Stablility of the L_p -Brunn-Minkowski inequality under hyperplane symmetry if $0 \le p < 1$

Károly Böröczky, joint with Apratim De Alfréd Rényi Institute of Mathematics

Interaction Between PDE and Convex Geometry Hangzhou, October 18, 2021

Brunn-Minkowski inequality

K, C convex bodies in \mathbb{R}^n (int $K \neq \emptyset$, int $C \neq \emptyset$) Brunn-Minkowski inequality - classical form $\alpha, \beta > 0$

$$V(\alpha K + \beta C)^{\frac{1}{n}} \ge \alpha \cdot V(K)^{\frac{1}{n}} + \beta \cdot V(C)^{\frac{1}{n}}$$

with equality $\iff C = \gamma K + z \text{ for } \gamma > 0, \ z \in \mathbb{R}^n.$

Brunn-Minkowski inequality - product form $\lambda \in (0,1)$

$$V((1-\lambda)K + \lambda C) \ge V(K)^{1-\lambda}V(C)^{\lambda}$$

with equality $\iff C = K + z \text{ for } z \in \mathbb{R}^n$

Stability of the Brunn-Minkowski inequality

$$\alpha = V(K)^{\frac{-1}{n}}$$
, $\beta = V(C)^{\frac{-1}{n}}$, $\sigma = \max\left\{\frac{V(C)}{V(K)}, \frac{V(K)}{V(C)}\right\}$
Theorem [Figalli, Maggi, Pratelli ~ 2010]

$$V(K+C)^{\frac{1}{n}} \geq \left[1 + \frac{\gamma(n)}{\sigma^{\frac{1}{n}}} \cdot A(K,C)^2\right] \left(V(K)^{\frac{1}{n}} + V(C)^{\frac{1}{n}}\right)$$

where
$$A(K, C) = \min_{x \in \mathbb{R}^n} V((\alpha K)\Delta(x + \beta C)).$$

Remark $\gamma(n) = n^{-5-o(1)}$ by Kolesnikov-Milman + Chen

Stability of the Brunn-Minkowski inequality

$$\alpha = V(K)^{\frac{-1}{n}}, \ \beta = V(C)^{\frac{-1}{n}}, \quad \sigma = \max\left\{\frac{V(C)}{V(K)}, \frac{V(K)}{V(C)}\right\}$$

Theorem [Figalli, Maggi, Pratelli ~ 2010]

$$V(K+C)^{rac{1}{n}} \geq \left[1+rac{\gamma(n)}{\sigma^{rac{1}{n}}}\cdot A(K,C)^2
ight]\left(V(K)^{rac{1}{n}}+V(C)^{rac{1}{n}}
ight)$$

where
$$A(K, C) = \min_{x \in \mathbb{R}^n} V((\alpha K)\Delta(x + \beta C))$$
.
Remark $\gamma(n) = n^{-5-o(1)}$ by Kolesnikov-Milman + Chen

Theorem [Diskant, Groemer ~ 1973]

$$V(K+C)^{\frac{1}{n}} < (1+\varepsilon)\Big(V(K)^{\frac{1}{n}}+V(C)^{\frac{1}{n}}\Big)$$

for small $\varepsilon>0\Longrightarrow\exists\theta>1$ depending on n and σ such that

$$\left(1-\theta\cdot\varepsilon^{\frac{1}{n}}\right)\left(\alpha\,K-x\right)\subset\beta\,C-y\subset\left(1+\theta\cdot\varepsilon^{\frac{1}{n}}\right)\left(\alpha\,K-x\right)$$

Surface area measure, Minkowski's first inequality

 S_K - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^n ∂K is $C_+^2 \Longrightarrow dS_K = \kappa^{-1} d\mathcal{H}^{n-1}$ ($\kappa(u)$ =Gaussian curvature)

Minkowski problem Monge-Ampere equation on S^{n-1} :

$$\det(\nabla^2 h + h I_{n-1}) = \kappa^{-1}$$

where $h(u)=h_K(u)=\max\{\langle u,x\rangle:x\in K\}$ support function. Idea for given μ on S^{n-1} Minimize $\int_{S^{n-1}}h_C\,d\mu,V(C)=1$

Surface area measure, Minkowski's first inequality

 S_K - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^n ∂K is $C_+^2 \Longrightarrow dS_K = \kappa^{-1} d\mathcal{H}^{n-1}$ ($\kappa(u)$ =Gaussian curvature)

Minkowski problem Monge-Ampere equation on S^{n-1} :

$$\det(\nabla^2 h + h I_{n-1}) = \kappa^{-1}$$

where $h(u)=h_K(u)=\max\{\langle u,x\rangle:x\in K\}$ support function. Idea for given μ on S^{n-1} Minimize $\int_{S^{n-1}}h_C\,d\mu,V(C)=1$

Minkowski's first inequality If V(K) = V(C), then

$$\int_{S^{n-1}} h_C dS_K \ge \int_{S^{n-1}} h_K dS_K.$$

Equality \iff K and C are translates.

