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Outline of this talk

This talk is based on the joint work with Du Zou, published in
Comm. Anal. Geom. 26 (2018), 435-460.
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1.1 The Brunn-Minkowski theorem

1. The Brunn-Minkowski theorem

Suppose that K , L are convex bodies (compact convex sets with
non-empty interiors) in Rn and 0 < α < 1. Then

Vn((1− α)K + αL)
1
n ≥ (1− α)Vn(K )

1
n + αVn(L)

1
n ,

with equality if and only if K , L are homothetic.

• The theorem was discovered in 1887 (for n ≤ 3) by H. Brunn
(German, 1862õ1939. Brunnian link in knot theory).

• Minkowski gave an analytical proof for the n-dimensional case
and characterized the equality condition in 1896.
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1.1 The Brunn-Minkowski theorem

• The theorem states that: K 7→ Vn(K )
1
n is concave.

• K , L are homothetic, if L = λK + x , where λ > 0, x ∈ Rn.

• Vn is the Lebesgue measure on Rn.

• Minkowski combination: βK + γL = {βx + γy : x ∈ K , y ∈ L}.
• Intuitive explanation:

A(C (o, l) +B(o, r)) = A(C ) + 4lr +A(B) ≥ A(C ) + 2
√
πlr +A(B).

= A(C ) + 2
√
A(C )A(B) + A(B)
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1.1 The Brunn-Minkowski theorem

• The equivalent forms of the Brunn-Minkowski inequality:

Vn(K + L)
1
n ≥ Vn(K )

1
n + Vn(L)

1
n . (1)

Vn(βK + γL)
1
n ≥ βVn(K )

1
n + γVn(L)

1
n . (2)

Vn((1− α)K + αL)
1
n ≥ (1− α)Vn(K )

1
n + αVn(L)

1
n . (3)

Vn((1− α)K + αL) ≥ Vn(K )1−αVn(L)α. (4)

Vn((1− α)K + αL) ≥ min{Vn(K ), Vn(L)}. (5)

Vn((1− α)K + αL) ≥ 1, if Vn(K ) = Vn(L) = 1. (6)
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1.2 The significance of the Brunn-Minkowski theorem

1. To get a full impression of the impact of the Brunn-Minkowski
inequality in geometry and analysis, read the survey article

• R. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math.
Soc. 39 (2002), 355-405. [cited 358]

2. The Brunn-Minkowski inequality is a powerful tool for
conquering problems involving metric quantities, such as volume,
surface area and mean width.
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1.2 The significance of the Brunn-Minkowski theorem

3. It quickly implies the classical isoperimetric inequality.

The isoperimetric inequality

Suppose that K is a convex body in Rn and B is the unit ball. Then(
S(K )

S(B)

) 1
n−1

≥
(
Vn(K )

Vn(B)

) 1
n

,

with equality if and only if K is a ball in Rn.
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1.2 The significance of the Brunn-Minkowski theorem

• S(K ) is the surface area of K , defined by

S(K ) = lim
ε→0+

Vn(K + εB)− Vn(K )

ε
.

• R. Osserman (American, 1926õ2011), The isoperimetric
inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238.
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1.2 The significance of the Brunn-Minkowski theorem

4. The isoperimetric inequality for compact domains with C 1

boundaries is equivalent to the Sobolev inequality.

The Sobolev inequality

If f is a C 1 function on Rn with compact support, then(∫
Rn

|∇f (x)|dx
)n

≥ nnωn ‖ f ‖ n
n−1

.

• Sobolev (Soviet, 1908õ1989) inequalities, relating norms in
Sobolev spaces, are used to prove Sobolev embedding theorem.
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1.2 The significance of the Brunn-Minkowski theorem

5. It quickly implies the Brunn concavity theorem.

The Brunn concavity theorem

Suppose that K is a convex bodies in Rn. Then for ∀u ∈ Sn−1 ,

FK (t) = Vn−1(K ∩ (tu + u⊥))
1

n−1 , t ∈ R,

is concave on its support.

