Positive mass theorem and the CR Yamabe equation on 5-dimensional contact spin manifolds

Jih-Hsin Cheng
Institute of Mathematics, Academia Sinica, Taipei

BIRS-IASM(Hangzhou) Workshop on Geometric PDE and Applications to Problems in Conformal and CR Geometry

May 16-21, 2021

Research team for positive mass theorem in CR geometry

- Cheng, Jih-Hsin - Academia Sinica, Taipei
- Malchiodi, Andrea - Scuola Normale Superiore di Pisa, Pisa
- Yang, Paul - Princeton University, Princeton
- Chiu, Hung-Lin - National Tsing-Hua University, Hsinchu, Taiwan

Short introduction to terminology

On a closed contact $(2 n+1)$-manifold M, we endow with an almost complex structure J (called CR structure).

- Define the p-mass for (M, J) or its asymp. flat "blowup" $\left(M \backslash\left\{p_{\infty}\right\}, J, \theta\right)$ at p_{∞} by

$$
m(J, \theta):=\lim _{\Lambda \rightarrow \infty} \sqrt{-1} n \oint_{S_{\Lambda}} \sum_{j=1}^{n} \omega_{j}^{j} \wedge \theta \wedge(d \theta)^{n-1}
$$

- (a CR analogue of the ADM-mass in GR) where ω_{i}^{j} are connection forms wrt (J, θ) and the contact form $\theta=G_{p_{\infty}}^{2 / n} \theta_{M}, G_{p_{\infty}}$ being the Green function at p_{∞} for the CR Laplacian L_{b}.
- Define the CR Yamabe constant $\mathcal{Y}(J)$ by

$$
\begin{equation*}
\mathcal{Y}(J):=\inf _{\theta} \frac{\int_{M} W_{J, \theta} \theta \wedge(d \theta)^{n}}{\left(\int_{M} \theta \wedge(d \theta)^{n}\right)^{\frac{2 n}{2 n+2}}} \tag{1}
\end{equation*}
$$

- where $W_{J, \theta}$ denotes the Tanaka-Webster scalar curvature wrt (J, θ).

The CR Yamabe equation with critical Sobolev exponent

- Let $\theta=u^{2 / n} \theta_{M}, u>0$ in (1). If $0<\mathcal{Y}(J)$ is attained by u, then u (up to a constant) satisfies

$$
L_{b} u:=\left[\left(2+\frac{2}{n}\right) \Delta_{b}+W\right] u=u^{1+\frac{2}{n}} \text { on } M
$$

- (called the CR Yamabe equation) with minimum energy.
- (M, J) is called embeddable if there is a $C R$ embedding

$$
\varphi:(M, J) \rightarrow\left(\mathbb{C}^{N}, J_{\mathbb{C}^{N}}\right)
$$

- i.e. $J_{\mathbb{C}^{N}} \circ \varphi_{*}=\varphi_{*} \circ \mathrm{~J}$ on the contact bundle.

PMT in CR geometry of 3D

- [CMY, 2017] (PMT for dim 3; based on the Hsiao-Yung solution to \square_{b} equation on weighted Sobolev spaces)
Suppose $\mathcal{Y}(J)>0$ and J is embeddable (\cong original condition by Yuya Takeuchi). Then
- (1) $m(J, \theta) \geq 0$;
$-(2) m(J, \theta)=0 \Longrightarrow(M, J) \stackrel{C R}{\simeq}\left(S^{3}, J_{S^{3}}\right)$.
- Cor.: The $C R$ Yamabe equation has a solution with minimum energy for (M, J) embeddable.
- Cor. (a version of generalized Riemann mapping theorem):
- Let $\Omega \subset \mathbb{C}^{2}$ be a $s \psi c$ domain close enough to the unit ball $B^{2} \subset \mathbb{C}^{2}$. Suppose $m(J, \theta)=0 \Longrightarrow \Omega$ is biholomorphic to B^{2}.

