A flow approach to the Musielak-Orlicz-Gauss
image problem

Caihong Yi
(Joint work with Qi-Rui Li, Weimin Sheng and Deping Ye)

Hangzhou Normal University

Conference on Interaction Between PDEs and Convex Geometry
BIRS-IASM, Oct. 17-22; 2021



@ The Musielak-Orlicz-Gauss image problem



@ The Musielak-Orlicz-Gauss image problem

@ Some results of related Minkowski type problems



@ The Musielak-Orlicz-Gauss image problem
@ Some results of related Minkowski type problems

© Main proof



Notations

e Denote by K™ the class of convex bodies in R"*! containing the
origin, and kgt the class of convex bodies in R™! containing the
origin in their interiors. Let Q € K§™*, and M = 9Q is convex
hypersurface in R"+1.

@ Support function v : S" — R, defined by
u(v) = max{(X,v) : X € Q}.
o Radial function r : S” — R, defined by
r(§) = max{A : \{ € Q}.
e The supporting hyperplane to  with unit normal v € §"
Ho(v) ={z € R"™: z. v = ug(v)}




@ The Gauss map v : 990 — S”,
v(X)={reS": X -v=uqg(v)}

The inverse Gauss map 1/51 reparametrizes O0X).
@ The reverse radial Gauss image of E, E C S”, defined by

ay(E) = {€ €S": ra(€)¢ € v (E)}.

@ The principal curvature radii of M at X is given by eigenvalues of
(V2u + ugsn), where V the covariant derivative on S".

o Hausdorff metric (K, L), K, L € Kot
0(K, L) = max|ux (x) — ur(x)].
xes"

o Let e, , e, be a smooth local orthonormal frame field on S”, and
V be the covariant derivative on S”,

r(€) - € = u(x) - x + Vu(x).
e



@ Minkowski combination sK + tL for two convex bodies K, L € IC8+1,
s, t>0:
sK+bL={sx+ty:xe K,y €L},

or equivalently
u(sK + tL,-) = su(K,-) + tu(L,-).

o Firey's p-sum s- K +, t - L for two convex bodies K, L € IC(')’H,

p>1,s,t>0, can be defined by its support function
uP(s - K+pt-L,-)=suP(K, )+ tuP(L,).
o p < 1, WuIff shape:

1
s-K4pt-L= ﬂ {y e R x-y < (suf(x)+ tul(x))*}.
xesn

@ When p=0,s-K+ot-L=[) cs{y eER"™x-y < u;uf}.



The Musielak-Orlicz-Gauss image problem

@ The Musielak-Orlicz function:
C={G:(0,00) x S" — R such that G and G, are continuous on
(0,00) x S"}.

@ The general volume of 2 with respect to the given Lebesgue
measure A\ on S"

Vea(Q) = G(ra(&),&)dA(§).

Sn

@ The Musielak-Orlicz addition of continuous functions v and g
(Musielak-Orlicz extensions of Firey's p-sum)

V(x, ur(x)) = W(x, u(x)) + tg(x).



@ Variational formula for the general dual volume

S Verlud)lo= [ g()aCo(k.v)

e Let © = (G, WV, \) be a given tripe with G € C, W € C, and X a
nonzero finite Lebesgue measure on 8".
The Musielak-Orlicz-Gauss image measure Co(Q,-) of Q € K§t for
each Borel set w C S” (Huang-Xing-Ye-Zhu, 2021)

~ _ ra(§)Gz(ra(§),§)
Collt.w) = /a;.;(w) Y(ua(aa(§)), aalf)) aAE).

where ¢ = zV,.



The Musielak-Orlicz-Gauss image problem

The Musielak-Orlicz-Gauss image problem :

Let G € C, WV € C, and X be a nonzero finite Lebesgue measure on S".
Under what conditions on © = (G, W, \) and a nonzero finite Borel
measure 1 on S” do there exist a Q € K™ and a constant 7 € R such
that

dp = 1dCo(Q,-). (1)

o Let EG,,\(Q, )= 5(G,|Ogt,,\)(§2, -), the Musielak-Orlicz-Gauss image
problem can be rewritten as

Y(ua(),-) du =7 dCe (R )- ()

@ When d\(&) = pa(€)d€ and du(x) = f(x)dx, (2) reduces to solving
the following Monge-Ampére type equation on S :

u(v? + [Vul?) 2 G, (V2 + [Vul2, §)px - det(V2u + ul) = yf(x)d(u, x). (



The Musielak-Orlicz-Gauss image problem :
u(v? + |Vul?) "2 G, (\/u? + |Vul2,&)px(€) det(V2u + ul) = f(x)h(u, x).
Specially, for G(r,&) = r9, W(u,x) = uP and pr(§) = 1.