Lutwak's L_p Minkowski problem ~ 1990

 L_p Minkowski problem $h_K^{1-p} dS_K = \mu$ =finite Borel meaure on S^{n-1} where $o \in K$

Monge-Ampere on S^{n-1} for $h = h_K$ if μ has a density function f:

$$h^{1-p}\det(\nabla^2 h + h I) = f$$

- $p = 1 \Longrightarrow Minkowski problem$
- $p = 0 \Longrightarrow \text{Logarithmic Minkowski problem}$
- $p = -n \Longrightarrow Determining Centro-affine curvature$

State of art

- $\triangleright p > 1$, $p \neq n$: Chou&Wang, Hug&Lutwak&Yang&Zhang
- ▶ 0 < p < 1: Chen&Li&Zhu "almost complete"
- p = 0: positive results by Chen&Li&Zhu
- ▶ p < 0: ??????????????????

Versions: Huang&Lutwak&Yang&Zhang (L_p dual)

Gardner&Hug&Weil&Ye (Orlicz), Hosle&Kolesnikov&Livshyts

Logarithmic (L_0) Minkowski problem

Firey (1974)

 $dV_K = \frac{1}{n} h_K dS_K$ - cone volume measure on S^{n-1} if $o \in K$ V_K normalized L_0 surface area measure

ightharpoonup K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$V_{\mathcal{K}}(\{u_i\}) = \frac{h_{\mathcal{K}}(u_i)\mathcal{H}^{n-1}(F_i)}{n} = V(\operatorname{conv}\{o, F_i\}).$$

History

- ► Earlier characterization by Stancu, Henk&Schürman&Wills, Lutwak&Yang&Zhang, Chou&Wang, He&Leng&Li, Andrews
- B&Lutwak&Yang&Zhang solved in the even case
- Partial result by Chen&Li&Zhu in the general case

Coinciding cone volumes

Uniqueness in the L_p -Minkowski problem

 L_p -Minkowski problem on S^{n-1}

$$h^{1-p}\det(\nabla^2 h + h I) = f \ge 0$$

- ▶ Uniqueness holds if p > 1 (Chou&Wang, Hug&Lutwak&Yang&Zhang)
- No uniqueness in general if p < 1 (Chen&Li&Zhu)

Uniqueness in the L_p -Minkowski problem

L_p -Minkowski problem on S^{n-1}

$$h^{1-p}\det(\nabla^2 h + h I) = f \ge 0$$

- Uniqueness holds if p > 1 (Chou&Wang, Hug&Lutwak&Yang&Zhang)
- No uniqueness in general if p < 1 (Chen&Li&Zhu)

For the solution of the Even L_p -Minkowski problem

- ▶ Uniqueness Conjectured if 0
- ▶ Uniqueness Conjectured if p = 0 and f > 0 is C^{∞}
- No uniqueness if p < 0 (Li&Liu&Lu, E. Milman)
- ▶ Uniqueness holds if $p_n and <math>f > 0$ is C^{∞} where $0 < p_n < 1 \frac{c}{n^{3/2}}$ (Chen&Huang&Li&Liu, Kolesnikov&Milman, Putterman)

L_p Brunn-Minkowski inequality/conjecture

$$p > 0$$
, $\lambda \in (0,1)$, $o \in \text{int}K, \text{int}L$

$$\frac{\lambda K +_{p} (1 - \lambda)L}{L} = \{ x \in \mathbb{R}^{n} : \langle u, x \rangle^{p} \leq \lambda h_{K}(u)^{p} + (1 - \lambda)h_{L}(u)^{p} \ \forall u \}$$

$$p \ge 1$$
 $h_{\lambda K + p(1-\lambda)L} = \left(\lambda h_K^p + (1-\lambda)h_L^p\right)^{1/p}$

