Stablility of the L_{p}-Brunn-Minkowski inequality under hyperplane symmmetry if $0 \leq p<1$

Károly Böröczky, joint with Apratim De Alfréd Rényi Institute of Mathematics

Interaction Between PDE and Convex Geometry
Hangzhou, October 18, 2021

Brunn-Minkowski inequality

K, C convex bodies in $\mathbb{R}^{n}(\operatorname{int} K \neq \emptyset, \operatorname{int} C \neq \emptyset)$
Brunn-Minkowski inequality - classical form $\alpha, \beta>0$

$$
V(\alpha K+\beta C)^{\frac{1}{n}} \geq \alpha \cdot V(K)^{\frac{1}{n}}+\beta \cdot V(C)^{\frac{1}{n}}
$$

with equality $\Longleftrightarrow C=\gamma K+z$ for $\gamma>0, z \in \mathbb{R}^{n}$.
Brunn-Minkowski inequality - product form $\lambda \in(0,1)$

$$
V((1-\lambda) K+\lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

with equality $\Longleftrightarrow C=K+z$ for $z \in \mathbb{R}^{n}$

Stability of the Brunn-Minkowski inequality

$$
\alpha=V(K)^{\frac{-1}{n}}, \beta=V(C)^{\frac{-1}{n}}, \quad \sigma=\max \left\{\frac{V(C)}{V(K)}, \frac{V(K)}{V(C)}\right\}
$$

Theorem [Figalli, Maggi, Pratelli ~ 2010]

$$
V(K+C)^{\frac{1}{n}} \geq\left[1+\frac{\gamma(n)}{\sigma^{\frac{1}{n}}} \cdot A(K, C)^{2}\right]\left(V(K)^{\frac{1}{n}}+V(C)^{\frac{1}{n}}\right)
$$

where $A(K, C)=\min _{x \in \mathbb{R}^{n}} V((\alpha K) \Delta(x+\beta C))$.
Remark $\gamma(n)=n^{-5-o(1)}$ by Kolesnikov-Milman + Chen

Stability of the Brunn-Minkowski inequality

$\alpha=V(K)^{\frac{-1}{n}}, \beta=V(C)^{\frac{-1}{n}}, \quad \sigma=\max \left\{\frac{V(C)}{V(K)}, \frac{V(K)}{V(C)}\right\}$
Theorem [Figalli, Maggi, Pratelli ~ 2010]

$$
V(K+C)^{\frac{1}{n}} \geq\left[1+\frac{\gamma(n)}{\sigma^{\frac{1}{n}}} \cdot A(K, C)^{2}\right]\left(V(K)^{\frac{1}{n}}+V(C)^{\frac{1}{n}}\right)
$$

where $A(K, C)=\min _{x \in \mathbb{R}^{n}} V((\alpha K) \Delta(x+\beta C))$.
Remark $\gamma(n)=n^{-5-o(1)}$ by Kolesnikov-Milman + Chen
Theorem [Diskant, Groemer ~1973]

$$
V(K+C)^{\frac{1}{n}}<(1+\varepsilon)\left(V(K)^{\frac{1}{n}}+V(C)^{\frac{1}{n}}\right)
$$

for small $\varepsilon>0 \Longrightarrow \exists \theta>1$ depending on n and σ such that

$$
\left(1-\theta \cdot \varepsilon^{\frac{1}{n}}\right)(\alpha K-x) \subset \beta C-y \subset\left(1+\theta \cdot \varepsilon^{\frac{1}{n}}\right)(\alpha K-x)
$$

Surface area measure, Minkowski's first inequality

S_{K} - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^{n} ∂K is $C_{+}^{2} \Longrightarrow d S_{K}=\kappa^{-1} d \mathcal{H}^{n-1}(\kappa(u)=$ Gaussian curvature $)$