• H. Brunn, About ovals and eggforms, München, 1887.
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1.2 The significance of the Brunn-Minkowski theorem

6. It is equivalent to the Minkowski first inequality.

The Minkowski first inequality

Suppose that K , L are convex bodies in Rn. Then

V1(K , L) ≥ Vn(K )
n−1
n Vn(L)

1
n ,

with equality if and only if K , L are homothetic.

• V1(K , L) is the first mixed volume of K and L, defined by

V1(K , L) =
1

n
lim
ε→0+

Vn(K + εL)− Vn(K )

ε
.
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1.2 The significance of the Brunn-Minkowski theorem

7. An extension of the Brunn-Minkowski theorem

The general Brunn-Minkowski theorem

Suppose that E ,F are Lebesgue measurable sets in Rn and their
sum E + F is also measurable. Then

Vn(E + F )
1
n ≥ Vn(E )

1
n + Vn(F )

1
n .

• The inequality was first proved in 1935 by Lyusternik (Soviet,
1899-1981).

• Hadwiger and Ohmann found a simple and beautiful proof in
1956, now called the Hadwiger-Ohmann cut.
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8. Further extensions of the Brunn-Minkowski theorem

• C. Borell, The Brunn-Minkowski inequality in Gauss space.
Invent. Math. 30 (1975), 207õ216.

• B. Berndtsson, A Brunn-Minkowski type inequality for Fano
manifolds and some uniqueness theorems in Kähler geometry.
Invent. Math. 200 (2015), 149õ200.

• A. Figalli, D. Jerison, Quantitative stability for the
Brunn-Minkowski inequality. Adv. Math. 314 (2017), 1-47.

• A. Figalli, Quantitative stability results for the Brunn-Minkowski
inequality. Proceedings of ICM, 2014.
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1.2 The significance of the Brunn-Minkowski theorem

• A. Okounkov, Brunn-Minkowski inequality for multiplicities.
Invent. Math. 125 (1996), 405õ411.

• Y. Ollivier, C. Villani, A curved Brunn-Minkowski inequality on
the discrete hypercube. SIAM J. Discrete Math. 26 (2012),
983õ996.

• A. Colesanti, P. Salani, The Brunn-Minkowski inequality for
p-capacity of convex bodies. Math. Ann. 327 (2003), 459õ479.

• L. Caffarelli, D. Jerison, E. Lieb, On the case of equality in the
Brunn-Minkowski inequality for capacity. Adv. Math. 117 (1996),
193õ207.
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1.3 Proof of the Brunn-Minkowski theorem

1. Proof. (By induction)

• Due to H. Kneser (German, 1898õ1973) and W. Süss (German,
1895õ1958, the first director of the MRI of Oberwolfach) in 1932.

Step 1. The volume of convex body K in Rn can be expressed as

Vn(K ) =

∫ ηK

ξK

Vn−1(K ∩ Hu,t)dt,

where u ∈ Sn−1 , Hu,t = {x ∈ Rn : x · u = t}, ξK , ηK ∈ R.
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1.3 Proof of the Brunn-Minkowski theorem

Step 2. For convex bodies K , L in Rn and 0 < α < 1, there holds
the inclusion relation

((1− α)K + αL) ∩ Hu,t ⊇ (1− α)(K ∩ Hu,t) + α(L ∩ Hu,t).

Step 3. According to the monotonicity of volume and the
induction hypothesis, the inequality can be derived.

• H. Kneser, W. Süss, Die Volumina in linearen Scharen konvexer
Körper, Mat. Tidsskr. B (1932), 19-25.
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2.1 The Lp combination

1. In 1962, Firey introduced the Lp combinations of convex bodies,
and established the Lp Brunn-Minkowski inequality.

• W. Firey, p-means of convex bodies, Math. Scand. 10 (1962),
17-24.

• For 1 ≤ p <∞ , the Lp combination α ·p K +p β ·p L of convex
bodies K , L, is defined by α ·p K = α1/pK , β ·p L = β1/pL,

K +p L = {(1− γ)
p−1
p x + γ

p−1
p y : x ∈ K , y ∈ L, 0 ≤ γ ≤ 1}.

