Yamabe flow on some singular spaces.

Joint work with : Jørgen Olsen Lye & Boris Vertman Universität Oldenburg, Germany

• Yamabe flow on the smooth setting

- Yamabe flow on the smooth setting
- A singular setting

- Yamabe flow on the smooth setting
- A singular setting
- Existence of Yamabe flow

- Yamabe flow on the smooth setting
- A singular setting
- Existence of Yamabe flow
- Asymptotic behavior of Yamabe flow

Yamabe flow

On closed manifold, the Yamabe flow [R. Hamilton,1989] is the gradient flow of the Hilbert functional

$$g \mapsto \int_M \operatorname{Scal}_g \mathrm{dv}_g$$

on
$$C(g_0) := \{g = e^{2f}g_0, \operatorname{vol}_g(M) = \int_M \mathrm{d} \mathrm{v}_g = 1\}.$$

Yamabe flow

On closed manifold, the Yamabe flow [R. Hamilton,1989] is the gradient flow of the Hilbert functional

$$g \mapsto \int_M \operatorname{Scal}_g \mathrm{dv}_g$$

on
$$\mathcal{C}(g_0):=\{g=e^{2f}g_0,\operatorname{vol}_g(M)=\int_M\operatorname{dv}_g=1\}.$$

The question was to solve by parabolic method the Yamabe problem

Given g_0 , find $g \in e^{2f}g_0$ with $\operatorname{Scal}_g = \operatorname{C}$ and $\operatorname{vol}_g(M) = 1$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

3 / 62

Existence of Yamabe metric on closed smooth manifold

Introducing $Y(M,g_0)=\inf_{g\in\mathcal{C}(g_0)}\int_M\mathrm{Scal}_g\mathrm{dv}_g$, we know that there is $g=e^{2f}g_0$ such that

$$\operatorname{Scal}_g = Y(M, g_0) \text{ and } \operatorname{vol}_g(M) = 1.$$

This problem has been solved by Yamabe, Trudinger, Aubin and Schoen. As an abstract of the story, we have

• (Aubin, 1974) : we always have $Y(M, g_0) \leq Y(\mathbb{S}^n, [rounded])$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

4 / 62

Existence of Yamabe metric on closed smooth manifold

Introducing $Y(M, g_0) = \inf_{g \in \mathcal{C}(g_0)} \int_M \operatorname{Scal}_g dv_g$, we know that there is $g = e^{2f}g_0$ such that

$$\operatorname{Scal}_g = Y(M, g_0) \text{ and } \operatorname{vol}_g(M) = 1.$$

This problem has been solved by Yamabe, Trudinger, Aubin and Schoen. As an abstract of the story, we have

- (Aubin, 1974): we always have $Y(M, g_0) \leq Y(\mathbb{S}^n, [rounded])$.
- (Aubin, 1974): if $Y(M, g_0) < Y(\mathbb{S}^n, [rounded])$, then there is $g = e^{2f}g_0$ such that $\operatorname{Scal}_{\sigma} = Y(M, g_0)$ and $\operatorname{vol}_{\sigma}(M) = 1$.

Existence of Yamabe metric on closed smooth manifold

Introducing $Y(M, g_0) = \inf_{g \in \mathcal{C}(g_0)} \int_M \operatorname{Scal}_g dv_g$, we know that there is $g = e^{2f} g_0$ such that

$$\operatorname{Scal}_g = Y(M, g_0) \text{ and } \operatorname{vol}_g(M) = 1.$$

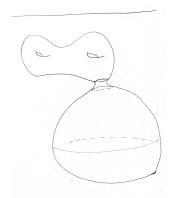
This problem has been solved by Yamabe, Trudinger, Aubin and Schoen. As an abstract of the story, we have

- (Aubin, 1974): we always have $Y(M, g_0) \leq Y(\mathbb{S}^n, [rounded])$.
- (Aubin, 1974): if $Y(M, g_0) < Y(\mathbb{S}^n, [rounded])$, then there is $g = e^{2f}g_0$ such that $\operatorname{Scal}_{\sigma} = Y(M, g_0)$ and $\operatorname{vol}_{\sigma}(M) = 1$.
- (Aubin, 1974, Schoen 1984) : if $Y(M, g_0) = Y(\mathbb{S}^n, [rounded])$ then $M = \mathbb{S}^n$ and $g_0 = e^{-2f}$ [rounded].

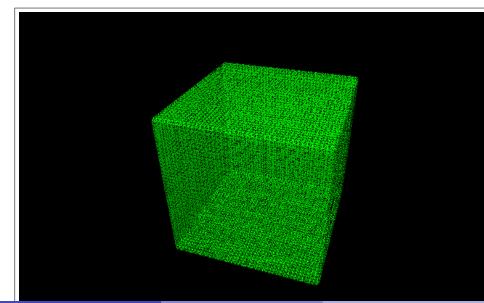
Convergence of the Yamabe flow on the smooth setting : a brief summary

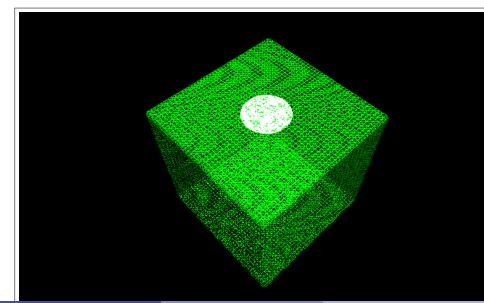
- The Yamabe flow exists of all times,
- There is either convergence or concentration (formation of bubbles).
- Positive mass theorem prevents the formation of bubble.