Minkowski problem Monge-Ampere equation on S^{n-1} :

$$
\operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=\kappa^{-1}
$$

where $h(u)=h_{K}(u)=\max \{\langle u, x\rangle: x \in K\}$ support function. Idea for given μ on S^{n-1} Minimize $\int_{S^{n-1}} h_{C} d \mu, V(C)=1$

Surface area measure, Minkowski's first inequality

S_{K} - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^{n} ∂K is $C_{+}^{2} \Longrightarrow d S_{K}=\kappa^{-1} d \mathcal{H}^{n-1}(\kappa(u)=$ Gaussian curvature $)$

Minkowski problem Monge-Ampere equation on S^{n-1} :

$$
\operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=\kappa^{-1}
$$

where $h(u)=h_{K}(u)=\max \{\langle u, x\rangle: x \in K\}$ support function. Idea for given μ on S^{n-1} Minimize $\int_{S^{n-1}} h_{C} d \mu, V(C)=1$

Minkowski's first inequality If $V(K)=V(C)$, then

$$
\int_{S^{n-1}} h_{C} d S_{K} \geq \int_{S^{n-1}} h_{K} d S_{K} .
$$

Equality $\Longleftrightarrow K$ and C are translates.

Lutwak's L_{p} Minkowski problem ~ 1990

L_{ρ} Minkowski problem $h_{K}^{1-p} d S_{K}=\mu=$ finite Borel meaure on S^{n-1} where $o \in K$

Monge-Ampere on S^{n-1} for $h=h_{K}$ if μ has a density function f :

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

- $p=1 \Longrightarrow$ Minkowski problem
- $p=0 \Longrightarrow$ Logarithmic Minkowski problem
- $p=-n \Longrightarrow$ Determining Centro-affine curvature

State of art

- $p>1, p \neq n$: Chou\&Wang, Hug\&Lutwak\&Yang\&Zhang
- $0<p<1$: Chen\&Li\&Zhu "almost complete"
- $p=0$: positive results by Chen\&Li\&Zhu
- $p<0$: ?????????????????????

Versions: Huang\&Lutwak\&Yang\&Zhang (L_{p} dual)
Gardner\&Hug\&Weil\&Ye (Orlicz), Hosle\&Kolesnikov\&Livshyts

Logarithmic $\left(L_{0}\right)$ Minkowski problem

Firey (1974)
$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in K$ V_{K} normalized L_{0} surface area measure
$-K$ polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

History

- Earlier characterization by Stancu, Henk\&Schürman\&Wills, Lutwak\&Yang\&Zhang, Chou\&Wang, He\&Leng\&Li, Andrews
- B\&Lutwak\&Yang\&Zhang solved in the even case
- Partial result by Chen\&Li\&Zhu in the general case

Coinciding cone volumes

Uniqueness in the L_{p}-Minkowski problem

L_{p}-Minkowski problem on S^{n-1}

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I\right)=f \geq 0
$$

- Uniqueness holds if $p>1$ (Chou\&Wang, Hug\&Lutwak\&Yang\&Zhang)
- No uniqueness in general if $p<1$ (Chen\&Li\&Zhu)

Uniqueness in the L_{p}-Minkowski problem

L_{p}-Minkowski problem on S^{n-1}

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I\right)=f \geq 0
$$

- Uniqueness holds if $p>1$ (Chou\&Wang, Hug\&Lutwak\&Yang\&Zhang)
- No uniqueness in general if $p<1$ (Chen\&Li\&Zhu)