Rossi spheres: exotic CR 3-spheres

- [CMY, 2019(a)] For $0 \neq|s|$ small, the p-mass of the Rossi spheres $S_{s}^{3}:=\left(S^{3}, J_{(s)}\right)$ is negative. More precisely,

$$
m_{s}=-18 \pi s^{2}+o\left(s^{2}\right)
$$

- for $s \simeq 0$. The mass is never negative for the Riemannian case.
- [CMY, 2019(b)] For $0 \neq|s|$ small,
- (1) the infimum of the $C R$ Sobolev quotient of S_{s}^{3} coincides with $\mathcal{Y}\left(J_{S^{3}}\right)$, i.e.

$$
\mathcal{Y}\left(J_{(s)}\right)=\mathcal{Y}\left(J_{S^{3}}\right) ;
$$

- (2) $\mathcal{Y}\left(J_{(s)}\right)$ is not attained $\left(\Longrightarrow\right.$ the $C R$ Yamabe equation for S_{s}^{3} has no solution with minimum energy).

PMT in CR geometry of 5D (1)

- [CC, 2021] (PMT for $\operatorname{dim} 5(1))$ Let (M, ξ) be a closed, contact spin manifold of $\operatorname{dim} 5$. Suppose J is a spherical $C R$ structure on (M, ξ) with $\mathcal{Y}(J)>0$. Then
- (1) $m(J, \theta) \geq 0$;
$-(2) m(J, \theta)=0 \Longrightarrow(M, J) \stackrel{C R}{\simeq}\left(S^{5}, J_{S^{5}}\right)$.
- [CC, 2019] The connected sum is closed within a certain class of spin, spherical 5-manifolds with $\mathcal{Y}>0$, including S^{5} / \mathbb{Z}_{p} (p :odd), $S^{4} \times S_{(a)}^{1}(a>1)$ and $\left.\mathbb{R} \mathbb{P}^{5} \# \mathbb{R} \mathbb{P}^{5}\right)$, e.g.

$$
\begin{aligned}
& m_{1}\left(S^{5} / \mathbb{Z}_{p_{1}}\right) \# I_{1}\left(S^{4} \times S_{(a)}^{1}\right) \# m_{2}\left(S^{5} / \mathbb{Z}_{p_{2}}\right) \# I_{2}\left(\mathbb{R P}^{5} \# \mathbb{R} \mathbb{P}^{5}\right) \\
& \left(m_{j}, l_{j}, p_{j} \in \mathbb{N}, j=1,2, p_{j}: \text { odd, } j=1,2\right)
\end{aligned}
$$

- Cor. Over the above 5-manifolds, the CR Yamabe equation has a solution with minimal energy.

PMT in CR geometry of 5D (2)

- [CC, 2021] (PMT for $\operatorname{dim} 5(2))$ Let (N, J, θ) be an asymp. flat, pseudohermitian and spin manifold of $\operatorname{dim} 5$. Suppose J is spherical and $W_{J, \theta} \geq 0$. Then
- (1) $m(J, \theta) \geq 0$;
-(2) $m(J, \theta)=0 \Longrightarrow(N, J, \theta)$ is isomorphic to the Heisenberg group $\left(H_{2}, J, \hat{\theta}\right)$.
- PMT (2) \Longrightarrow PMT (1) by blowing up at p_{∞} through $\theta=G_{p_{\infty}} \theta_{M}$:

$$
(N, J, \theta)=\left(M \backslash\left\{p_{\infty}\right\}, J, G_{p_{\infty}} \theta_{M}\right)
$$

$-W_{J, \theta} \equiv 0$ in this case.

Weizenbock-type formula

Let $e_{1}, \cdots, e_{2 n}$ be an orthonormal (wrt the Levi metric $d \theta(\cdot, J \cdot)$) frame field of ξ and $e_{n+\beta}=J e_{\beta}, 1 \leq \beta \leq n$. Let $S^{ \pm}$denote the space of positive/negative spinors on the asymp. flat N (e.g. "blowup" $\left.N=M \backslash\left\{p_{\infty}\right\}\right)$.

