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Spectrum of the laplacian

(Σ2, g) closed, two-dimensional Riemannian manifold, ∆g =

Laplace-Beltrami operator (∆ = d2

dx2 on R),

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ · · ·

the eigenvalues of (−∆) (counted with multiplicity). Let

[g ] = the conformal class of g = {e2wg : w ∈ C∞(Σ)}.

Definition

The first conformal eigenvalue of (Σ, [g ]) is

Λ1(Σ, [g ]) = sup
g̃∈[g ]

λ1(g̃) · Area(Σ, g̃).

(We will see that it is always finite; the inf is zero.)
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Maximal metrics and bounds for Λ1

Definition

We say that g is maximal if λ1(g)Area(Σ, g) = Λ1(Σ, [g ]).

Examples

1 Hersch (’70): Λ1(S2, [g0]) = 8π, g maximal iff g has constant
curvature.

2 Yang-Yau (’80): If Σ has genus γ, then Λ1(Σ, [g ]) ≤ 8π
[γ+3

2

]
.

3 Li-Yau (’82) Λ1(RP2, [g0]) = 12π, maximal iff constant curvature.

4 El Soufi-Ilias-Ros (’96): On flat torus T2 = R2/Γ, gave upper bound
for Λ1(T2, [gΓ]) and characterized maximal metrics (see also
Nadirashvili ’96).
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Extremal metrics

• In general, the functional

g ∈ [ḡ ] 7→ λ1(g)Area(Σ, g)

is continuous but not differentiable.

However, if {g(t)}t∈(−ε,ε) is an
analytic (in t) family of metrics with

g(t) ∈ [ḡ ], g(0) = g0 ∈ [ḡ ],

then the one-sided derivatives

d

dt
λ1(g(t))Area(Σ, g(t))

∣∣∣
t=0+

,
d

dt
λ1(g(t))Area(Σ, g(t))

∣∣∣
t=0−

exist (Berger ’73).
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Extremal vs. Maximal

Definition

We say that g0 is extremal (or C-extremal) if for any analytic deformation
{g(t)}t∈(−ε,ε) with

g(t) ∈ [ḡ ], g(0) = g0 ∈ [ḡ ],

we have

d

dt
λ1(g(t))Area(Σ, g(t))

∣∣∣
t=0+

≤ 0 ≤ d

dt
λ1(g(t))Area(Σ, g(t))

∣∣∣
t=0−

.

• Note that maximal ⇒ extremal, but the converse may not hold.
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Extremal metrics and harmonic maps

There is a remarkable connection between extremal metrics and harmonic
maps:

Theorem (Nadirashvili)

If g is extremal, then there is a collection of first eigenfunctions {φi}1≤i≤k
such that

k∑
i=1

φ2
i = 1.

In particular, Φ = (φ1, . . . , φk) : Σ→ Sk−1 is a harmonic map with
constant energy density |dΦ|2 = λ1(g).

• Note that for maximal metrics, λ1 is not simple (which is generically the
case).
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Existence of maximal metrics

Petrides and Nadirashvili-Sire proved the existence of maximal metrics:

Theorem (Petrides ’13, Nadirashvili-Sire ’15)

Given (Σ, [g ]), then there is a maximal metric g̃ ∈ [g ]. Moreover, g̃ is
smooth except possibly at finitely many conical singular points.

Remarks.

1 Parts of Petrides’ proof rely on earlier work of Kokarev.

2 The regularity statement follows from the regularity theory of
harmonic maps.

3 A key property used throughout the proofs (and proofs of related
results) is conformal invariance of the Laplacian in two dimensions
(and the conformal invariance of the harmonic map equation).
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Higher dimensions

• In higher dimensions, the Laplace-Beltrami operator is not conformally
invariant, but there are conformally invariant operators (of the form
(−∆)p + (l.o.t.).

Example. If (M, g) is n-dimensional with n ≥ 3, then the conformal
Laplacian is

Lg = −∆g + cnRg ,

where
cn = 4(n−1)

(n−2) .

L is conformally invariant in the sense that if g̃ = u
4

n−2 g , then

Lg̃φ = u−
n+2
n−2Lg (uφ).

Let λ1(Lg ) < λ2(Lg ) ≤ λ3(Lg ) ≤ · · · denote the eigenvalues of Lg .
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The conformal laplacian

There are several conformal invariants associated to the spectrum of Lg :

The sign of λ1(Lg ) is a conformal invariant and agrees with the sign
of the Yamabe invariant

Y (Mn, [g ]) := inf
u∈W 1,2\{0}

�
M u Lgu dvg(�

M |u|
2n
n−2 dvg

) n−2
n

.

The dimension of ker Lg is a conformal invariant.

The number of negative eigenvalues of Lg , ν([g ]), is also a conformal
invariant; cf. Canzani-Gover-Jakobson-Ponge ’14.
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Variational Properties of L

• To see the issues that arise when studying the variational properties of L,
first assume that (M, [g ]) has λ1(Lg ) > 0.