For the solution of the Even L_{p}-Minkowski problem

- Uniqueness Conjectured if $0<p<1$
- Uniqueness Conjectured if $p=0$ and $f>0$ is C^{∞}
- No uniqueness if $p<0$ (Li\&Liu\&Lu, E. Milman)
- Uniqueness holds if $p_{n}<p<1$ and $f>0$ is C^{∞} where $0<p_{n}<1-\frac{c}{n^{3 / 2}}$ (Chen\&Huang\&Li\&Liu, Kolesnikov\&Milman, Putterman)
L_{p} Brunn-Minkowski inequality/conjecture $p>0, \lambda \in(0,1), o \in \operatorname{int} K, \operatorname{int} L$
$\lambda K+{ }_{p}(1-\lambda) L=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle^{p} \leq \lambda h_{K}(u)^{p}+(1-\lambda) h_{L}(u)^{p} \forall u\right\}$
$p \geq 1 h_{\lambda K+\rho(1-\lambda) L}=\left(\lambda h_{K}^{p}+(1-\lambda) h_{L}^{p}\right)^{1 / p}$
L_{p} Brunn-Minkowski inequality/conjecture
$p>0, \lambda \in(0,1), o \in \operatorname{int} K, \operatorname{int} L$
$\lambda K+_{p}(1-\lambda) L=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle^{p} \leq \lambda h_{K}(u)^{p}+(1-\lambda) h_{L}(u)^{p} \forall u\right\}$
$p \geq 1 h_{\lambda K+p(1-\lambda) L}=\left(\lambda h_{K}^{p}+(1-\lambda) h_{L}^{p}\right)^{1 / p}$
$L_{p} \mathrm{BM}$ inequality $(p \geq 1) /$ conjecture $(0<p<1, K, C o$-symm $)$

$$
V\left((1-\lambda) K+_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) V(K)^{\frac{p}{n}}+\lambda V(L)^{\frac{p}{n}}
$$

with equality $\Longleftrightarrow K$ and L are dilates.

- Proved if $p_{n} \leq p<1$ (Chen\&Huang\&Li\&Liu, Putterman)
L_{p} Minkowski inequality/conjecture for $p>0$

$$
\int_{S^{n-1}}\left(\frac{h_{L}}{h_{K}}\right)^{p} d V_{K} \geq V(K)\left(\frac{V(L)}{V(K)}\right)^{\frac{p}{n}}
$$

with equality in the o-symmetric case $\Longleftrightarrow K$ and L are dilates.

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^{n}
Brunn-Minkowski inequality $\lambda \in(0,1)$

$$
V((1-\lambda) K+\lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^{n}
Brunn-Minkowski inequality $\lambda \in(0,1)$

$$
V((1-\lambda) K+\lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

Logarithmic L_{0} sum $o \in K, C$
$(1-\lambda) K+{ }_{0} \lambda C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{1-\lambda} h_{C}(u)^{\lambda} \forall u \in S^{n-1}\right\}$
$\lambda K+0(1-\lambda) C \subset \lambda K+(1-\lambda) C$

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^{n}
Brunn-Minkowski inequality $\lambda \in(0,1)$

$$
V((1-\lambda) K+\lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

Logarithmic L_{0} sum $o \in K, C$
$(1-\lambda) K+{ }_{0} \lambda C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{1-\lambda} h_{C}(u)^{\lambda} \forall u \in S^{n-1}\right\}$
$\lambda K+0(1-\lambda) C \subset \lambda K+(1-\lambda) C$
Logarithmic Brunn-Minkowski conjecture
$\lambda \in(0,1), K, C$ are o-symmetric

$$
V((1-\lambda) K+0 \lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

with equality $\Longleftrightarrow K$ and C have dilated direct summands.

Logarithmic Minkowski conjecture

Conjecture (B, Lutwak, Yang, Zhang)
If K and C are convex bodies whose centroid is the origin and $V(K)=V(C)$, then

$$
\begin{equation*}
\int_{S^{n-1}} \log h_{C} d V_{K} \geq \int_{S^{n-1}} \log h_{K} d V_{K} \tag{1}
\end{equation*}
$$

Assuming K is smooth, equality holds $\Longleftrightarrow K=C$.