L_p Brunn-Minkowski inequality/conjecture

$$p > 0$$
, $\lambda \in (0,1)$, $o \in \text{int}K$, $\text{int}L$

$$\frac{\lambda K}{\rho} +_{p} (1 - \lambda) L = \{ x \in \mathbb{R}^{n} : \langle u, x \rangle^{p} \leq \lambda h_{K}(u)^{p} + (1 - \lambda) h_{L}(u)^{p} \ \forall u \}$$

$$p \ge 1$$
 $h_{\lambda K + p(1-\lambda)L} = \left(\lambda h_K^p + (1-\lambda)h_L^p\right)^{1/p}$

 L_p BM inequality($p \ge 1$)/conjecture(0 -symm)

$$V((1-\lambda)K+_{p}\lambda L)^{\frac{p}{n}}\geq (1-\lambda)V(K)^{\frac{p}{n}}+\lambda V(L)^{\frac{p}{n}}$$

with equality $\iff K$ and L are dilates.

Proved if $p_n (Chen&Huang&Li&Liu, Putterman)$

 L_p Minkowski inequality/conjecture for p > 0

$$\int_{S^{n-1}} \left(\frac{h_L}{h_K}\right)^p dV_K \ge V(K) \left(\frac{V(L)}{V(K)}\right)^{\frac{p}{n}}$$

with equality in the o-symmetric case \iff K and L are dilates.

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^n Brunn-Minkowski inequality $\lambda \in (0,1)$

$$V((1-\lambda)K+\lambda C)\geq V(K)^{1-\lambda}V(C)^{\lambda}.$$

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^n Brunn-Minkowski inequality $\lambda \in (0,1)$

$$V((1-\lambda)K+\lambda C)\geq V(K)^{1-\lambda}V(C)^{\lambda}.$$

Logarithmic L_0 sum $o \in K, C$

$$(1-\lambda)K +_0 \lambda C = \{x \in \mathbb{R}^n : \langle u, x \rangle \le h_K(u)^{1-\lambda} h_C(u)^{\lambda} \ \forall u \in S^{n-1}\}$$

$$\lambda K +_0 (1 - \lambda)C \subset \lambda K + (1 - \lambda)C$$

Logarithmic Brunn-Minkowski inequality/conjecture

K, C convex bodies in \mathbb{R}^n Brunn-Minkowski inequality $\lambda \in (0,1)$

$$V((1-\lambda)K+\lambda C)\geq V(K)^{1-\lambda}V(C)^{\lambda}.$$

Logarithmic L_0 sum $o \in K, C$

$$(1-\lambda)K +_0 \lambda C = \{x \in \mathbb{R}^n : \langle u, x \rangle \le h_K(u)^{1-\lambda} h_C(u)^{\lambda} \ \forall u \in S^{n-1}\}$$

$$\lambda K +_0 (1 - \lambda)C \subset \lambda K + (1 - \lambda)C$$

Logarithmic Brunn-Minkowski conjecture

 $\lambda \in (0,1)$, K, C are o-symmetric

$$V((1-\lambda)K+_0\lambda C)\geq V(K)^{1-\lambda}V(C)^{\lambda}$$

with equality \iff K and C have dilated direct summands.

Logarithmic Minkowski conjecture

Conjecture (B, Lutwak, Yang, Zhang)

If K and C are convex bodies whose centroid is the origin and V(K) = V(C), then

$$\int_{S^{n-1}} \log h_C \, dV_K \ge \int_{S^{n-1}} \log h_K \, dV_K. \tag{1}$$

Assuming K is smooth, equality holds $\iff K = C$.

Logarithmic Minkowski conjecture

Conjecture (B, Lutwak, Yang, Zhang)

If K and C are convex bodies whose centroid is the origin and V(K) = V(C), then

$$\int_{S^{n-1}} \log h_C \, dV_K \ge \int_{S^{n-1}} \log h_K \, dV_K. \tag{1}$$

Assuming K is smooth, equality holds \iff K = C.

Remark For even C^{∞}_+ data, uniqueness of the solution of the Log-Minkowski problem \iff equality holds in (1) only if K = C. Known results

- K is close to some ellipsoid (Colesanti&Livshyts&Marsiglietti, Kolesnikov&Milman, Chen&Huang&Li&Liu)
- ► *K*, *C* have complex symmetry (Rotem)
- \triangleright K, C hyperplane symmetry (Saroglou, B&Kalantzopoulos)

Logarithmic sum - approximate estimate

Lemma (Pavlos Kalantzopoulos, K.B.)

