Positive mass theorem and the CR Yamabe equation on 5-dimensional contact spin manifolds

Jih-Hsin Cheng Institute of Mathematics, Academia Sinica, Taipei

BIRS-IASM(Hangzhou) Workshop on Geometric PDE and Applications to Problems in Conformal and CR Geometry

May 16-21, 2021

Jih-Hsin Cheng Institute of Mathematics, Ac

Positive mass theorem

- Cheng, Jih-Hsin Academia Sinica, Taipei
- Malchiodi, Andrea Scuola Normale Superiore di Pisa, Pisa
- Yang, Paul Princeton University, Princeton
- Chiu, Hung-Lin National Tsing-Hua University, Hsinchu, Taiwan

Short introduction to terminology

On a closed contact (2n + 1)-manifold M, we endow with an almost complex structure J (called CR structure).

• Define the p-mass for (M, J) or its asymp. flat "blowup" $(M \setminus \{p_{\infty}\}, J, \theta)$ at p_{∞} by

$$m(J,\theta) := \lim_{\Lambda \to \infty} \sqrt{-1}n \oint_{S_{\Lambda}} \sum_{j=1}^{n} \omega_{j}^{j} \wedge \theta \wedge (d\theta)^{n-1}$$

– (a CR analogue of the ADM-mass in GR) where ω_i^j are connection forms wrt (J, θ) and the contact form $\theta = G_{p_{\infty}}^{2/n} \theta_M$, $G_{p_{\infty}}$ being the Green function at p_{∞} for the CR Laplacian L_b .

 ${\, \bullet \, }$ Define the CR Yamabe constant ${\mathcal Y}(J)$ by

$$\mathcal{Y}(J) := \inf_{\theta} \frac{\int_{M} W_{J,\theta} \theta \wedge (d\theta)^{n}}{(\int_{M} \theta \wedge (d\theta)^{n})^{\frac{2n}{2n+2}}}$$
(1)

- where $W_{J,\theta}$ denotes the Tanaka-Webster scalar curvature wrt (J, θ) .

The CR Yamabe equation with critical Sobolev exponent

• Let $\theta = u^{2/n} \theta_M$, u > 0 in (1). If $0 < \mathcal{Y}(J)$ is attained by u, then u (up to a constant) satisfies

$$L_b u := [(2 + \frac{2}{n})\Delta_b + W]u = u^{1 + \frac{2}{n}}$$
 on M

- (called the CR Yamabe equation) with minimum energy.

• (M, J) is called embeddable if there is a CR embedding

$$\varphi:(M,J)\to(\mathbb{C}^N,J_{\mathbb{C}^N})$$

– i.e. $J_{\mathbb{C}^N} \circ \varphi_* = \varphi_* \circ J$ on the contact bundle.

• **[CMY, 2017]** (PMT for dim 3; based on the Hsiao-Yung solution to \Box_b equation on weighted Sobolev spaces) Suppose $\mathcal{Y}(J) > 0$ and J is embeddable (\cong original condition by Yuya Takeuchi). Then - (1) $m(J, \theta) \ge 0$;

$$-(2) m(J,\theta) = 0 \implies (M,J) \stackrel{CR}{\simeq} (S^3, J_{S^3}).$$

- **Cor**.: The *CR* Yamabe equation has a solution with minimum energy for (*M*, *J*) embeddable.
- Cor. (a version of generalized Riemann mapping theorem):
 Let Ω ⊂ C² be a sψc domain close enough to the unit ball
 B² ⊂ C². Suppose m(J, θ) = 0 ⇒ Ω is biholomorphic to B².

• [CMY, 2019(a)] For $0 \neq |s|$ small, the p-mass of the Rossi spheres $S_s^3 := (S^3, J_{(s)})$ is negative. More precisely,

$$m_s = -18\pi s^2 + o(s^2)$$

– for $s\simeq 0$. The mass is never negative for the Riemannian case.

• [CMY, 2019(b)] For $0 \neq |s|$ small, - (1) the infimum of the *CR* Sobolev quotient of S_s^3 coincides with $\mathcal{Y}(J_{S^3})$, i.e.

$$\mathcal{Y}(J_{(s)}) = \mathcal{Y}(J_{S^3});$$

- (2) $\mathcal{Y}(J_{(s)})$ is not attained (\Longrightarrow the *CR* Yamabe equation for S_s^3 has no solution with minimum energy).