© When p =0, it becomes the dual Minkowski problem
(Huang-Lutwak-Yang-Zhang'16):

u(u2 + \Vu|2)‘77371 det(Vzu + ul) = f(x).

e 0 < g < n+1, existence for even measures,
Huang-Lutwak-Yang-Zhang.'16; Boroczky-Henk-Pollehn.'18;
Zhao.'18;

e g < 0, existence for general measures, Zhao.'17;

e g € R, existence for smooth function f, Li-Sheng-Wang."18.
(Geometric flow method).



When g = n+ 1, it becomes L, Minkowski problem (Lutwak'93):

ur P det(V2u + ul) = f(x)

@ p =1, the classical Minkowski problem settled by Nirenberg'53;
Cheng-Yau'76; Pogorelov'78

@ p>1and p# n+ 1, existence for even measures. Lutwak’'93;
Lutwak-Oliker'95
existence for discrete measures, Hug-Lutwak-Yang-Zhang'05

@ p > n+1, existence and uniqueness of smooth solution,
Chou-Wang'06; Guan-Lin'00

@ —n—1< p< n+1, weak solution for f € L> by Chou-Wang'06;.

@ 0 < p < 1, existence for even measures,
Haberl-Lutwak-Yang-Zhang'10;
existence for discrete measures Zhu'1b;
existence for general measures, Chen-Li-Zhu'17.

e p =0 (logarithmic Minkowski problem),
existence for even measures, Boroczky-Lutwak-Yang-Zhang'13;
existence for discrete measures, Zhu'l4; Boroczky-Hegedus-Zhu'16;
existence for general measures, Chen-Li-Zhu'19.



L, dual Minkowski problem (Lutwak-Yang-Zhang'18):

qg—n—1

VP(P V) T2 det(Vu + ul) = f(x).

e p > g, existence for discrete measures, Lutwak-Yang-Zhang.'18.

e pg > 0 and even smooth function f, Chen-Huang-Zhao.'19.
(Geometric flow method).

p>1,q >0, existence for general measures and Q € K",
Bordczky-Fodor.'19.(polytopal solutions to the discrete measures and
an approximation argument)

e p>0,q > 0, existence for general measures and Q € K",
Chen-Li.’21. (geometric flow method and an approximation
argument)

o p<0,q >0, existence for even measures, Chen-Chen-Li."20.



Specially, for W(u,x) = W(u) and pA(§) =1, Co(Q, ) becomes the
general dual curvature measure Cg (€, ) of Q € K§** for each Borel

set w C S" (Gardner-Hug-Weil-Xing-Ye.'19)

Cop(Qw) = / r2(€)G:(ra(€). €)

onw)  Y(ualan(§))) %

where ¥(t) = tWV'(t).
The general dual Orlicz Minkowski problem

du = 7dCe (2, ), (4)

Denote Cg(€,-) = ’Cvgyl(Q, -), the problem can be re-written as
(ug)dp = 7dCe(Q, ). (5)
When dp = f(x)dx, it is reduced to solving the following equation on S":
u(v? + | Vu?) "2 G,(r, &) det(VZu + ul) = M (x)h(u), (6)

o G, <0(Q € KJ™), existence for general measure,Gardner et al.'19;
existence for smooth function f, Liu-Lu.'20.

o When G(r,&) = r?, W(u) = uP, the result covers the solution to the
L, dual Minkowski problem for g < 0, p <0 (or p > 0).



e G, > 0(Q € K1), polytopal solutions to the discrete measures and
approximation argument, Gardner-Hug-Xing-Ye.'20.

Theorem (Gardner-Hug-Xing-Ye.'20)

Let G : [0,00) x S" — [0, 00) be continuous, G, > 0 on (0,00) x S", and
¥ (0,00) — (0,00) be continuous. Suppose that G and 1) satisfy

(I) zG,(z,&) is continuous on [0, 00) x S,

() zG,(z,§) =0atz=0 for £ € S",

(]]I)'Lrgl+ Y(t)/t =0 and [© @ds = 00.

Let p be finite Borel measure on S" that is not concentrated on any

closed hemisphere. Then there is a convex body Q € K" such that (5)
holds.

V.

o When G(z,£) = 29, W(u) = v” and 9(t) = tW'(t), the result covers
the solution to the L, dual Minkowski problem for g > 0, p > 1.
(The results is obtained by Boréczky-Fodor.'19).

Problem: How to remove the condition lim P(t)/t=07
t—0



The MOG image problem for the case G, < 0

Let G4 be the class of continuous functions G : (0,00) x S" — (0, )
such that

e zG,(z,&) is continuous on (0,00) x S;

@ G, <0on (0,00) xS

@ lim;_o+ G(z,£) = 400 and lim;_, ;o G(2,£) = 0.