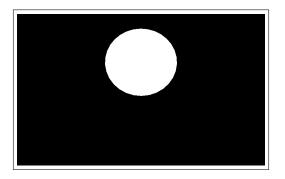
Mostly from [Schwetlick- Struwe, 2003] and [Brendle, 2005 & 2007].

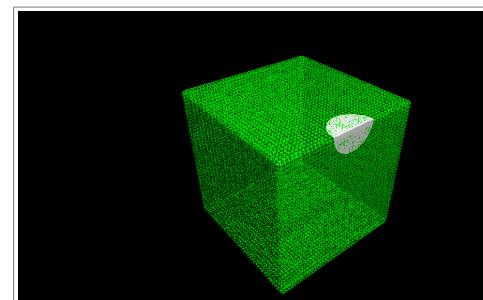


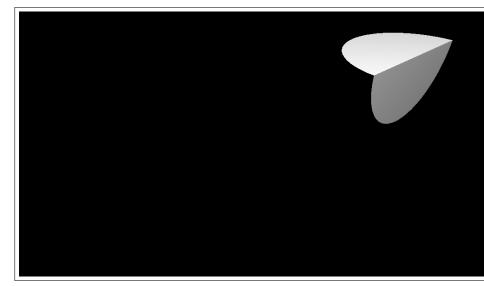
We are looking for the geometry of the surface of a cube :

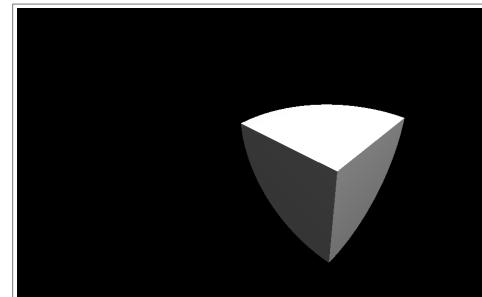


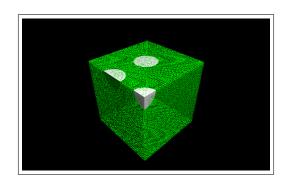






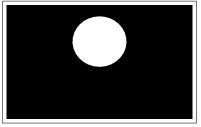






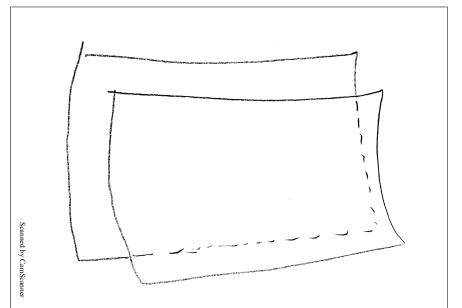
Summary : the surface of a cube has a decomposition $X \supset X_0$, where

• near each point of $X \setminus X_0$, the geometry is Euclidean

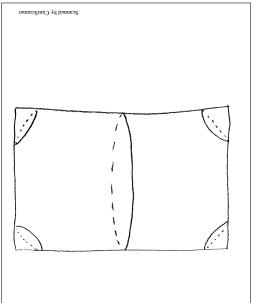


• X_0 is the collection of 8 vertex and near each of these point the geometry is a cone over a circle of length $3\pi/2$

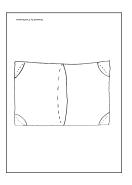
Some stratified space : the surface of a pillow



Some stratified space : the surface of a pillow

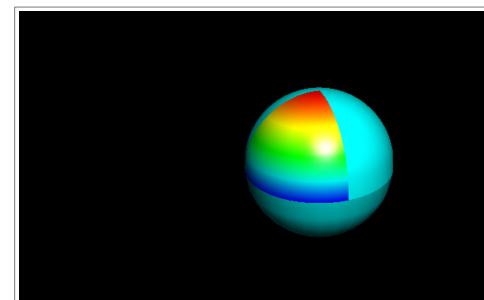


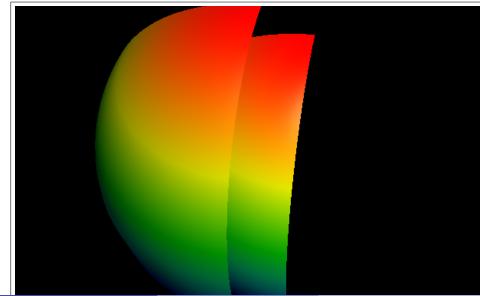
Some stratified space : the surface of a pillow

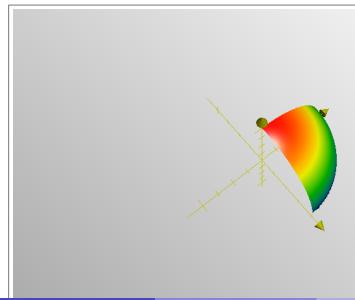


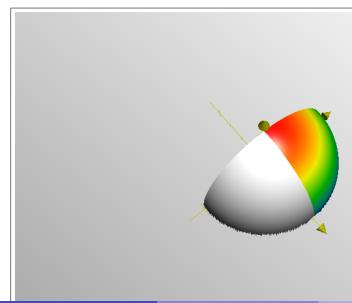
Summary : the surface of a pillow has a decomposition $X \supset X_0$, where