• α ·p K +p β ·p L is a convex body with origin in its interior.
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2.1 The Lp combination

2. Further developments of the Lp Brunn-Minkowski theory were
greatly impelled by E. Lutwak in 1990s.

• E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes
and the Minkowski problem, JDG 38 (1993), 131-150. [cited 416]

• E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and
geominimal surface areas, Adv. Math. 118 (1996), 244-294. [cited
343]
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2.2 The Lp Brunn-Minkowski theorem

The Lp Brunn-Minkowski theorem

Suppose that K , L ∈ Kn
o , p ∈ (1,+∞) and α ∈ (0, 1), then

Vn((1− α) ·p K +p α ·p L)
p
n ≥ (1− α)Vn(K )

p
n + αVn(L)

p
n ,

with equality if and only if K , L are dilates.

• Kn
o : the set of convex bodies with the origin in their interiors.

• The functional V
p
n
n : Kn

o → [0,∞) is concave.

• An equivalent form: Vn(K +p L)
p
n ≥ Vn(K )

p
n + Vn(L)

p
n .
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2.3 The Lp Brunn-Minkowski type inequalities

1. For a convex body K ∈ Kn, its quermassintegrals W0(K ),
W1(K ), . . ., Wn−1(K ) are defined by

Wn−j(K ) =
ωn

ωj

∫
Gn,j

Vj(K |ξ)dµj(ξ)

for j = 1, . . . , n − 1. W0(K ) = Vn(K ) and Wn(K ) = Vn(B).

• The Grassmann manifold Gn,j is endowed with the normalized
Haar measure µj ; K |ξ is the orthogonal projection of K onto ξ.

• If K has a C2 boundary, Wi (K ) are the integrals of elementary
symmetric functions of the principal curvatures over ∂K .
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2. The Brunn-Minkowski inequality for quermassintegrals

Suppose that K , L ∈ Kn, and j = 1, . . . , n − 1. Then

Wn−j(K + L)
1
j ≥Wn−j(K )

1
j + Wn−j(L)

1
j ,

with equality if and only if K and L are homothetic.

• The functional Wn−j
1
j is concave on Kn.

• R. Schneider, Convex bodies: the Brunn-Minkowski theory,
Cambridge University Press, 2014.
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3. The Lp Brunn-Minkowski inequality for quermassintegrals

Suppose that K , L ∈ Kn
o , j = 1, . . . , n − 1 and 1 < p <∞. Then

Wn−j(K +p L)
p
j ≥Wn−j(K )

p
j + Wn−j(L)

p
j ,

with equality if and only if K and L are dilates.

• The functional Wn−j
p
j is concave on Kn

o .

• E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes
and the Minkowski problem, JDG 38 (1993), 131-150.
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3.1 Motivation: A unified treatment for Lp BM type
inequalities

Known Facts:

The functionals V
1
n
n , W

1
j

n−j , · · · , are concave on Kn w.r.t.

Minkowski combinations, then V
p
n
n , W

p
j

n−j , · · · , are concave on Kn
o

w.r.t. Lp combinations.

Question

Suppose a functional F is concave on Kn, w.r.t. Minkowski
combinations. Under what conditions F p is concave on Kn

o , w.r.t.
Lp combinations? ...... If answered, then a unified treatment is
obtained!
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3.2 The Lp transference principle

1. Given a functional F : Kn → [0,∞), we say that F is

(1) positively homogeneous, provided

F (αK ) = αF (K ), α > 0.

(2) increasing, provided

K ⊆ L =⇒ F (K ) ≤ F (L).

Moreover, F is strictly increasing, provided

K ( L =⇒ F (K ) < F (L).
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3.2 The Lp transference principle

(3) p-concave, provided

F ((1−α) ·p K +p α ·p L)p ≥ (1−α)F (K )p +αF (L)p, α ∈ (0, 1).

As usual, 1-concave is called concavity for brevity.

(4) translation invariant, provided

F (K + x) = F (K ), x ∈ Rn.
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3.2 The Lp transference principle

2. Theorem 3.1 (Lp transference principle)

Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). If K , L ∈ Kn

o , then

F ((1−α) ·p K +p α ·p L)p ≥ (1−α)F (K )p +αF (L)p, α ∈ (0, 1).