Theorem (Huang-Xing-Ye-Zhu'21)

(1) Let X and p be two nonzero finite Borel measures on S" that are not
concentrated on any closed hemisphere. Suppose that G € C and V € C
such that

()G € Gq,

(i) W, = M > 0 satisfying lims_, 4o, W(s, x) = +o0.

Then there eX/sts a Qe K§t such that (4) holds.

(2) Let X and p be two nonzero finite even Borel measures on S" that are

not concentrated on any closed hemisphere. Suppose that G € C and

WV € C such that

())G(2,€) = G(z,—€) and W(t,x) = W(~t,x),

(II)G € gd and V € gd.

Then there exists a Q € K such that (4) holds.
|




The MOG image problem for the case G, > 0

Let G? be the class of continuous functions G : [0,00) x S” — [0, o0)
such that

@ zG,(z,£) is continuous on [0, 00) x S™;
@ G, >0on (0,00) x S™;
@ G(0,8) =0and zG,(z,§) =0at z=0for { € S".

Theorem (Li-Sheng-Ye-Yi'21)

Let G € G2, W € G¥ and \ be a nonzero finite Borel measure on S".
Assume the following conditions on G, \ and V.

(1) dA(&) = pa(&)dE where py : S" — (0, 00) is continuous.

(ii) For all x € S", the following holds:

sllToo Y(s, x) = +oo0. (7)
Let  be a nonzero finite Borel measure on S" that is not concentrated
on any closed hemisphere. Then there is a convex body Q € K" such
that (2) holds, with the constant T = % Jon ¥(ua(x), x) dpu(x).

Ce

V.




The suitably designed curvature flow

Our proof is based on the study of a suitably designed parabolic flow and
the use of approximation argument.

Let GEQ?, v GQ? and ¢ = zV,.

Case 1: liminf M =00, forall x e S".
s—0+t (s, x)
sG,(s, x) (8)
Case 2: liminf —~""7 < oo, for some x € S".
s—0F ’(/)(S,X)

In Case 1, the convex body 2 satisfies Musielak-Orlicz-Gauss image
problem = Q € K.

@ Specially, when G(s,x) = s9 and 9(s, x) = sP, it extends the L,
dual Minkowski problem for the case p > g > 0.

In Case 2, the convex body € satisfies Musielak-Orlicz-Gauss image
problem = Q € K1

@ Specially, when G(s,x) = s and 9(s, x) = sP, it extends the L,
dual Minkowski problem for the case ¢ > p > 0



The suitably designed curvature flow

Let G, W, f and p, be smooth positive functions, suppose that X(-, t) be
a smooth solution to the flow (9) , and M; = X(S", t) be a smooth,
closed and uniformly convex hypersurface.

For Case 1: liminf M

= 00, considering the following curvature
s—=0t (s, x) & &

flow
{ L (x, 1) = (=F()e(u,x)r"G,(r, &) py (K + n(t)u) v,

X(x,0) = Xo(x),

(9)

where £ = ag, (x), and

e F(u, x)dx
1 = G o (E)dE 10)

@ The functional

JI(u) = / FU(u, x)dx.
I



The suitably designed curvature flow

Let X(-, t) be a smooth solution to the flow (9) with t € [0, T), and
M; = X(S", t) be a smooth, closed and uniformly convex hypersurface.
Suppose that the origin lies in the interior of the convex body €,
enclosed by M, for all t € [0, T). Then, for any t € [0, T), one has

V() = V(o). (11)

The functional J is non-increasing along the flow (9). That is,
W < 0, with equality if and only if M, satisfies the elliptic
equation (6).




The suitably designed curvature flow

For Case 2: liminf M
s—0F ’(/) S,X)

parabolic flow with the smooth function ¢ replaced by the smooth
function 1. : [0,00) x S" — [0, ), € € (0, 1), as follows:

R Y(s, x), if s > 2e,
Ye(s,x) = (12)

G, (s,a*(x))s'te, if0<s<e,

< 00, considering a suitably designed

and 125(5,)() < G for (s,x) € (g,2¢) x S™ is chosen so that . is smooth
on [0,00) x S" and ¥.(s,x) > 0 for all (s, x) € (0,00) x S". Hereafter,

G = max{l,(syx)gg’élxsnw(s,x)} (13)

s
YK

-

e !
GasY :

0 i % 2 s




The suitably designed curvature flow

G, (s, . .
For Case 2: liminf m < 00, considering the following curvature
s—0+ (s, x)

flow:

% () = (—F()De (e, )" Go(r, €)1 HOK + () ) v,

X.(x,0) = Xo(x),
(14)
where X_(-,t) : S" — R"*1 parameterizes convex hypersurface M3, u.
denotes the support function of the convex body Qf circumscribed by
ME, and

Jsn f(ZE(u, x)dx

fsn er(r7£)p)\(£)df. (15)

ne(t) =



Outline of proof for the Case 2

Let G, V, f and p) be smooth positive functions, and ug be a positive
and uniformly convex function. Suppose that u.(, t) is positive, smooth
and uniformly convex solution to the flow (14) for all t € [0, T).
Step 1:C% and Cl-estimates: C;! < u.(-,t) < G, |Vue(-,t)| < G
@ Maximum principle.
The key point is the uniform bound of 7.(t).(The construction idea

of function 1.)