- Define the contact Dirac operator $D_{\xi}: S^{ \pm} \rightarrow S^{\mp}$ by

$$
D_{\tilde{\zeta}} \psi:=\sum_{a=1}^{2 n} e_{a} \nabla_{e_{a}} \psi
$$

- Weitzenbock-type formula:

$$
\begin{equation*}
D_{\xi}^{2}=\nabla^{*} \nabla+W-2 \sum_{\beta=1}^{n} e_{\beta} e_{n+\beta} \nabla_{T} \tag{2}
\end{equation*}
$$

- where T is the Reeb vector field: $\theta(T)=1, d \theta(T, \cdot)=0$.

The case $D=5(n=2)$

- Key algebraic fact for the case $D=5(n=2)$:

$$
\begin{equation*}
\sum_{\beta=1}^{2} e_{\beta} e_{2+\beta}=e_{1} e_{3}+e_{2} e_{4}=0 \text { on } S^{+} . \tag{3}
\end{equation*}
$$

- It follows from (2) and (3) that

$$
\begin{equation*}
D_{\xi}^{2}=\nabla^{*} \nabla+W \text { on } \mathrm{S}^{+} \tag{4}
\end{equation*}
$$

- [Chiu, 2021] Suppose (N, J, θ) is an asymp. flat, spherical, spin 5 -manifold with $W_{J, \theta} \geq 0$. Let ψ_{0} be a constant spinor near ∞. Then there exists a spinor (field) $\psi \in \mathrm{S}^{+}$s.t.

$$
\begin{align*}
D_{\xi}^{2} \psi & =0, \tag{5}\\
\psi-\psi_{0} & \in S_{2,-4+\varepsilon}^{2}\left(\mathrm{~S}^{+}\right)
\end{align*}
$$

- where $S_{2,-\eta}^{2}\left(\mathrm{~S}^{+}\right)$is a weighted Folland-Stein space.

Proof of $m(J, \theta) \geq 0$

- Applying (4) to a solution ψ to (5), taking inner product with ψ and integrating give

$$
\int_{N}\left(|\nabla \psi|^{2}+W|\psi|^{2}\right) d V_{\theta}=c \cdot m(J, \theta), c>0
$$

- in which we pick up the mass from the boundary term at ∞ and other boundary terms go away due to the fast decay rate of $\psi-\psi_{0}$.
- Either assume $W \geq 0$ or when $N=M \backslash\left\{p_{\infty}\right\}$ is a blowup at p_{∞} by taking $\theta=G_{p_{\infty}} \theta_{M}, G_{p_{\infty}}$: Green's function of L_{b} on M, then $W=0$ on N. In either case $m(J, \theta) \geq 0$.

Characterizing $m(J, \theta)=0(I)$

- $m(J, \theta)=0 \Longrightarrow W \equiv 0$ (in either case)
- $m(J, \theta)=0 \Longrightarrow$ torsion $A_{\alpha \beta} \equiv 0$
- Let $J_{s}:=\varphi_{s}^{*} J, \varphi_{s}$ generated by T. Find $u_{s}>0$ s.t. $\left(N, J_{s}, u_{s}^{2 / n} \theta\right)$ is asymp. flat with $W_{J_{s}, U_{s}^{2 / n} \theta}=0$ and

$$
0 \leq m\left(J_{s}, u_{s}^{2 / n} \theta\right)=-C_{n} \int_{N} W_{J_{s}, \theta} u_{s} d V_{\theta}
$$

- Taking $\left.\frac{d}{d s}\right|_{s=0}$ gives

$$
0=\left.\frac{d}{d s}\right|_{s=0} m\left(J_{s}, u_{s}^{2 / n} \theta\right)=2 n C_{n} \int_{N} \sum_{\alpha, \beta}\left|A_{\alpha \beta}\right|^{2} d V_{\theta}
$$