Furthermore, if F : Kn
o → [0,∞) is strictly increasing, the equality

holds if and only if K and L are dilates.

• Equivalent form: F (K +p L)p ≥ F (K )p + F (L)p.
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3.2 The Lp transference principle

Lemma 3.1

Suppose that K , L ∈ Kn
o and 1 ≤ p <∞. Then, F is p-concave, if

and only if Fp;K ,L is concave.

• Fp;K ,L : [0, 1]→ [0,∞), Fp;K ,L(α) = F ((1− α) ·p K +p α ·p L)p .

Lemma 3.2

Suppose that K , L ∈ Kn
o , 1 < p <∞ and 0 < α < 1. Then

(1− α) ·p K +p α ·p L ⊇ (1− α)K + αL,

with equality if and only if K = L.
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3.3 Characterizations of equality conditions

Remark: For many Lp Brunn-Minkowski type inequalities, equality
only occurs when the convex bodies are dilates, not homothetic.
This phenomenon can be completely characterized.

Theorem 3.2

Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). Then the following
assertions are equivalent.

(1) For K , L ∈ Kn
o , the function Fp;K ,L is affine if and only if K

and L are dilates.

(2) When restricted to Kn
o , the functional F is strictly increasing.
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3.3 Characterizations of equality conditions

Theorem 3.3

Suppose F : Kn → [0,∞) is translation invariant, positively
homogeneous, increasing and concave, and p ∈ (1,∞). Then the
following assertion (1) implies assertion (2).

(1) For K , L ∈ Kn, the function F1;K ,L is affine if and only if K
and L are homothetic.

(2) For K , L ∈ Kn
o , the function Fp;K ,L is affine if and only if K

and L are dilates.
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4.1 An application to harmonic quermassintegrals

1. For a convex body K ∈ Kn, Hadwiger introduced the harmonic
quermassintegrals Ŵ0, Ŵ1, . . ., Ŵn−1, defined by
Ŵ0(K ) = Vn(K ), and for j = 1, . . . , n − 1,

Ŵn−j(K ) =
ωn

ωj

(∫
Gn,j

Vj(K |ξ)−1dµj(ξ)

)−1

.

• H. Hadwiger (Swiss, 1908-1981), Vorlesungen über Inhalt,
Oberäche, und Isoperimetrie, Springer-Verlag, Berlin, 1957.
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4.1 An application to harmonic quermassintegrals

2. The Brunn-Minkowski inequality for harmonic quermassintegrals

Suppose that K , L ∈ Kn and j ∈ {1, . . . , n − 1}. Then

Ŵj(K + L)
1

n−j ≥ Ŵj(K )
1

n−j + Ŵj(L)
1

n−j ,

with equality if and only if K and L are homothetic.

• Let F (K ) = Ŵj(K )
1

n−j . Then F is positively homogeneous,
strictly increasing and concave on Kn.
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4.1 An application to harmonic quermassintegrals

From Theorem 3.1 and Theorem 3.2, it follows that

3. Theorem 4.1

Suppose that K , L ∈ Kn
o , j ∈ {1, . . . , n − 1} and 1 < p <∞. Then

Ŵj(K +p L)
p

n−j ≥ Ŵj(K )
p

n−j + Ŵj(L)
p

n−j ,

with equality if and only if K and L are dilates.
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4.2 An application to affine quermassintegrals

1. For a convex body K ∈ Kn, Lutwak introduced the affine
quermassintegrals Φ0, . . ., Φn−1, defined by Φ0(K ) = Vn(K ), and
for j = 1, . . . , n − 1,

Φn−j(K ) =
ωn

ωj

(∫
Gn,j

Vj(K |ξ)−ndµj(ξ)

)− 1
n

.

• Note that all the Φj(K ) are affine invariant, i.e.,

Φj(TK ) = Φj(K ), for all T ∈ SL(n).
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4.2 An application to affine quermassintegrals

2. The Brunn-Minkowski inequality for affine quermassintegrals

Suppose that K , L ∈ Kn and j ∈ {1, . . . , n − 1}. Then

Φj(K + L)
1

n−j ≥ Φj(K )
1

n−j + Φj(L)
1

n−j .