• In analogy with the case of surfaces, we might be tempted to study the
obvious generalization

Λ1(M, [g ]) = sup
g̃∈[g ]

λ1(Lg̃ )Vol(M, g̃)
2
n .

However, by a result of Ammann-Jammes ’08, the supremum is always
+∞ (Korevaar ’93 showed that λ1(−∆) · V 2/n is bounded).

• Interestingly, they showed that the issue is the order of L. Roughly, they
showed that if the order of a conformally invariant operator is less than the
dimension, then the sup is always infinite.
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Variational Properties of L, cont.

• What about inf [g ] λ1(L)V
2
n ?

It turns out that this is equivalent to
solving the Yamabe problem. To see this, recall

λ1(Lg̃ ) = inf
φ∈W 1,2

�
φ Lg̃φ dvg̃�
φ2 dvg̃

If g̃ = u
4

n−2 g , then using the conformal invariance of L this can also be
written

λ1(Lg̃ ) = inf
φ∈W 1,2

�
(uφ) Lg (uφ) dvg�
(uφ)2 u

4
n−2 dvg

= inf
ψ∈W 1,2

�
ψ Lgψ dvg�
ψ2 u

4
n−2 dvg
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written

λ1(Lg̃ ) = inf
φ∈W 1,2

�
(uφ) Lg (uφ) dvg�
(uφ)2 u

4
n−2 dvg

= inf
ψ∈W 1,2

�
ψ Lgψ dvg�
ψ2 u

4
n−2 dvg
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Variational Properties of L, cont.

Since we’ll see this again, denote

Ru
g (ψ) =

�
ψ Lgψ dvg�
ψ2 uN−2dvg

(N =
2n

n − 2
)

.

By Hölder’s inequality,

Ru
g (ψ) ≥

�
ψ Lgψ dvg( �

|ψ|N dvg
)2/N( �

uN dvg
)2/n

,
⇒ Vol(g̃)2/nλ1(Lg̃ ) ≥ Y (M, [g ]),

and equality holds iff u is constant and g̃ is a Yamabe metric.
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λ2(Lg)

• In light of these facts, Amman-Humbert ’05 defined the second Yamabe
invariant by

µ2(M, [g ]) = inf
g̃∈[g ]

λ2(Lg̃ ) Vol(g̃)2/n.

They showed that µ2 is never attained by a smooth metric.

• Instead, one has to consider ’generalized conformal metrics’ defined by

g̃ = uN−2g , u ∈ LN+ = {u ∈ LN : u ≥ 0 a.e., u 6= 0} (N =
2n

n − 2
)

• In this context, λ2(Lg ) is defined via the minimax characterization:

λ2(Lg̃ ) = inf
Σ⊂W 1,2

sup
ψ∈Σ
Ru

g (ψ),

where Σ ⊂W 1,2 is a two-dimensional subspace*.
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λ2(Lg)

• A function which attains the minimax is a generalized (second)
eigenfunction, and satisfies the equation

Lgφ2 = λ2(Lg̃ )φ2 u
N−2.

• If u > 0 and smooth, let g̃ = uN−2g and suppose φ̂2 a second
eigenfunction for Lg̃ . Then

Lg̃ φ̂2 = λ2(Lg̃ ) φ̂2.

By conformal invariance, this implies

Lgφ2 = λ2(Lg̃ )φ2 u
N−2,

where φ2 = uφ̂2. In particular, generalized eigenfunctions are classical
eigenfunctions when the metric is smooth.
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µ2(M , [g ])

Using concentration-compactness arguments, Ammann-Humbert proved

Theorem (Ammann-Humbert)

Assume Y (M, [g ]) > 0. (i) There is a dimensional constant κn such that if

µ2(M, [g ]) < κn,

then µ2(M, [g ]) is attained by a generalized conformal metric g̃ = uN−2g ,
with u ∈ LN+.
(ii) Moreover, there is a second (generalized) eigenfunction φ2 such that

φ2
2 = u2.

Consequently φ2 ∈ C 3,α is a nodal solution of the Yamabe equation

Lgφ2 = µ2(M, [g ])φ2|φ2|N−2.
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Remarks on µ2

• A somewhat surprising aspect of the Ammann-Humbert result is that
the minimal (generalized) eigenvalue is simple. This is a significant
contrast with the case of surfaces.

• In fact, the condition
u2 = φ2

2

is actually a generalization of the condition we saw for surfaces (sum of the
squares of the eigenfunctions is constant). In the higher-dimensional case,

1 there is only one eigenfunction, and

2 the factor u2 (vs 1) simply reflects the difference in conformal weights
between ∆g in two dimensions and Lg in higher dimensions.

• But...what happened to the connection to harmonic maps?
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The case of negative Yamabe invariant

• If λ1(Lg ) < 0, let ν([g ]) = # of negative eigenvalues of Lg .

If
ν([g ]) > 1, then λ2(Lg ) < 0.

• If g̃ ∈ [g ], then

λ1(g̃) Vol(g̃)
2
n ≤ Y (M, [g ]),

with equality iff g̃ is the unique Yamabe metric (up to scaling).