Characterizing $m(J, \theta)=0(I I)$

- $m(J, \theta)=0 \Longrightarrow$ pseudohermitian curvature $R_{\alpha \bar{\beta} \rho \bar{\sigma}} \equiv 0$
- Proof: $A_{\alpha \beta} \equiv 0 \Longrightarrow R_{\alpha \bar{\beta} \rho \bar{\sigma}, \gamma}-R_{\alpha \bar{\beta} \gamma \bar{\sigma}, \rho}=0$ (Bianchi id) and $R_{\gamma \bar{\sigma}, \sigma}=$ 0 .; (N, J) spherical $\Longrightarrow 0=$

$$
\begin{aligned}
& S_{\alpha \bar{\beta} \rho \bar{\sigma}}=R_{\alpha \bar{\beta} \rho \bar{\sigma}}-\frac{1}{n+2}\left(R_{\alpha \bar{\beta}} h_{\rho \bar{\sigma}}+R_{\rho \bar{\beta}} h_{\alpha \bar{\sigma}}+\delta_{\alpha}^{\beta} R_{\rho \bar{\sigma}}+\delta_{\rho}^{\beta} R_{\alpha \bar{\sigma}}\right)(6) \\
& \quad+\frac{W}{(n+1)(n+2)}\left(\delta_{\alpha}^{\beta} h_{\rho \bar{\sigma}}+\delta_{\rho}^{\beta} h_{\alpha \bar{\sigma}}\right)
\end{aligned}
$$

- from which we compute $R_{\alpha \bar{\beta} \rho \bar{\sigma}, \gamma}-R_{\alpha \bar{\beta} \gamma \bar{\sigma}, \rho}(=0)$ and use $W=0$. We finally obtain

$$
0=\frac{1}{n+2}\left(-n R_{\alpha \bar{\sigma}, \rho}\right) .
$$

- i.e. $R_{\alpha \bar{\sigma}}$ is parallel and hence vanishes since N is asymp. flat. By (6) again we get $R_{\alpha \bar{\beta} \rho \bar{\sigma}}=0$.

$(N, J, \theta) \simeq\left(H_{2}, \jmath, \hat{\theta}\right)$

- Take $q_{0} \in N_{\infty}:=N \backslash N_{0}$, a simply connected nbhd. By using the developing map, we find a pseudohermitian isomorphism $\Psi\left(=\operatorname{dev}^{-1}\right)$: $\operatorname{dev}\left(N_{\infty}\right)=: V \subset H_{2} \rightarrow N_{\infty}$. Observe that V must be a nbhd of ∞.
- Extend Ψ to a covering map $\tilde{\Psi}: H_{2} \rightarrow N$ via the pseudohermitian development.
- Note that V is contained in a fundamental domain. If $\tilde{\Psi}$ is not $1-1$, then there are at least two fundamental domains. But the one containing V has ∞ volume while any other one has finite volume. So

$$
\left(H_{2}, \jmath, \stackrel{\circ}{\theta}\right) \stackrel{\tilde{\Psi}}{\simeq}(N, J, \theta)
$$

PMT $\Longrightarrow \mathcal{Y}(M, J)$ is attained

- [CC, 2021] Let (M, ξ) be a closed, contact spin manifold of dim 5 . Suppose J is a spherical $C R$ structure on (M, ξ) with $\mathcal{Y}(M, J)>0$. Then the $C R$ Yamabe equation has a solution with minimum energy.
- Proof: Test function estimate for J spherical and $\operatorname{dim}=2 n+1 \geq 3$ (Zhongyuan Li, dim $=2 n+1 \geq 7$ unpublished):

$$
E\left(\phi_{\beta}\right) \leq \mathcal{Y}\left(S^{2 n+1}, \hat{J}\right)\left\|\phi_{\beta}\right\|_{2+\frac{2}{n}}^{2}-C_{n} m(J, \theta) \beta^{-2 n}+O\left(\beta^{-2 n-1}\right)
$$

- $m(J, \theta)>0 \Longrightarrow \mathcal{Y}(M, J)<\mathcal{Y}\left(S^{2 n+1}, \hat{\jmath}\right) \stackrel{\text { Jerison-Lee }}{\Longrightarrow} \mathcal{Y}(M, J)$ is attained.

Thanks for your attention