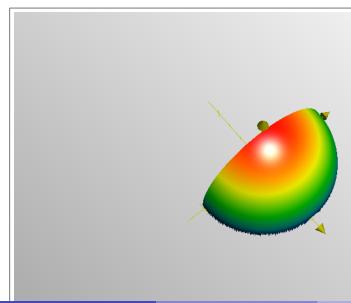
- ullet near each point of $X\setminus X_0$, the geometry is Euclidean
- X_0 is the collection of 4 vertex and near each of these point the geometry is a cone over a circle of length π

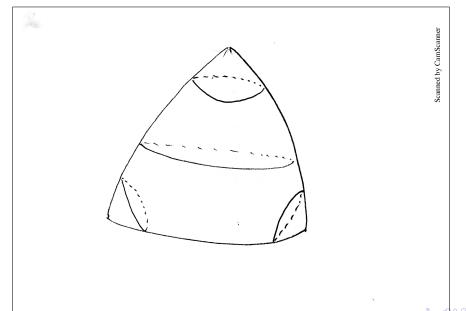


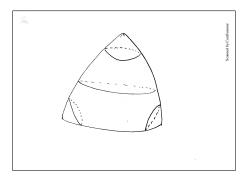






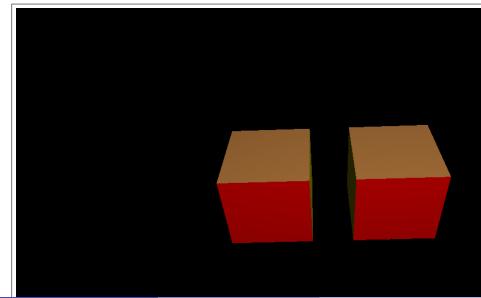


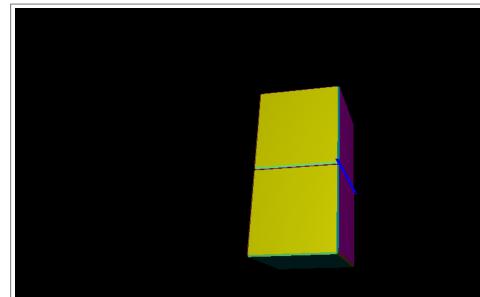


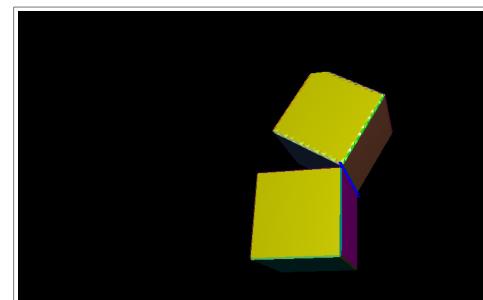


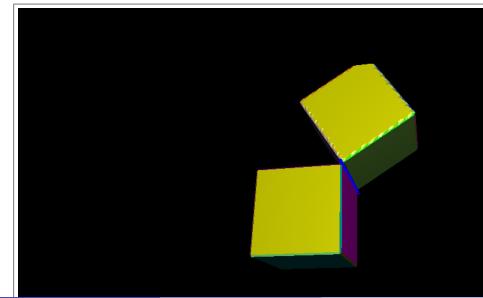
Summary : the surface of a berlingot has a decomposition $X \supset X_0$, where

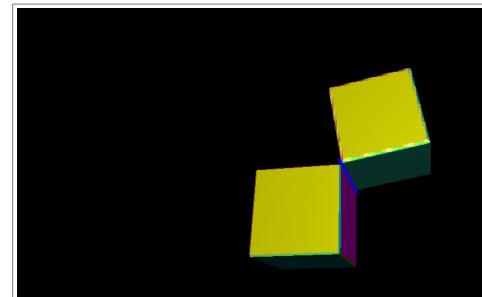
- near each point of $X \setminus X_0$, the geometry is Spherical (Riemannian)
- X_0 is the collection of 3 vertex and near each of these points the geometry is a cone over a circle of length π