Logarithmic Minkowski conjecture

Conjecture (B, Lutwak, Yang, Zhang)

If K and C are convex bodies whose centroid is the origin and
$V(K)=V(C)$, then

$$
\begin{equation*}
\int_{S^{n-1}} \log h_{C} d V_{K} \geq \int_{S^{n-1}} \log h_{K} d V_{K} \tag{1}
\end{equation*}
$$

Assuming K is smooth, equality holds $\Longleftrightarrow K=C$.
Remark For even C_{+}^{∞} data, uniqueness of the solution of the Log-Minkowski problem \Longleftrightarrow equality holds in (1) only if $K=C$. Known results

- K is close to some ellipsoid (Colesanti\&Livshyts\&Marsiglietti, Kolesnikov\&Milman, Chen\&Huang\&Li\&Liu)
- K, C have complex symmetry (Rotem)
- K, C - hyperplane symmetry (Saroglou, B\&Kalantzopoulos)

Logarithmic sum - approximate estimate

Lemma (Pavlos Kalantzopoulos, K.B.)
If $\lambda \in(0,1)$ and the centroid of the convex bodies K and L in \mathbb{R}^{n} is the origin, then

$$
\gamma_{1} V(K)^{1-\lambda} V(L)^{\lambda} \leq V\left((1-\lambda) K+{ }_{0} \lambda L\right) \leq \gamma_{2} V(K)^{1-\lambda} V(L)^{\lambda}
$$

where $\gamma_{2}>\gamma_{1}>0$ depend on n.

- Logarithmic Brunn-Minkowski conjecture: $\gamma_{1}=1$
- No reasonable estimate is known for γ_{1} and γ_{2}

Kolesnikov, Emanuel Milman approach (extending Colesanti\&Livshyts\&Marsiglietti)

$$
D^{2} h=\nabla^{2} h+h I_{n-1} \text { for } h \in C^{2}\left(S^{n-1}\right)
$$

Mixed discriminant For $h_{1}, \ldots, h_{n-1} \in C^{2}\left(S^{n-1}\right)$

$$
S\left(h_{1}, \ldots, h_{n-1}\right)=D_{n-1}\left(D^{2} h_{1}, \ldots, D^{2} h_{n-1}\right)
$$

Hilbert-Brunn-Minkowski operator $\partial K C_{+}^{2}, z \in C^{2}\left(S^{n-1}\right)$

$$
L_{K} z=\frac{S\left(z h_{K}, h_{K}, \ldots, h_{K}\right)}{S\left(h_{K}, \ldots, h_{K}\right)}-z
$$

Theorem (Hilbert-Kolesnikov-Milman)
$L_{K}: C^{2}\left(S^{n-1}\right) \rightarrow C\left(S^{n-1}\right)$ elliptic with self-adjoint extension to $L^{2}\left(d V_{K}\right)$

Spectral properties of $-L_{K}$

Trivial eigenvalues and eigenspaces of $-L_{K}$

- $\lambda_{0}\left(-L_{K}\right)=0$ (corresponding to constant functions)
- linear functions (that are odd) have eigenvalue 1 with multiplicity n

Theorem (Hilbert)
$K \in \mathcal{K}_{+}^{2} \Longrightarrow \lambda_{1}\left(-L_{K}\right) \geq 1$
Remark: Equivalent with Brunn-Minkowski inequality
Fact $\lambda_{1, e}\left(-L_{K}\right)=\lambda_{n+1}\left(-L_{K}\right)$ for $K \in \mathcal{K}_{+, e}^{2}$
$\lambda_{1, e}=$ first positive eigenvalue when restricted to even functions
Theorem (Kolesnikov\&Milman)
$p \in[0,1)$
local L_{p}-Brunn-Minkowski conjecture
$\lambda_{1, e}\left(-L_{K}\right) \geq \frac{n-p}{n-1}$ for $\forall K \in \mathcal{K}_{+, e}^{2}$

Some equivalent formulations of the L_{p}-Brunn-Minkowski conjecture for o-symmetric bodies, $0 \leq p\left(<p_{n}\right)<1$