If $\lambda \in (0,1)$ and the centroid of the convex bodies K and L in \mathbb{R}^n is the origin, then

$$\gamma_1 V(K)^{1-\lambda} V(L)^{\lambda} \le V((1-\lambda)K +_0 \lambda L) \le \gamma_2 V(K)^{1-\lambda} V(L)^{\lambda}$$

where $\gamma_2 > \gamma_1 > 0$ depend on n.

- ▶ Logarithmic Brunn-Minkowski conjecture: $\gamma_1 = 1$
- lacktriangle No reasonable estimate is known for γ_1 and γ_2

Kolesnikov, Emanuel Milman approach (extending Colesanti&Livshyts&Marsiglietti)

$$D^2 h = \nabla^2 h + h I_{n-1}$$
 for $h \in C^2(S^{n-1})$

Mixed discriminant For $h_1, \ldots, h_{n-1} \in C^2(S^{n-1})$

$$S(h_1,\ldots,h_{n-1})=D_{n-1}(D^2h_1,\ldots,D^2h_{n-1})$$

Hilbert-Brunn-Minkowski operator $\partial K C_+^2$, $z \in C^2(S^{n-1})$

$$L_K z = \frac{S(zh_K, h_K, \dots, h_K)}{S(h_K, \dots, h_K)} - z$$

Theorem (Hilbert-Kolesnikov-Milman)

 $L_K: C^2(S^{n-1}) \to C(S^{n-1})$ elliptic with self-adjoint extension to $L^2(dV_K)$

Spectral properties of $-L_K$

Trivial eigenvalues and eigenspaces of $-L_K$

- $\lambda_0(-L_K) = 0$ (corresponding to constant functions)
- ▶ linear functions (that are odd) have eigenvalue 1 with multiplicity *n*

Theorem (Hilbert)

$$K \in \mathcal{K}^2_+ \Longrightarrow \lambda_1(-L_K) \ge 1$$

Remark: Equivalent with Brunn-Minkowski inequality

Fact
$$\lambda_{1,e}(-L_K) = \lambda_{n+1}(-L_K)$$
 for $K \in \mathcal{K}^2_{+,e}$ $\lambda_{1,e}$ =first positive eigenvalue when restricted to even functions

Theorem (Kolesnikov&Milman)

$$p \in [0,1)$$
 $local\ L_p$ -Brunn-Minkowski conjecture \iff
 $\lambda_{1,e}(-L_K) \geq \frac{n-p}{n-1}\ for\ \forall K \in \mathcal{K}^2_{+,e}$

Some equivalent formulations of the L_p -Brunn-Minkowski conjecture for o-symmetric bodies, $0 \le p(< p_n) < 1$

- ► Monge-Ampere: $h^{1-p} \det(\nabla^2 h + h I) = f$ on S^{n-1} has unique even solution if f is even positive and C^{∞}
- Nolesnikov, E. Milman: $\lambda_{1,e}(-L_K) \geq \frac{n-p}{n-1}$ for $K \in \mathcal{K}^2_{+,e}$ (this proves L_p -B-M locally, Chen&Huang&Li&Liu method yields global result)
- ► Eli Putterman: $(n-p) \cdot V(L, K[n-1])^2 / V(K) \ge (n-1)V(L[2], K[n-2]) + \frac{1-p}{n} \int_{S^{n-1}} \frac{h_L^2}{h_K} dS_K$
- ▶ Kolesnikov: Formulation in terms of Optimal Transportation on S^{n-1}

Objects with "hyperplane symmetries"

a function, subset, etc has "hyperplane symmetries" \iff \exists independent $u_1, \ldots, u_n \in S^{n-1}$ s.t. the object is invariant under the reflections through $u_1^{\perp}, \ldots, u_n^{\perp} \iff$ invariant under a Coxeter group G of rank n

- Idea comes from
 - ▶ Barthe & Fradelizi's work on Mahler's conjecture
 - Barthe & Cordero-Erausquin's work on the Slicing conjecture
- ► *G* has a simplicial cone *C* as fundamental domain, and reflections through the walls of *C* generate *G*
- C is mapped into a "coordinate corner" by a linear transform, and results about unconditional bodies are used.

Convex body K with symmetries of a regular simplex

Logarithmic Brunn-Minkowski for bodies with many hyperplane symmetries

$A \in \mathrm{GL}(n,\mathbb{R})$ linear reflection if

- \blacktriangleright A acts identically on an (n-1)-dimensional linear subspace H,
- ▶ $\exists u \in \mathbb{R}^n \setminus H \text{ with } A(u) = -u$

A is an "orthogonal reflection" if $H = u^{\perp}$.