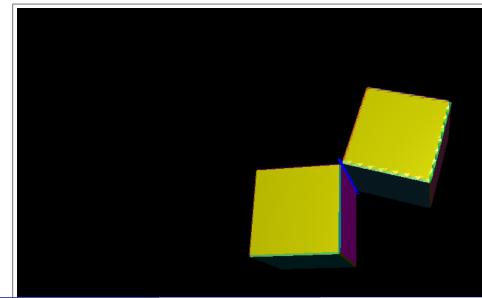


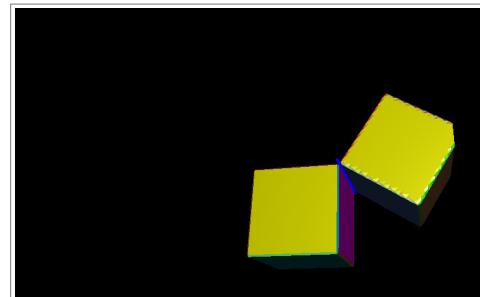


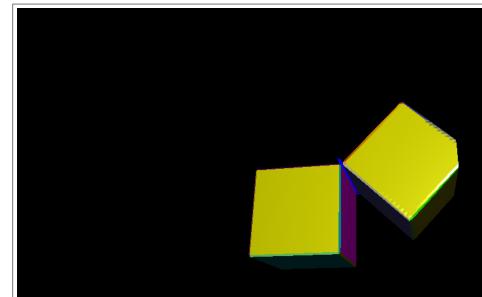


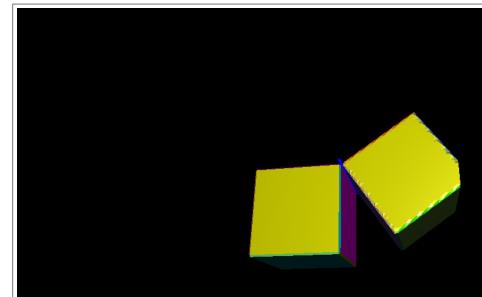


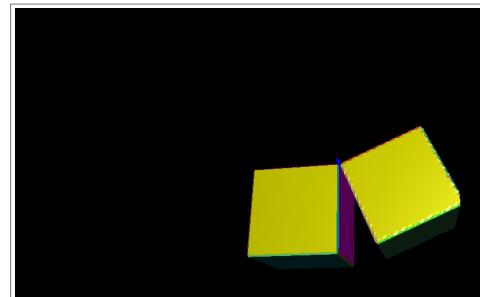


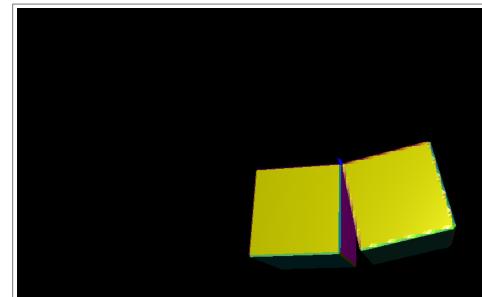


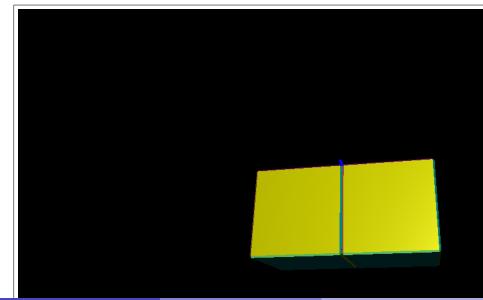




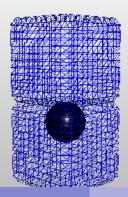




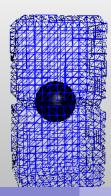


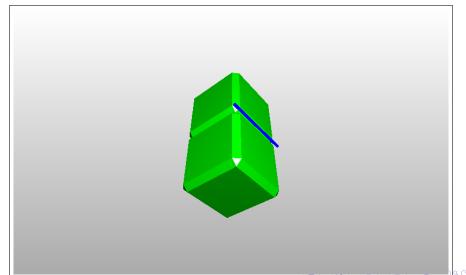


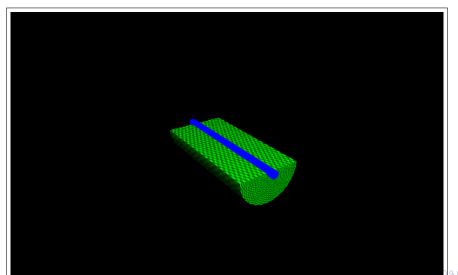
The geometry of the double solid cube is the following: at a point interior or on a face of the cube, the geometry is Euclidean.

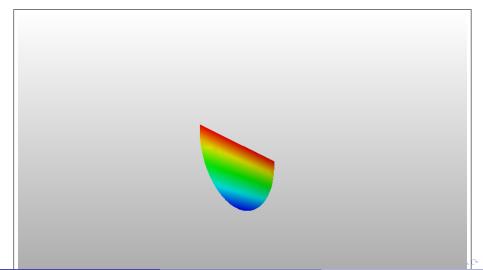


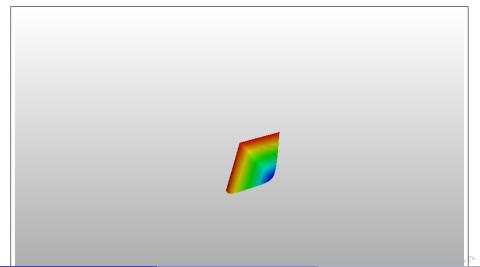
The geometry of the double solid cube is the following: at a point interior or on a face of the cube, the geometry is Euclidean.

