve $C \in |H|$ verifies

$$g(C) = 1 + \frac{1}{2}(H^2 + K_S \cdot H) = 1 - \frac{1}{4}H^2,$$

thus $\deg(S) = H^2 = 4$ and $K_S \cdot H = -6$.

- Casnati's identities: $c_2(T_S) = \chi_{top}(S) = K_S^2 8 + 2\chi(\mathcal{O}_S)$. Hence, Noether's identity gives $\chi(\mathcal{O}_S) = \frac{1}{5}(K_S^2 - 4)$.
- Since $S \sim_{\text{bir}} \mathbf{P}^2$, we have $1 = \chi(\mathcal{O}_S) = \frac{1}{5}(K_S^2 4)$ and thus $K_S^2 = 9$. It follows from the classification of minimal surfaces that $S \cong \mathbf{P}^2$.

§5. Sketch of Proof $(\dim(X) \ge 3, \rho(X) = 1)$

We know that if T_X is Ulrich, then $X \cong G/P$ is rational homogeneous. Assume that $Pic(X) \cong \mathbb{Z}$. Then:

- The Ulrich condition implies that $\dim \operatorname{Aut}^{\circ}(X) \geq \frac{n(n+2)}{2}$. Then, a case-by-case analysis shows that $X \cong \mathbf{P}^n$, $\mathbf{Q}^n \subseteq \mathbf{P}^{n+1}$ or $\operatorname{Gr}(2,5)$.
- ② Actually, since deg(X) is a multiple of n + 2 if n odd, we are reduced to analyse $\mathbf{Q}^{2m} \subseteq \mathbf{P}^{2m+1}$ and Gr(2,5).

• For $X \cong \mathbb{Q}^{2m}$, we have $\deg(X) = (m+1)\ell$ for some $\ell \in \mathbb{N}^{\geq 1}$ and thus $2m(m+1)\ell = h^0(X, T_X) = \dim \mathfrak{so}_{2m+2} = (2m+1)(m+1) \implies$

• For $X \cong Gr(2,5)$, we have that

 $6 \deg(X) = h^0(X, T_X) = \dim \mathfrak{sl}_5 = 24$, i.e., $\deg(X) = 4$.

This is impossible, as $\operatorname{Pic}(X) \cong \mathbb{Z}\mathcal{O}_X(1)$ with $\operatorname{deg}(\mathcal{O}_X(1)) = 5$.

- For $X \cong G/P$ is such that $\rho(X) \ge 2$, the key remark is that $\operatorname{Pic}(G/P)$ is generated by homogeneous line bundles $\{L_i\}_{i\in\Sigma}$, and that $-K_X = j_i L_i$ with $j_i > 0$. Finally, we conclude from:
 - The Slope Lemma does not hold as long as each $j_i < \dim(X)$.
 - If there is $j_i \ge \dim(X)$ then $X \cong \mathbf{P}^n$, $\mathbf{Q}^n \subseteq \mathbf{P}^{n+1}$ or $\mathbf{P}^1 \times \mathbf{P}^{n-1}$.
- Although we can exclude the case of abelian varieties here, it would be interesting to show the existence of Ulrich bundles on abelian 3-folds.
- On The existence of an Ulrich foliation *F* ⊊ *T_X* should impose geometric restrictions on *X*. Also, what about twisted bundles Ω¹_X(k)?
- What can we say about the existence of Ulrich bundles on ball quotients X ≅ Bⁿ/Γ?

THANKS FOR YOUR ATTENTION!