- Monge-Ampere: $\quad h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f$ on S^{n-1} has unique even solution if f is even positive and C^{∞}
- Kolesnikov, E. Milman: $\lambda_{1, e}\left(-L_{K}\right) \geq \frac{n-p}{n-1}$ for $K \in \mathcal{K}_{+, e}^{2}$ (this proves L_{p}-B-M locally, Chen\&Huang\&Li\&Liu method yields global result)
- Eli Putterman: $(n-p) \cdot V(L, K[n-1])^{2} / V(K) \geq$ $(n-1) V(L[2], K[n-2])+\frac{1-p}{n} \int_{S^{n-1}} \frac{h_{L}^{2}}{h_{K}} d S_{K}$
- Kolesnikov: Formulation in terms of Optimal Transportation on S^{n-1}

Objects with "hyperplane symmetries"

a function, subset, etc has "hyperplane symmetries"
\exists independent $u_{1}, \ldots, u_{n} \in S^{n-1}$ s.t. the object is invariant under the reflections through $u_{1}^{\perp}, \ldots, u_{n}^{\perp} \Longleftrightarrow$ invariant under a Coxeter group G of rank n

- Idea comes from
- Barthe \& Fradelizi's work on Mahler's conjecture
- Barthe \& Cordero-Erausquin's work on the Slicing conjecture
- G has a simplicial cone C as fundamental domain, and reflections through the walls of C generate G
- C is mapped into a "coordinate corner" by a linear transform, and results about unconditional bodies are used.

Convex body K with symmetries of a regular simplex

Logarithmic Brunn-Minkowski for bodies with many hyperplane symmetries

$A \in \mathrm{GL}(n, \mathbb{R})$ linear reflection if

- A acts identically on an ($n-1$)-dimensional linear subspace H,
- $\exists u \in \mathbb{R}^{n} \backslash H$ with $A(u)=-u$
A is an "orthogonal reflection" if $H=u^{\perp}$.
Theorem (Pavlos Kalantzopoulos, K.B.)
If $\lambda \in(0,1)$ and the convex bodies K and L are invariant under linear reflections A_{1}, \ldots, A_{n} are such that $H_{1} \cap \ldots \cap H_{n}=\{0\}$ holds for the associated hyperplanes, then

$$
V\left((1-\lambda) \cdot K++_{0} \lambda \cdot L\right) \geq V(K)^{1-\lambda} V(L)^{\lambda} .
$$

Equality $\Longleftrightarrow K=K_{1}+\ldots+K_{m}$ and $L=L_{1}+\ldots+L_{m}$ where $K_{1}, \ldots, K_{m}, L_{1}, \ldots, L_{m}$ are invariant under A_{1}, \ldots, A_{n}, $\sum_{i=1}^{m} \operatorname{dim} K_{i}=n$ and K_{i} and L_{i} are homothetic, $i=1, \ldots, m$.

Stability of the Log-Brunn Minkowski inequality with hyperplane symmetries

Theorem (B., De)
If K and C in \mathbb{R}^{n} are invariant under the Coxeter group
$G \subset G L(n)$ generated by n independent linear reflections, and

$$
V((1-\lambda) K+o \lambda C) \leq(1+\varepsilon) V(K)^{1-\lambda} V(C)^{\lambda}
$$

for $\varepsilon>0$, then for some $m \geq 1$, there exist compact convex sets $K_{1}, C_{1}, \ldots, K_{m}, C_{m}$ of dimension at least one and invariant under G where K_{i} and C_{i} are dilates, $i=1, \ldots, m$, and $\sum_{i=1}^{m} \operatorname{dim} K_{i}=n$ such that

$$
\begin{aligned}
& K_{1}+\ldots+K_{m} \subset K \subset\left(1+c^{n} \varepsilon^{\frac{1}{95 n}}\right)\left(K_{1}+\ldots+K_{m}\right) \\
& C_{1}+\ldots+C_{m} \subset \subset \subset\left(1+c^{n} \varepsilon^{\frac{1}{95 n}}\right)\left(C_{1}+\ldots+C_{m}\right)
\end{aligned}
$$

where $c>1$ is an absolute constant.