PMT in CR geometry of 5D (1)

- [CC, 2021] (PMT for dim 5 (1)) Let (M, ξ) be a closed, contact spin manifold of dim 5. Suppose J is a spherical CR structure on (M, ξ) with Y(J) > 0. Then

 (1) m(J, θ) > 0;
 - $-(2) m(J,\theta) = 0 \implies (M,J) \stackrel{CR}{\simeq} (S^5, J_{S^5}).$
- **[CC, 2019]** The connected sum is closed within a certain class of spin, spherical 5-manifolds with $\mathcal{Y} > 0$, including S^5/\mathbb{Z}_p (p:odd), $S^4 \times S^1_{(a)}$ (a > 1) and $\mathbb{RP}^5 \# \mathbb{RP}^5$), e.g.

$$\begin{split} m_1(S^5/\mathbb{Z}_{p_1}) \ \# \ l_1(S^4\times S^1_{(a)}) \ \# \ m_2(S^5/\mathbb{Z}_{p_2}) \ \# \ l_2(\mathbb{RP}^5\#\mathbb{RP}^5) \\ (m_j, \ l_j, \ p_j \in \mathbb{N}, \ j = 1, 2, \ p_j : odd, \ j = 1, 2). \end{split}$$

• **Cor.** Over the above 5-manifolds, the *CR* Yamabe equation has a solution with minimal energy.

- [CC, 2021] (PMT for dim 5 (2)) Let (N, J, θ) be an asymp. flat, pseudohermitian and spin manifold of dim 5. Suppose J is spherical and W_{J,θ} ≥ 0. Then

 (1) m(J, θ) ≥ 0;
 - $-(2) m(J, \theta) = 0 \implies (N, J, \theta)$ is isomorphic to the Heisenberg group $(H_2, \mathring{J}, \mathring{\theta})$.
- PMT (2) \implies PMT (1) by blowing up at p_{∞} through $\theta = G_{p_{\infty}}\theta_M$:

$$(N, J, \theta) = (M \setminus \{p_{\infty}\}, J, G_{p_{\infty}}\theta_M)$$

 $-W_{J,\theta}\equiv 0$ in this case.

Weizenbock-type formula

Let e_1, \dots, e_{2n} be an orthonormal (wrt the Levi metric $d\theta(\cdot, J \cdot)$) frame field of ξ and $e_{n+\beta} = Je_{\beta}$, $1 \le \beta \le n$. Let \mathbb{S}^{\pm} denote the space of positive/negative spinors on the asymp. flat N (e.g. "blowup" $N = M \setminus \{p_{\infty}\}$).

• Define the contact Dirac operator $D_{\zeta}:\mathbb{S}^{\pm}
ightarrow \mathbb{S}^{\mp}$ by

$$D_{\xi}\psi:=\sum_{a=1}^{2n}e_{a}
abla_{e_{a}}\psi$$

• Weitzenbock-type formula:

$$D_{\xi}^{2} = \nabla^{*} \nabla + W - 2 \sum_{\beta=1}^{n} e_{\beta} e_{n+\beta} \nabla_{T}$$
⁽²⁾

- where T is the Reeb vector field: $\theta(T) = 1$, $d\theta(T, \cdot) = 0$.

The case D=5 (n=2)

• Key algebraic fact for the case D=5 (n=2):

$$\sum_{\beta=1}^{2} e_{\beta} e_{2+\beta} = e_1 e_3 + e_2 e_4 = 0 \text{ on } S^+.$$
(3)

• It follows from (2) and (3) that

$$D_{\zeta}^2 =
abla^*
abla + W ext{ on } \mathbb{S}^+$$
 (4)

[Chiu, 2021] Suppose (N, J, θ) is an asymp. flat, spherical, spin 5-manifold with W_{J,θ} ≥ 0. Let ψ₀ be a constant spinor near ∞. Then there exists a spinor (field) ψ ∈ S⁺ s.t.

$$D_{\xi}^{2}\psi = 0, \qquad (5)$$

$$\psi - \psi_{0} \in S_{2,-4+\varepsilon}^{2}(\mathbb{S}^{+})$$

– where $S^2_{2,-\eta}(\mathbb{S}^+)$ is a weighted Folland-Stein space.

• Applying (4) to a solution ψ to (5), taking inner product with ψ and integrating give

$$\int_{N} (|\nabla \psi|^2 + W|\psi|^2) dV_{\theta} = c \cdot m(J,\theta), \ c > 0$$

- in which we pick up the mass from the boundary term at ∞ and other boundary terms go away due to the fast decay rate of $\psi - \psi_0$.

• Either assume $W \ge 0$ or when $N = M \setminus \{p_{\infty}\}$ is a blowup at p_{∞} by taking $\theta = G_{p_{\infty}}\theta_M$, $G_{p_{\infty}}$: Green's function of L_b on M, then W = 0 on N. In either case $m(J, \theta) \ge 0$.