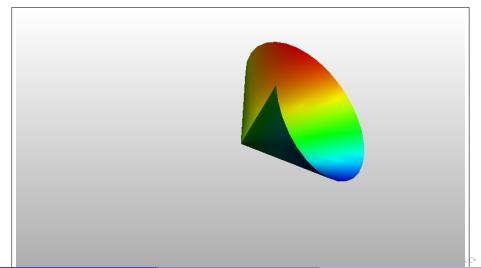


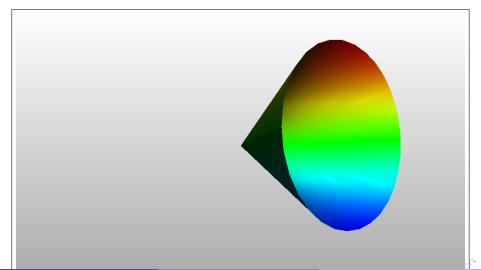




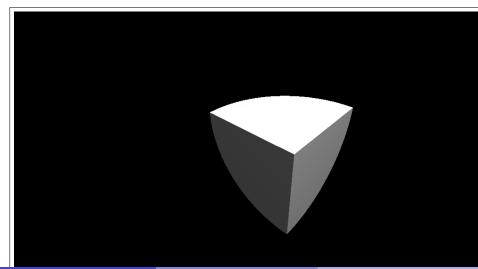




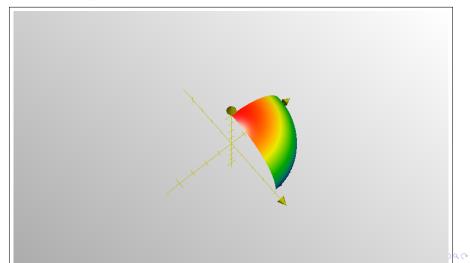




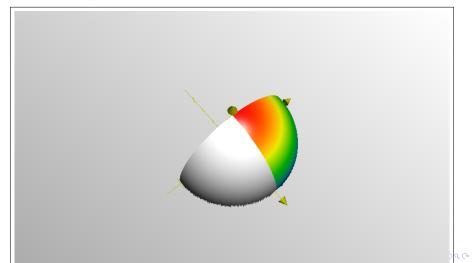
The geometry of the double solid cube is the following : at a vertex of the cube, we have to glue two cones over 1/8 of sphere.



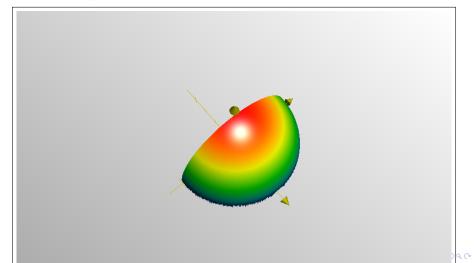
The geometry of the double solid cube is the following : at a vertex of the cube, we have to glue two cones over 1/8 of sphere, that is a cone over two copie of 1/8 of spheres



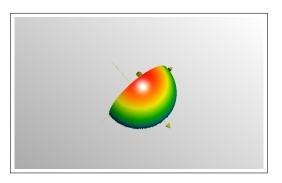
The geometry of the double solid cube is the following : at a vertex of the cube, we have to glue two cones over 1/8 of sphere, that is a cone over two copie of 1/8 of spheres



The geometry of the double solid cube is the following : at a vertex of the cube, we have to glue two cones over 1/8 of sphere, that is a cone over two copie of 1/8 of spheres

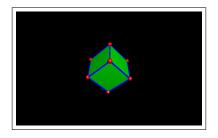


The geometry of the double solid cube is the following : at a vertex of the cube, we have to glue two cones over 1/8 of sphere, that is a cone over two copie of 1/8 of spheres



This is a cone over the berlingot!

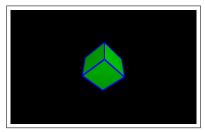
Summary : The double solid cube has a decomposition $X\supset X_1\subset X_0$:



- On $X \setminus X_1$ the geometry is Euclidean
- $X_1 \setminus X_0$ is the union of 12 unit segments and at a point on $X_1 \setminus X_0$, the geometry is the product of an interval with a cone whose link has length π .
- X_0 consists of 8 points and the geometry near these points looks like a cone over a berlingot.

Summary : The double solid cube has a decomposition $X\supset X_1\subset X_0$:

- On $X \setminus X_1$ the geometry is Euclidean
- $X_1 \setminus X_0$ is the union of 12 unit segments and at a point on $X_1 \setminus X_0$, the geometry is the product of an interval with a cone whose link has length π .



• X_0 consists of 8 points and the geometry near these points looks like a cone over a berlingot.

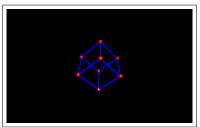
Summary : The double solid cube has a decomposition $X\supset X_1\subset X_0$:

- On $X \setminus X_1$ the geometry is Euclidean
- $X_1 \setminus X_0$ is the union of 12 unit segments and at a point on $X_1 \setminus X_0$, the geometry is the product of an interval with a cone whose link has length π .

• X_0 consists of 8 points and the geometry near these points looks like a cone over a berlingot.

Summary : The double solid cube has a decomposition $X\supset X_1\subset X_0$:

- On $X \setminus X_1$ the geometry is Euclidean
- $X_1 \setminus X_0$ is the union of 12 unit segments and at a point on $X_1 \setminus X_0$, the geometry is the product of an interval with a cone whose link has length π .
- X_0 consists of 8 points and the geometry near these points looks like a cone over a berlingot.



The basics object are cone over metric space : if Σ is a complete metric space with distance d_{Σ} , the cone $C(\Sigma)$ over Σ is the completion of the product $(0,\infty) \times \Sigma$ with the distance for $p=(t,x), \ q=(s,y) \in (0,\infty) \times \Sigma$

$$d(p,q) = \begin{cases} t+s & \text{if } d_Y(x,y) \ge \pi \\ \sqrt{t^2 + s^2 - 2ts\cos d_Y(x,y)} & \text{if } d_Y(x,y) \le \pi \end{cases}$$

We have only to blown down $\{0\} \times \Sigma$ to a point (the vertex of the cone) from $[0+\infty) \times \Sigma$.