Stability of the Log-Minkowski inequality with hyperplane symmetries

Theorem (B., De)
If K and C in \mathbb{R}^{n} are invariant under the Coxeter group
$G \subset \mathrm{GL}(n)$ generated by n independent linear reflections, and

$$
\int_{S^{n-1}} \log \frac{h_{C}}{h_{K}} \frac{d V_{K}}{V(K)} \leq \frac{1}{n} \cdot \log \frac{V(C)}{V(K)}+\varepsilon
$$

for $\varepsilon>0$, then for some $m \geq 1$, there exist compact convex sets $K_{1}, C_{1}, \ldots, K_{m}, C_{m}$ of dimension at least one and invariant under G where K_{i} and C_{i} are dilates, $i=1, \ldots, m$, and $\sum_{i=1}^{m} \operatorname{dim} K_{i}=n$ such that

$$
\begin{aligned}
& K_{1}+\ldots+K_{m} \subset K \subset\left(1+c^{n} \varepsilon^{\frac{1}{95 n}}\right)\left(K_{1}+\ldots+K_{m}\right) \\
& C_{1}+\ldots+C_{m} \subset \subset \subset\left(1+c^{n} \varepsilon^{\frac{1}{95 n}}\right)\left(C_{1}+\ldots+C_{m}\right)
\end{aligned}
$$

where $c>1$ is an absolute constant.

Coordinatewise product of unconditional convex bodies

K, C unconditional $\left(\left(x_{1}, \ldots, x_{n}\right) \in K \Longrightarrow\left(\pm x_{1}, \ldots, \pm x_{n}\right) \in K\right)$

$$
\begin{aligned}
K^{1-\lambda} \cdot C^{\lambda}= & \left\{\left(\pm\left|x_{1}\right|^{1-\lambda}\left|y_{1}\right|^{\lambda}, \ldots, \pm\left|x_{n}\right|^{1-\lambda}\left|y_{n}\right|^{\lambda}\right)\right. \\
& \left.\left(x_{1}, \ldots, x_{n}\right) \in K \&\left(y_{1}, \ldots, y_{n}\right) \in C\right\}
\end{aligned}
$$

Theorem (Bollobas\&Leader, Uhrin, Saroglou)
If K and C are unconditional convex bodies and $\lambda \in(0,1)$, then

$$
V\left(K^{1-\lambda} \cdot C^{\lambda}\right) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

with equality $\Longleftrightarrow \exists \Phi$ positive definit diagonal matrix s.t. $K=\Phi C$

Stability of Bollobas-Leader-Uhrin

Theorem (B., De)
If $\tau \in\left(0, \frac{1}{2}\right], \lambda \in[\tau, 1-\tau]$ and unconditional convex bodies K and C in \mathbb{R}^{n} satisfy

$$
V\left(K^{1-\lambda} \cdot C^{\lambda}\right) \leq(1+\varepsilon) V(K)^{1-\lambda} V(C)^{\lambda},
$$

then there exists positive definite diagonal matrix Φ, $\operatorname{det} \Phi=V(K) / V(C)$ such that

$$
V(K \Delta(\Phi C))<c^{n} n^{n}\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{19}} V(K)
$$

where $c>1$ is an absolute constant.

Stability of the L_{p}-Brunn Minkowski inequality with

 hyperplane symmetries if $0<p<1$Theorem (B., De)
If $0<p<1, K$ and C in \mathbb{R}^{n} are invariant under the Coxeter group
$G \subset \mathrm{GL}(n)$ generated by n independent linear reflections, and

$$
V\left(K+{ }_{p} C\right)^{\frac{p}{n}} \leq(1+\varepsilon)\left(V(K)^{\frac{p}{n}}+V(C)^{\frac{p}{n}}\right)
$$

for $\varepsilon>0$, then

$$
\left(1-\gamma \cdot \varepsilon^{\frac{1}{190 n}}\right) \cdot C \subset K \subset\left(1+\gamma \cdot \varepsilon^{\frac{1}{190 n}}\right) \cdot C
$$

where $\gamma>1$ depends on n, p and $\sigma=\max \left\{\frac{V(K)}{V(C)}, \frac{V(C)}{V(K)}\right\}$.