• It is not difficult to show that

µ2(M, [g ]) = inf
g̃∈[g ]

λ2(g̃) Vol(g̃)
2
n = −∞.

• Consequently, in the case of negative Yamabe invariant it is natural to
consider

µ2(M, [g ]) = sup
g̃∈[g ]

λ2(Lg̃ ) Vol(g̃)2/n.
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Statement of the result

Theorem (G-Perez-Ayala, ’20)

Assume ν([g ]) ≥ 2 and 0 6∈ Spec(Lg ).

Then there is a (possibly
generalized) maximal conformal metric g̃ = ūN−2g with
ū ∈ Lip ∩ C∞(Mn \ {ū = 0}).

Moreover, for any maximizer ū ∈ LN+(Mn, g), there exists a collection
{φ̄i}ki=1 ∈ C 2,α(Mn) of second generalized eigenfunctions satisfying

ū2 =
k∑

i=1

φ̄2
i .

Here 1 ≤ k ≤ dimE2(ū), where E2(ū) is the space of generalized
eigenfunctions corresponding to λ2(ū).
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A Dichotomy

Corollary

Let g̃ = ūN−2g be a maximal metric as in the preceding. We have the
following two cases:

1 If k = 1, then ū = |φ̄| on Mn, and φ̄ is a nodal solution of

Lg φ̄ = λ2(ū)|φ̄|
4

n−2 φ̄.

2 If k > 1, then the map

Ū := (φ̄1/ū, · · · , φ̄k/ū) : (Mn \ {ū = 0}, ūN−2g) −→ (Sk−1, ground)

defines a harmonic map.
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Examples

• Crucially, we can show that both possibilities actually occur:

there are
conformal classes for which the maximal metric defines a nodal solution of
the Yamabe problem (k = 1), and there conformal classes for which the
maximal metric defines a harmonic map (k ≥ 2).

• For the former case, suppose ν([g ]) = 2. Since λ1(L) is simple, the
multiplicity of λ2(L) must be one. Therefore, k = 1 in the Theorem above
and the maximal metric must define a nodal solution of the Yamabe
equation.
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Example of a Harmonic Map

Theorem

Let (H, g) be a closed Riemannian manifold with constant negative scalar
curvature, suitably normalized. Then the product metric
(M, g) = (H × Sm, h + g0), where g0 is the round metric, is maximal in its
conformal class. In particular, eigenfunctions {ψ1, . . . , ψm+1} for the
laplacian on the Sm-factor are eigenfunctions for λ2(Lg ), and define a
harmonic map

Ψ = (ψ1, . . . , ψm+1) : M → Sm,

given by projection onto the Sm-factor.

• In particular, this gives an example for which k = m + 1.
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Remarks

• Recall in the work of Ammann-Humbert, a minimizer for λ2(L) is always
simple, while in the preceding example the multiplicity of λ2 is m + 1.

• Again in contrast to the work of Amman-Humbert in the positive case,
in the preceding Theorem the maximal metric is smooth.

• Another surprising aspect of this example is that the product metric is a
Yamabe metric, hence is simultaneously maximal for λ1(L). This is
remarkably different from the case of the Laplace operator on surfaces,
where it is known that metrics cannot maximize consecutive eigenvalues
(cf. El Soufi)
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Sketch of the proof

• One of the main technical issues that arises when trying to maximize λ2

is the lack of control of λ1 (this is absent in the case of positive Yamabe
invariant).

Therefore, we regularize the problem in the following way: for
ε > 0, let

Dε = {u ∈ LN+ :

�
u−ε dvg <∞}, N =

2n

n − 2

• If u ∈ Dε, then
λ1(u) > −∞,

where
λ1(u) = λ1(LuN−2g ).

• We define our regularized functional Fε : Dε → R in the following way:
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Sketch of the proof, cont.

Fε(u) = λ2(u)
(�

uN dvg
) 2

n −
( �

u−ε dvg
)( �

uN dvg
) ε

N ,

This functional is scale-invariant.

Theorem

For each ε > 0, there is a uε ∈ Dε, normalized so that ‖uε‖LN = 1, which
maximizes Fε. Moreover, there is a constant γ > 0 and a set of
(generalized) eigenfunctions associated to λ2(uε) such that

u2
ε =

k∑
i=1

(φεi )
2 + εγu2−N−ε

ε .
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Sketch of the proof, cont.

• Recall the generalized second eigenfunction equation:

Lgφ2 = λ2(Lg̃ )φ2 u
N−2.

• Using the regularized equation, one can obtain estimates for the
generalized eigenfunctions

‖φεi ‖C1,α ≤ C .

Also, we have a key a priori bound
�

u−N−εε dvg ≤ C .

• Using these estimates (and others), we can take the limit ε→ 0 and
obtain a (generalized) metric that maximizes λ2.
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Further questions, ongoing work

• Question (M. Karpukhin): Do harmonic maps give rise to extremal
eigenvalues?

• In continuing work with Perez-Ayala, we are studying a conformally
invariant Steklov problem.

Thank you.
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