Characterizing $m(J, \theta) = 0$ (I)

•
$$m(J, \theta) = 0 \Longrightarrow W \equiv 0$$
 (in either case)

•
$$m(J, \theta) = 0 \Longrightarrow$$
 torsion $A_{\alpha\beta} \equiv 0$

• - Let $J_s := \varphi_s^* J$, φ_s generated by T. Find $u_s > 0$ s.t. $(N, J_s, u_s^{2/n} \theta)$ is asymp. flat with $W_{J_s, u_s^{2/n} \theta} = 0$ and

$$0 \leq m(J_s, u_s^{2/n}\theta) = -C_n \int_N W_{J_s,\theta} u_s dV_{\theta}$$

– Taking $\frac{d}{ds}|_{s=0}$ gives

$$0 = \frac{d}{ds}|_{s=0}m(J_s, u_s^{2/n}\theta) = 2nC_n \int_N \sum_{\alpha,\beta} |A_{\alpha\beta}|^2 dV_{\theta}.$$

Characterizing $m(J, \theta) = 0$ (II)

• $m(J, \theta) = 0 \implies$ pseudohermitian curvature $R_{\alpha\bar{\beta}\rho\bar{\sigma}} \equiv 0$ • Proof: $A_{\alpha\beta} \equiv 0 \implies R_{\alpha\bar{\beta}\rho\bar{\sigma},\gamma} - R_{\alpha\bar{\beta}\gamma\bar{\sigma},\rho} = 0$ (Bianchi id) and $R_{\gamma\bar{\sigma},\sigma} = 0$.; (N, J) spherical $\implies 0 =$

$$S_{\alpha\bar{\beta}\rho\bar{\sigma}} = R_{\alpha\bar{\beta}\rho\bar{\sigma}} - \frac{1}{n+2} (R_{\alpha\bar{\beta}}h_{\rho\bar{\sigma}} + R_{\rho\bar{\beta}}h_{\alpha\bar{\sigma}} + \delta^{\beta}_{\alpha}R_{\rho\bar{\sigma}} + \delta^{\beta}_{\rho}R_{\alpha\bar{\sigma}})(6) + \frac{W}{(n+1)(n+2)} (\delta^{\beta}_{\alpha}h_{\rho\bar{\sigma}} + \delta^{\beta}_{\rho}h_{\alpha\bar{\sigma}}).$$

– from which we compute $R_{\alpha\bar{\beta}\rho\bar{\sigma},\gamma} - R_{\alpha\bar{\beta}\gamma\bar{\sigma},\rho}$ (=0) and use W = 0. We finally obtain

$$0=\frac{1}{n+2}(-nR_{\alpha\bar{\sigma},\rho}).$$

– i.e. $R_{\alpha\bar{\sigma}}$ is parallel and hence vanishes since N is asymp. flat. By (6) again we get $R_{\alpha\bar{\beta}\rho\bar{\sigma}} = 0$.

- Take $q_0 \in N_{\infty} := N \setminus N_0$, a simply connected nbhd. By using the developing map, we find a pseudohermitian isomorphism $\Psi(=dev^{-1})$: $dev(N_{\infty}) =: V \subset H_2 \to N_{\infty}$. Observe that V must be a nbhd of ∞ .
- Extend Ψ to a covering map $\tilde{\Psi}: H_2 \to N$ via the pseudohermitian development.
- Note that V is contained in a fundamental domain. If Ψ̃ is not 1 1, then there are at least two fundamental domains. But the one containing V has ∞ volume while any other one has finite volume. So

$$(H_2, \mathring{J}, \mathring{\theta}) \stackrel{\tilde{\Psi}}{\simeq} (N, J, \theta).$$

- **[CC, 2021]** Let (M, ξ) be a closed, contact spin manifold of dim 5. Suppose J is a spherical CR structure on (M, ξ) with $\mathcal{Y}(M, J) > 0$. Then the CR Yamabe equation has a solution with minimum energy.
- Proof: Test function estimate for J spherical and dim $= 2n + 1 \ge 3$ (Zhongyuan Li, dim $= 2n + 1 \ge 7$ unpublished):

$$E(\phi_{\beta}) \leq \mathcal{Y}(S^{2n+1}, \hat{J}) ||\phi_{\beta}||_{2+\frac{2}{n}}^{2} - C_{n}m(J, \theta)\beta^{-2n} + O(\beta^{-2n-1})$$

• $m(J, \theta) > 0 \Longrightarrow \mathcal{Y}(M, J) < \mathcal{Y}(S^{2n+1}, \hat{J}) \xrightarrow{Jerison-Lee} \mathcal{Y}(M, J)$ is attained.

Thanks for your attention