<ロト < 個ト < 重ト < 重ト < 重 とり < で

A stratified space is a compact metric space (X, d) with a stratification

$$X\supset X_{n-2}\supset\cdots\supset X_1\supset X_0$$

such that

• near each point $x \in X \setminus X_{n-2} = X_{reg}$, the geometry is Riemannian.

A stratified space is a compact metric space (X, d) with a stratification

$$X\supset X_{n-2}\supset\cdots\supset X_1\supset X_0$$

such that

- near each point $x \in X \setminus X_{n-2} = X_{reg}$, the geometry is Riemannian.
- ullet near each point $x \in X_k \setminus X_{k-1}$, the geometry looks like a product

$$\mathbb{R}^k \times C(\Sigma_{\times})$$

where Σ_x is a (n-k-1)- dimensional stratified space.

A stratified space is a compact metric space (X, d) with a stratification

$$X\supset X_{n-2}\supset\cdots\supset X_1\supset X_0$$

such that

- near each point $x \in X \setminus X_{n-2} = X_{reg}$, the geometry is Riemannian.
- ullet near each point $x \in X_k \setminus X_{k-1}$, the geometry looks like a product

$$\mathbb{R}^k \times C(\Sigma_{\times})$$

where Σ_x is a (n-k-1)- dimensional stratified space.

A stratified space is a compact metric space (X, d) with a stratification

$$X\supset X_{n-2}\supset\cdots\supset X_1\supset X_0$$

such that

- near each point $x \in X \setminus X_{n-2} = X_{reg}$, the geometry is Riemannian.
- ullet near each point $x \in X_k \setminus X_{k-1}$, the geometry looks like a product

$$\mathbb{R}^k \times C(\Sigma_{\times})$$

where Σ_{κ} is a (n-k-1)- dimensional stratified space.

Some remarks:

It is an inductive definition.

4□ > 4回 > 4 回 > 4 回 > 1 回 ** 9 9 ○

A stratified space is a compact metric space (X, d) with a stratification

$$X\supset X_{n-2}\supset\cdots\supset X_1\supset X_0$$

such that

- near each point $x \in X \setminus X_{n-2} = X_{reg}$, the geometry is Riemannian.
- ullet near each point $x \in X_k \setminus X_{k-1}$, the geometry looks like a product

$$\mathbb{R}^k \times C(\Sigma_{\times})$$

where Σ_{κ} is a (n-k-1)- dimensional stratified space.

Some remarks:

- It is an inductive definition.
- Near $x \in X_k \setminus X_{k-1}$, the \mathbb{R}^k -directions are tangent to the stratum X_k .

Yamabe flow on stratified spaces

The Yamabe flow is a parabolic flow $g = u^{\frac{4}{n-2}}g_0$:

$$\frac{4}{n-2}\frac{\partial}{\partial t}u = \sigma(t)u - u^{-\frac{4}{n-2}}\left(\frac{4(n-1)}{n-2}\Delta_{g_0}u + \operatorname{Scal}_{g_0}u\right),$$

where
$$\sigma(t) = \int_M \mathrm{Scal}_g \mathrm{dv}_g = \int_M \left(\frac{4(n-1)}{n-2} |du|_0^2 + \mathrm{Scal}_{g_0} u^2 \right) \mathrm{dv}_{g_0}.$$

Yamabe flow on stratified spaces

The Yamabe flow is a parabolic flow $g = u^{\frac{4}{n-2}}g_0$:

$$\frac{4}{n-2}\frac{\partial}{\partial t}u = \sigma(t)u - u^{-\frac{4}{n-2}}\left(\frac{4(n-1)}{n-2}\Delta_{g_0}u + \operatorname{Scal}_{g_0}u\right),$$

where
$$\sigma(t) = \int_M \mathrm{Scal}_g \mathrm{dv}_g = \int_M \left(\frac{4(n-1)}{n-2} |du|_0^2 + \mathrm{Scal}_{g_0} u^2 \right) \mathrm{dv}_{g_0}$$
.

Our convention for Δ_g is that

$$\int_{M} |du|_0^2 \mathrm{dv}_{g_0} = \int u \, \Delta_{g_0} u \, \, \mathrm{dv}_{g_0}.$$

Theorem (Carron, Olsen Lye & Vertman, 2021)

Assume that X is a stratified space of dimension n>2 and that g_0 is a Riemannian metric on X_{reg} such that

$$\operatorname{vol}_{g_0} X_{reg} = 1 \text{ and } \operatorname{Scal}_{g_0} \in L^{p > \frac{n}{2}}$$

Then there is a long time solution of the Yamabe flow starting at g_0 .

Theorem (Carron, Olsen Lye & Vertman, 2021)

Assume that X is a stratified space of dimension n>2 and that g_0 is a Riemannian metric on X_{reg} such that

$$\operatorname{vol}_{g_0} X_{reg} = 1 \text{ and } \operatorname{Scal}_{g_0} \in L^{p > \frac{n}{2}}$$

Then there is a long time solution of the Yamabe flow starting at g_0 .