If j = n − 1, equality holds in each inequality if and only if
wK = λwL for some constant λ > 0. If 1 ≤ j < n − 1, equality
holds in each inequality if and only if K and L are homothetic.

• E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math.
Soc. 90 (1984), 415-421.
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4.2 An application to affine quermassintegrals

• For K ∈ Kn, let F (K ) = Φj(K )
1

n−j . Then functional F is
positively homogeneous, strictly increasing and concave on Kn.

From Theorem 3.1 and Theorem 3.2, it follows that

Theorem 4.2

Suppose that K , L ∈ Kn
o , j ∈ {1, . . . , n − 1} and 1 < p <∞. Then

Φj(K +p L)
p

n−j ≥ Φj(K )
p

n−j + Φj(L)
p

n−j ,

with equality if and only if K and L are dilates.
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4.3 An application to moments of inertia

1. From classic mechanics, we know that for each convex body K
in Rn, its moment of inertia, I (K ), is defined by

I (K ) =

∫
K
|x − cK |2dx ,

where cK denotes the centroid of K .

2.The Brunn-Minkowski inequality for moments of inertia

Suppose K , L ∈ Kn. Then I (K + L)
1

n+2 ≥ I (K )
1

n+2 + I (L)
1

n+2 .

• H. Hadwiger, Konkave Eikörperfunktionale und höhere
Trägheitsmomente, Comment. Math. Helv. 30 (1956), 285-296.
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4.3 An application to moments of inertia

• For K ∈ Kn, let F (K ) = I (K )
1

n+2 . Then F is positively
homogeneous and concave.

• If K is origin-symmetric, then the centroid cK of K is at the
origin. when the domain of F is restricted to the the class of
origin-symmetric convex bodies Kn

os , then F : Kn
os → (0,∞) is

strictly increasing.
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4.3 An application to moments of inertia

From Theorem 3.1 and Theorem 3.2, it follows that

Theorem 4.3

Suppose that K , L ∈ Kn
o are origin-symmetric and 1 < p <∞.

Then
I (K +p L)

p
n+2 ≥ I (K )

p
n+2 + I (L)

p
n+2 ,

with equality if and only if K and L are dilates.
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4.4 An application to capacities

1. The q-capacity of a convex body K in Rn, for 1 ≤ q < n, is
defined by

Capq(K ) = inf

{∫
Rn

|∇f |qdx
}
,

where the infimum is taken over all nonnegative functions f such

that f ∈ L
nq
n−q (Rn), ∇f ∈ Lq(Rn;Rn) and K ⊆ {x : f (x) ≥ 1}.

2. The Brunn-Minkowski type inequality for capacities

Suppose K , L ∈ Kn, and 1 ≤ q < n. Then

Capq(K + L)
1

n−q ≥ Capq(K )
1

n−q + Capq(L)
1

n−q ,

with equality if and only if K and L are homothetic.
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4.4 An application to capacities

• C. Borell, Capacitary inequalities of the Brunn-Minkowski type,
Math. Ann. 263 (1983), 179-184.

• L. Caffarelli, D. Jerison, E. Lieb, On the case of equality in the
Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996),
193-207.

• A. Colesanti, P. Salani, The Brunn-Minkowski inequality for
p-capacity of convex bodies, Math. Ann. 327 (2003), 459-479.

• L. Evans, R. Gariepy, Measure theory and fine properties of
functions, CRC Press, Boca Raton, 1992.
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4.4 An application to capacities

• For K ∈ Kn, let F (K ) = Capq(K )
1

n−q .

• By Evans and Gariepy, F is positively homogeneous, increasing,
concave and translation invariant.

From Theorem 3.1 and Theorem 3.3, it follows that

Theorem 4.4

Suppose K , L ∈ Kn
o , 1 ≤ q < n, and 1 < p <∞. Then

Capq(K+pL)
p

n−q ≥ Capq(K )
p

n−q + Capq(L)
p

n−q ,

with equality if and only if K and L are dilates.
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