Wasserstein distance + Irreducible action

$$
\operatorname{Lip}_{1}=\left\{f: S^{n-1} \rightarrow \mathbb{R}: \forall a, b \in S^{n-1},|f(a)-f(b)| \leq\|a-b\|\right\}
$$

Wasserstein distance $\mu\left(S^{n-1}\right)=\nu\left(S^{n-1}\right)=1$

$$
d_{W}(\mu, \nu)=\sup \left\{\int_{S^{n-1}} f d \mu-\int_{S^{n-1}} f d \nu: f \in \operatorname{Lip}_{1}\right\} .
$$

Remark
Convergence w.r.t. the Wasserstein distance \Longleftrightarrow weak convergence.

Wasserstein distance + Irreducible action

$$
\operatorname{Lip}_{1}=\left\{f: S^{n-1} \rightarrow \mathbb{R}: \forall a, b \in S^{n-1},|f(a)-f(b)| \leq\|a-b\|\right\}
$$

Wasserstein distance $\mu\left(S^{n-1}\right)=\nu\left(S^{n-1}\right)=1$

$$
d_{W}(\mu, \nu)=\sup \left\{\int_{S^{n-1}} f d \mu-\int_{S^{n-1}} f d \nu: f \in \operatorname{Lip}_{1}\right\} .
$$

Remark
Convergence w.r.t. the Wasserstein distance \Longleftrightarrow weak convergence.
G is the Coxeter group generated by n independent reflections

- Action of G irreducible if no proper linear subspace invariant
- Action of G reducible otherwise. In this case, $\mathbb{R}^{n}=\oplus L_{i}, \forall L_{i}$ invariant proper subspace, $L_{i} \neq L_{j}$ orthogonal

Stable determination of V_{K} - action of G irreducible

Theorem (B.,De)
Let $G \subset O(n)$ be a Coxeter group with irreducible action on \mathbb{R}^{n}. If μ_{1} and μ_{2} are Borel probability measures on S^{n-1} invariant under
G, then the unique G invariant Alexandrov solution h_{i} of the logarithmic Minkowski problem for $\mu=\mu_{i}, i=1,2$, satisfies

$$
\begin{gathered}
\left\|h_{1}-h_{2}\right\|_{\infty} \leq \gamma_{0} \cdot d_{W}\left(\mu_{1}, \mu_{2}\right)^{\frac{1}{95 n}} \\
r_{0} \leq h_{1}, h_{2} \leq R_{0}
\end{gathered}
$$

$R_{0}=n, r_{0}=\frac{1}{e}$ and $\gamma_{0}=c^{n}, c>1$ absolute constant.

Stable determination of V_{K} - action of G irreducible

Theorem (B.,De)
Let $G \subset O(n)$ be a Coxeter group with irreducible action on \mathbb{R}^{n}. If μ_{1} and μ_{2} are Borel probability measures on S^{n-1} invariant under
G, then the unique G invariant Alexandrov solution h_{i} of the logarithmic Minkowski problem for $\mu=\mu_{i}, i=1,2$, satisfies

$$
\begin{gathered}
\left\|h_{1}-h_{2}\right\|_{\infty} \leq \gamma_{0} \cdot d_{W}\left(\mu_{1}, \mu_{2}\right)^{\frac{1}{95 n}} \\
r_{0} \leq h_{1}, h_{2} \leq R_{0}
\end{gathered}
$$

$R_{0}=n, r_{0}=\frac{1}{e}$ and $\gamma_{0}=c^{n}, c>1$ absolute constant.
Remark Error $d_{W}\left(\mu_{1}, \mu_{2}\right)^{\frac{1}{95 n}}$ can't be replaced by less than $d_{W}\left(\mu_{1}, \mu_{2}\right)^{\frac{1}{n}}$