Lemma

Let u(-, t) be a positive, smooth and uniformly convex solution to (14).
Then

Ci <n(t)< G forallte[o,T), (16)
2

where C, > 0 is a constant depending only on f, px, G, V and Qq, but
independent of e.




Outline of proof for the Case 2

Step 2: The maximal and minimal widths of Q are defined respectively,

wg = meas>"<{uQ(X) + ug(—x)} and wg = I'Téisnn{UQ(X) + ug(—x)}.

Let u(-, t) be a positive, smooth and uniformly convex solution to (14).
Then there is a constant C3 > 0 depending only on f, px, G, ¥, and €y,
but independent of €, such that, for all t € [0, T),

1/G<wg, <wg <G




Outline of proof for the Case 2

Step 3: C2-estimates: C. | < V2u.(-,t) + u.(-, t)] < C.l.
(Tso'85, Urbas'91, Ivaki'l6, Li-sheng-Wang'16......)
@ Consider the following auxiliary function

_ —ug +un(t)
Q= —u_e
where € = %infgnx[oj) u(x,t). Let x; € S" for each t € [0, T) be
such that Q(x¢, t) = maxyes» Q(x, t).
(the maximum principle)= det(V?u. + u.l) > 1/C..
o Consider the following auxiliary function

W(x,t) = log b(x, t) — Blog u(x, t) + grz(x7 t),

where 5 and A are large constants to be decided, and

b(x, t) = max { D biix, )G - Z_ZC? = 1}.

where bjj = uj; + udj. LetT'€ (0, T) be an arbitrary number but

fixed. Assume that W attains its maximum on S” x [0, T'] at

(x0, to) with to > 0.(the maximum principle)= V?u. +u.l < C..
I



Outline of proof for the Case 2

Step 4: Long time existence of solution to the flow (14), together with
the monotonicity of the functional J(u(-)) = there exists a subsequence
of {u.(-, t;)} converging to a positive and uniformly convex function
Ue,0o € C™°(S") satisfying that

Ua,oo(x)r;go(f) G; (re,oo(f)a 5)[3)\(5) dEt(vzua,oo(X)J"ua,oc(X)l) :’Yaf(x){b\e(ua,oo,

where v, = tiIme )

. That is, Q. o € Ky with

Ky = {K €K Vea(K) = VG,A(QO)}.

. o solves the following optimization problem:

inf{ 5 f(x)\TJE(uK(x),X) dx:Ke ICV}.



Outline of proof for the case 2

Step 5: Recall that & < wo, < W;Z;oc < Cand ¢ <v. < C, where C
is independent of €.

Proposition

Let G € g? and X\ be a nonzero finite Borel measure on S" which is
absolutely continuous with respect to d§. Then the measure (.~'G, A(, ) s
weakly convergent on K, namely, if Q; € K for all i € N and Q; converges
to Q € K in the Hausdorff metric, then Cg x(Qi,-) — Cg (€2, -) weakly.

Hence, a constant 7y > 0 and a sequence £; — 0 can be found so that
Ye; — Yo. For each Borel set w C S”,

0 [ W dnt) = [ 6O 9p© = | dCor@ne

w

Moreover, €, satisfies
/ FV(uq_, x)dx = inf{/ F(x)W(ug, x)dx : K € /cv}.



Outline of proof for the Case 2

Lemma

Let G € G? be a smooth function. Suppose that du(¢) = f(£) d¢ and
dA(&) = pa(§) d€ with f and py being smooth and strictly positive on
S". Let W € G? be a smooth function satisfying (7). The following
statements hold.

(i) If G and v satisfy the conditions in Case 1, then one can find an
Q € Kt such that (4) holds;

(i) If G and 9 satisfy the conditions in Case 2, then one can find an
Q € K™ such that (2) holds.




Outline of proof for the Case 2

Using the standard approximations for the functions G, py and WV in
Main Theorem.

Corollary

Let G, py and WV be as in Main Theorem and f be a smooth positive
function on S", then there exist v > 0 and Q2 € Ky, such that  satisfies

/ rG,(r,&)pa(§)dé = ’y/ f(u, x)dx, V Borel set w C S"
a;;(w) w

and

/f\Il(uQ,x)dx:inf{/ f\IJ(uK,x)dx:KEICV}.




Thank you for your attention!