This a parabolic counterpart of some existence result for the Yamabe problem on stratified spaces [Akutagawa-C-Mazzeo 2014].

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

• (X, d, μ) is a measured metric space with $\mu(X) = 1$,

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- A closed, densely defined quadratic form $\mathcal{E}: \mathcal{D} \subset L^2(X,\mu) \to \mathbb{R}_+$,

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- A closed, densely defined quadratic form $\mathcal{E} \colon \mathcal{D} \subset L^2(X,\mu) \to \mathbb{R}_+$,
- L is the Friedrichs extension of \mathcal{E} : $\mathcal{E}(u) = \langle u, Lu \rangle$,

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- ullet A closed, densely defined quadratic form $\mathcal{E}\colon \mathcal{D}\subset L^2(X,\mu) o \mathbb{R}_+$,
- *L* is the Friedrichs extension of $\mathcal{E}: \mathcal{E}(u) = \langle u, Lu \rangle$,
- we have the Sobolev inequality :

$$\forall w \in \mathcal{D}(\mathcal{E}): \|w\|_{L^{\frac{2n}{n-2}}}^2 \leq A \left(\mathcal{E}(w) + \|w\|_{L^2}^2\right).$$

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- ullet A closed, densely defined quadratic form $\mathcal{E}\colon \mathcal{D}\subset L^2(X,\mu) o \mathbb{R}_+$,
- *L* is the Friedrichs extension of $\mathcal{E}: \mathcal{E}(u) = \langle u, Lu \rangle$,
- we have the Sobolev inequality :

$$\forall w \in \mathcal{D}(\mathcal{E}): \|w\|_{L^{\frac{2n}{n-2}}}^2 \leq A \left(\mathcal{E}(w) + \|w\|_{L^2}^2\right).$$

• $V \in L^{p>\frac{n}{2}}$.

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- ullet A closed, densely defined quadratic form $\mathcal{E}\colon \mathcal{D}\subset L^2(X,\mu) o \mathbb{R}_+$,
- *L* is the Friedrichs extension of $\mathcal{E}: \mathcal{E}(u) = \langle u, Lu \rangle$,
- we have the Sobolev inequality :

$$\forall w \in \mathcal{D}(\mathcal{E}): \|w\|_{L^{\frac{2n}{n-2}}}^2 \leq A \left(\mathcal{E}(w) + \|w\|_{L^2}^2\right).$$

• $V \in L^{p>\frac{n}{2}}$.

We used functional analytic method to get the existence of solution of equation of the type

$$\frac{\partial}{\partial t}u=u^{\beta}\left(-Lu+Vu\right)$$

on Dirichlet space (X, d, μ, \mathcal{E}) where

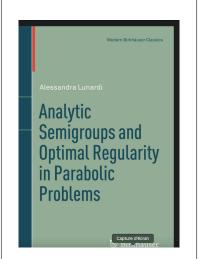
- (X, d, μ) is a measured metric space with $\mu(X) = 1$,
- A closed, densely defined quadratic form $\mathcal{E} \colon \mathcal{D} \subset L^2(X,\mu) \to \mathbb{R}_+$,
- *L* is the Friedrichs extension of $\mathcal{E}: \mathcal{E}(u) = \langle u, Lu \rangle$,
- we have the Sobolev inequality :

$$\forall w \in \mathcal{D}(\mathcal{E}): \|w\|_{L^{\frac{2n}{n-2}}}^2 \leq A \left(\mathcal{E}(w) + \|w\|_{L^2}^2\right).$$

• $V \in L^{p > \frac{n}{2}}$.

This abstract framework generalizes $\mathcal{E}(u) = \int_M |du|_g^2 \mathrm{dv}_g = \int_M \Delta_g u u \mathrm{dv}_g$.

Together with the suitable general theorem that can be found in the very good book :



Theorem (Carron, Olsen Lye & Vertman, 2021)

Assume that X is a stratified space of dimension n>2 and that g_0 is a Riemannian metric on X_{reg} such that

$$\operatorname{vol}_{g_0} X_{reg} = 1 \text{ and } \operatorname{Scal}_{g_0} \in L^{p > \frac{n}{2}}$$

Then there is a long time solution of the Yamabe flow starting at g_0 .

This general theorem also provides useful information about the regularity of the Scalar curvature.

ullet We do not know wether $\Delta_{g_0}\mathrm{Scal}_g\in \mathit{L}^p$

Theorem (Carron, Olsen Lye & Vertman, 2021)

Assume that X is a stratified space of dimension n>2 and that g_0 is a Riemannian metric on X_{reg} such that

$$\operatorname{vol}_{g_0} X_{reg} = 1 \text{ and } \operatorname{Scal}_{g_0} \in L^{p > \frac{n}{2}}$$

Then there is a long time solution of the Yamabe flow starting at g_0 .

This general theorem also provides useful information about the regularity of the Scalar curvature.

- ullet We do not know wether $\Delta_{g_0}\mathrm{Scal}_g\in L^p$
- ullet But we know that $\Delta_g \mathrm{Scal}_g \in \mathit{L}^p$

Theorem (Carron, Olsen Lye & Vertman, 2021)

Assume that X is a stratified space of dimension n>2 and that g_0 is a Riemannian metric on X_{reg} such that

$$\operatorname{vol}_{g_0} X_{reg} = 1 \text{ and } \operatorname{Scal}_{g_0} \in L^{p > \frac{n}{2}}$$

Then there is a long time solution of the Yamabe flow starting at g_0 .