Theorem (Pavlos Kalantzopoulos, K.B.)

If $\lambda \in (0,1)$ and the convex bodies K and L are invariant under linear reflections A_1, \ldots, A_n are such that $H_1 \cap \ldots \cap H_n = \{o\}$ holds for the associated hyperplanes, then

$$V((1-\lambda)\cdot K+_0\lambda\cdot L)\geq V(K)^{1-\lambda}V(L)^{\lambda}.$$

Equality \iff $K = K_1 + \ldots + K_m$ and $L = L_1 + \ldots + L_m$ where $K_1, \ldots, K_m, L_1, \ldots, L_m$ are invariant under A_1, \ldots, A_n , $\sum_{i=1}^m \dim K_i = n$ and K_i and L_i are homothetic, $i = 1, \ldots, m$.

Stability of the Log-Brunn Minkowski inequality with hyperplane symmetries

Theorem (B., De)

If K and C in \mathbb{R}^n are invariant under the Coxeter group $G\subset \mathrm{GL}(n)$ generated by n independent linear reflections, and

$$V((1-\lambda)K +_0 \lambda C) \leq (1+\varepsilon)V(K)^{1-\lambda}V(C)^{\lambda}$$

for $\varepsilon > 0$, then for some $m \ge 1$, there exist compact convex sets $K_1, C_1, \ldots, K_m, C_m$ of dimension at least one and invariant under G where K_i and C_i are dilates, $i = 1, \ldots, m$, and $\sum_{i=1}^m \dim K_i = n$ such that

$$K_1 + \ldots + K_m \subset K \subset \left(1 + c^n \varepsilon^{\frac{1}{95n}}\right) (K_1 + \ldots + K_m)$$

 $C_1 + \ldots + C_m \subset C \subset \left(1 + c^n \varepsilon^{\frac{1}{95n}}\right) (C_1 + \ldots + C_m)$

where c > 1 is an absolute constant.

Stability of the Log-Minkowski inequality with hyperplane symmetries

Theorem (B., De)

If K and C in \mathbb{R}^n are invariant under the Coxeter group $G\subset \mathrm{GL}(n)$ generated by n independent linear reflections, and

$$\int_{S^{n-1}} \log \frac{h_C}{h_K} \frac{dV_K}{V(K)} \le \frac{1}{n} \cdot \log \frac{V(C)}{V(K)} + \varepsilon$$

for $\varepsilon > 0$, then for some $m \ge 1$, there exist compact convex sets $K_1, C_1, \ldots, K_m, C_m$ of dimension at least one and invariant under G where K_i and C_i are dilates, $i = 1, \ldots, m$, and $\sum_{i=1}^m \dim K_i = n$ such that

$$K_1 + \ldots + K_m \subset K \subset \left(1 + c^n \varepsilon^{\frac{1}{95n}}\right) (K_1 + \ldots + K_m)$$

 $C_1 + \ldots + C_m \subset C \subset \left(1 + c^n \varepsilon^{\frac{1}{95n}}\right) (C_1 + \ldots + C_m)$

where c > 1 is an absolute constant.

Coordinatewise product of unconditional convex bodies

$$K$$
, C unconditional $((x_1, \dots, x_n) \in K \Longrightarrow (\pm x_1, \dots, \pm x_n) \in K)$

$$K^{1-\lambda} \cdot C^{\lambda} = \left\{ \left(\pm |x_1|^{1-\lambda} |y_1|^{\lambda}, \dots, \pm |x_n|^{1-\lambda} |y_n|^{\lambda} \right) \right.$$

$$(x_1, \dots, x_n) \in K \& (y_1, \dots, y_n) \in C \right\}$$

Theorem (Bollobas&Leader, Uhrin, Saroglou)

If K and C are unconditional convex bodies and $\lambda \in (0,1)$, then

$$V(K^{1-\lambda}\cdot C^{\lambda})\geq V(K)^{1-\lambda}V(C)^{\lambda},$$

with equality $\iff \exists \Phi$ positive definit diagonal matrix s.t. $K = \Phi C$

Stability of Bollobas-Leader-Uhrin

Theorem (B., De)

If $\tau \in (0, \frac{1}{2}]$, $\lambda \in [\tau, 1 - \tau]$ and unconditional convex bodies K and C in \mathbb{R}^n satisfy

$$V(K^{1-\lambda} \cdot C^{\lambda}) \leq (1+\varepsilon)V(K)^{1-\lambda}V(C)^{\lambda},$$

then there exists positive definite diagonal matrix Φ , det $\Phi = V(K)/V(C)$ such that

$$V(K\Delta(\Phi C)) < c^n n^n \left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{19}} V(K)$$

where c > 1 is an absolute constant.

Stability of the L_p -Brunn Minkowski inequality with hyperplane symmetries if 0

Theorem (B., De)

If 0 , <math>K and C in \mathbb{R}^n are invariant under the Coxeter group $G \subset \mathrm{GL}(n)$ generated by n independent linear reflections, and

$$V(K+_{\rho}C)^{\frac{\rho}{n}} \leq (1+\varepsilon)\left(V(K)^{\frac{\rho}{n}}+V(C)^{\frac{\rho}{n}}\right)$$

for $\varepsilon > 0$, then

$$\left(1 - \gamma \cdot \varepsilon^{\frac{1}{190n}}\right) \cdot \textit{C} \subset \textit{K} \subset \left(1 + \gamma \cdot \varepsilon^{\frac{1}{190n}}\right) \cdot \textit{C}$$

where $\gamma > 1$ depends on n, p and $\sigma = \max\left\{\frac{V(K)}{V(C)}, \frac{V(C)}{V(K)}\right\}$.

Wasserstein distance + Irreducible action

$$\mathrm{Lip}_1 = \big\{ f : \, S^{n-1} \to \mathbb{R} : \, \forall a, b \in S^{n-1}, \, |f(a) - f(b)| \le \|a - b\| \big\}.$$

Wasserstein distance
$$\mu(S^{n-1}) = \nu(S^{n-1}) = 1$$

$$d_W(\mu,
u) = \sup\left\{\int_{S^{n-1}} f \, d\mu - \int_{S^{n-1}} f \, d
u : f \in \operatorname{Lip}_1
ight\}.$$

Remark

Convergence w.r.t. the Wasserstein distance ← weak convergence.

Wasserstein distance + Irreducible action

$$\mathrm{Lip}_1 = \big\{ f : \, S^{n-1} \to \mathbb{R} : \, \forall a, b \in S^{n-1}, \, |f(a) - f(b)| \le \|a - b\| \big\}.$$

Wasserstein distance $\mu(S^{n-1}) = \nu(S^{n-1}) = 1$

$$d_W(\mu,
u) = \sup \left\{ \int_{S^{n-1}} f \, d\mu - \int_{S^{n-1}} f \, d
u : f \in \operatorname{Lip}_1
ight\}.$$

Remark

Convergence w.r.t. the Wasserstein distance ← weak convergence.

G is the Coxeter group generated by n independent reflections

- Action of G irreducible if no proper linear subspace invariant
- Action of *G* reducible otherwise. In this case, $\mathbb{R}^n = \oplus L_i$, $\forall L_i$ invariant proper subspace, $L_i \neq L_j$ orthogonal

Stable determination of V_K - action of G irreducible

Theorem (B.,De)

Let $G \subset O(n)$ be a Coxeter group with irreducible action on \mathbb{R}^n . If μ_1 and μ_2 are Borel probability measures on S^{n-1} invariant under G, then the unique G invariant Alexandrov solution h_i of the logarithmic Minkowski problem for $\mu = \mu_i$, i = 1, 2, satisfies

$$||h_1 - h_2||_{\infty} \le \gamma_0 \cdot d_W(\mu_1, \mu_2)^{\frac{1}{95n}}$$

 $r_0 \le h_1, h_2 \le R_0;$

 $R_0 = n$, $r_0 = \frac{1}{e}$ and $\gamma_0 = c^n$, c > 1 absolute constant.

Stable determination of V_K - action of G irreducible

Theorem (B.,De)

Let $G \subset O(n)$ be a Coxeter group with irreducible action on \mathbb{R}^n . If μ_1 and μ_2 are Borel probability measures on S^{n-1} invariant under G, then the unique G invariant Alexandrov solution h_i of the logarithmic Minkowski problem for $\mu = \mu_i$, i = 1, 2, satisfies

$$||h_1 - h_2||_{\infty} \le \gamma_0 \cdot d_W(\mu_1, \mu_2)^{\frac{1}{95n}}$$

 $r_0 \le h_1, h_2 \le R_0;$

 $R_0 = n$, $r_0 = \frac{1}{e}$ and $\gamma_0 = c^n$, c > 1 absolute constant.

Remark Error $d_W(\mu_1,\mu_2)^{\frac{1}{95n}}$ can't be replaced by less than $d_W(\mu_1,\mu_2)^{\frac{1}{n}}$