This general theorem also provides useful information about the regularity of the Scalar curvature.

- ullet We do not know wether $\Delta_{g_0}\mathrm{Scal}_g\in L^p$
- ullet But we know that $\Delta_g \mathrm{Scal}_g \in \mathit{L}^p$
- And we can deduce Scalar curvature estimate from the equations :

$$\frac{\partial}{\partial t} \operatorname{Scal}_{g(t)} + (n-1) \Delta_{g(t)} \operatorname{Scal}_{g(t)} = -\operatorname{Scal}_{g(t)} \left(\operatorname{Scal}_{g(t)} - \sigma(t) \right).$$

Yamabe flow on stratified spaces, asymptotic behavior

 We also have a dichotomy compactness vs concentration (formation of bubbles).

Yamabe flow on stratified spaces, asymptotic behavior

- We also have a dichotomy compactness vs concentration (formation of bubbles).
- We do not have a positive mass theorem.

Yamabe flow on stratified spaces, asymptotic behavior

- We also have a dichotomy compactness vs concentration (formation of bubbles).
- We do not have a positive mass theorem.
- There are examples where only concentration occurs.

Under the hypothesis that

$$\|\mathrm{Ricci}_{g_0}\|_{L^{\infty}} < \infty$$

and that cone angles of the tangent spaces along $X_{n-2} \setminus X_{n-3}$ are always less than 2π , we get a very description of the blow-up profile.

Under the hypothesis that

$$\|\mathrm{Ricci}_{g_0}\|_{L^\infty} < \infty$$

and that cone angles of the tangent spaces along $X_{n-2} \setminus X_{n-3}$ are always less than 2π , we get a very description of the blow-up profile.

For $g(t)=u^{\frac{4}{n-2}}(t)g_0$ a solution of the Yamabe flow. We can extract subsequence $t_k\to\infty$ and find

• $u_{\infty} \in H^1(X)$ solving the equation

$$c_n \Delta_{g_0} u_{\infty} + \operatorname{Scal}_{g_0} u_{\infty} = \sigma_{\infty} u_{\infty}^{\frac{n+2}{n-2}}$$

such that $u(t_k)$ converges weakly to u_{∞} .

Under the hypothesis that

$$\|\mathrm{Ricci}_{g_0}\|_{L^{\infty}} < \infty$$

and that cone angles of the tangent spaces along $X_{n-2} \setminus X_{n-3}$ are always less than 2π , we get a very description of the blow-up profile.

For $g(t) = u^{\frac{4}{n-2}}(t)g_0$ a solution of the Yamabe flow. We can extract subsequence $t_k \to \infty$ and find

• $u_{\infty} \in H^1(X)$ solving the equation

$$c_n \Delta_{g_0} u_{\infty} + \operatorname{Scal}_{g_0} u_{\infty} = \sigma_{\infty} u_{\infty}^{\frac{n+2}{n-2}}$$

such that $u(t_k)$ converges weakly to u_{∞} .

• a finite number of bubbles B_k^1, \ldots, B_k^L such that

$$\lim_{k\to\infty}\left\|u(t_k)-u_\infty-\sum_{j=1}^LB_k^j\right\|_{H^1}=0.$$

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 釣りぐ

Under the hypothesis that

$$\|\mathrm{Ricci}_{g_0}\|_{L^\infty} < \infty$$

and that cone angles of the tangent spaces along $X_{n-2} \setminus X_{n-3}$ are always less than 2π , we get a very description of the blow-up profile.

We have

$$B_k^{\ell}(x) = \left(\frac{c\lambda_{\ell}\epsilon_k(\ell)}{(\lambda_{\ell}\epsilon_k(\ell))^2 + d(x, p_k(\ell)))^2}\right)^{\frac{n-2}{2}}$$

and the bubble are well separated if $i \neq j$ then

$$\lim_{k\to+\infty}\frac{\epsilon_k(j)}{\epsilon_k(i)}+\frac{\epsilon_k(i)}{\epsilon_k(j)}+\frac{d^2(p_k(j),p_k(i))}{\epsilon_k(i)\epsilon_k(j)}=+\infty.$$

We can adapt the classical blow-up analysis (Struwe) in this general setting and a key point is provided by a result of I. Mondello (2016).

Theorem, (I. Mondello, 2016)

Assume that $\|\mathrm{Ricci}_{g_0}\|_{L^\infty}<\infty$ and that cone angles of the tangent spaces along $X_{n-2}\setminus X_{n-3}$ are always less than 2π . If X_p is a blow-up/tangent space of X at $p\in X$ and $u\colon X_p\to \mathbb{R}_+$ a solution of the equation

$$c_n\Delta u=\sigma u^{\frac{n+2}{n-2}}.$$

Then there is a constant $\lambda > 0$ such that

$$u(x) = \left(\frac{c\lambda}{\lambda^2 + d_{X_p}(x, p)^2}\right)^{\frac{n-2}{2}},$$

with

$$c=\sqrt{\frac{n(n-1)}{\sigma}}.$$