- 1. The classical Brunn-Minkowski inequality
- 2. The L_p Brunn-Minkowski type inequalities
- 3. Our work: The L_p transference principle
 - Applications

A unified treatment for L_p Brunn-Minkowski type inequalities

XIONG GE

Tongji University

BIRS–IASM Online Workshop on "Interaction Between PDEs and Convex Geometry" 10.17-10.22,2021

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline of this talk

This talk is based on the joint work with Du Zou, published in Comm. Anal. Geom. 26 (2018), 435-460.

- * The classical Brunn-Minkowski inequality
- * L_p Brunn-Minkowski type inequalities
- \star Our work: The L_p transference principle
- ***** Applications

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1. The classical Brunn-Minkowski inequality

1. The classical Brunn-Minkowski inequality

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.1 The Brunn-Minkowski theorem

1. The Brunn-Minkowski theorem

Suppose that K, L are convex bodies (compact convex sets with non-empty interiors) in \mathbb{R}^n and $0 < \alpha < 1$. Then

$$V_n((1-\alpha)K+\alpha L)^{\frac{1}{n}} \geq (1-\alpha)V_n(K)^{\frac{1}{n}} + \alpha V_n(L)^{\frac{1}{n}},$$

with equality if and only if K, L are homothetic.

- The theorem was discovered in 1887 (for $n \le 3$) by H. Brunn (German, 1862 1939. Brunnian link in knot theory).
- Minkowski gave an analytical proof for the *n*-dimensional case and characterized the equality condition in 1896.

・ロト ・同ト ・ヨト ・ヨト

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.1 The Brunn-Minkowski theorem

- The theorem states that: $K \mapsto V_n(K)^{\frac{1}{n}}$ is concave.
- K, L are homothetic, if $L = \lambda K + x$, where $\lambda > 0, x \in \mathbb{R}^{n}$.
- V_n is the Lebesgue measure on \mathbb{R}^n .
- Minkowski combination: $\beta K + \gamma L = \{\beta x + \gamma y : x \in K, y \in L\}.$
- Intuitive explanation:

 $A(C(o, l) + B(o, r)) = A(C) + 4lr + A(B) \ge A(C) + 2\sqrt{\pi}lr + A(B).$ = $A(C) + 2\sqrt{A(C)A(B)} + A(B)$

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.1 The Brunn-Minkowski theorem

The equivalent forms of the Brunn-Minkowski inequality:

$$V_n(K+L)^{\frac{1}{n}} \ge V_n(K)^{\frac{1}{n}} + V_n(L)^{\frac{1}{n}}.$$
 (1)

$$V_n(\beta K + \gamma L)^{\frac{1}{n}} \ge \beta V_n(K)^{\frac{1}{n}} + \gamma V_n(L)^{\frac{1}{n}}.$$
(2)

$$V_n((1-\alpha)K+\alpha L)^{\frac{1}{n}} \ge (1-\alpha)V_n(K)^{\frac{1}{n}} + \alpha V_n(L)^{\frac{1}{n}}.$$
(3)

$$V_n((1-\alpha)K + \alpha L) \ge V_n(K)^{1-\alpha}V_n(L)^{\alpha}.$$
(4)

$$V_n((1-\alpha)K + \alpha L) \ge \min\{V_n(K), V_n(L)\}.$$
(5)

$$V_n((1-\alpha)K+\alpha L) \ge 1,$$
 if $V_n(K) = V_n(L) = 1.$ (6)

・ 同 ト ・ ヨ ト ・ ヨ

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

- 1. To get a full impression of the impact of the Brunn-Minkowski inequality in geometry and analysis, read the survey article
- R. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002), 355-405. [cited 358]

2. The Brunn-Minkowski inequality is a powerful tool for conquering problems involving metric quantities, such as volume, surface area and mean width.

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

3. It quickly implies the classical isoperimetric inequality.

The isoperimetric inequality

Suppose that K is a convex body in \mathbb{R}^n and B is the unit ball. Then

$$\left(\frac{S(K)}{S(B)}\right)^{\frac{1}{n-1}} \geq \left(\frac{V_n(K)}{V_n(B)}\right)^{\frac{1}{n}},$$

with equality if and only if K is a ball in \mathbb{R}^n .

・ 戸 ト ・ ヨ ト ・ ヨ

1.1 The Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

• S(K) is the surface area of K, defined by

$$S(K) = \lim_{\epsilon \to 0^+} \frac{V_n(K + \epsilon B) - V_n(K)}{\epsilon}.$$

• R. Osserman (American, 1926 - 2011), The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238.

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

4. The isoperimetric inequality for compact domains with C^1 boundaries is equivalent to the Sobolev inequality.

The Sobolev inequality

If f is a C^1 function on \mathbb{R}^n with compact support, then

$$\left(\int_{\mathbb{R}^n} |\nabla f(x)| dx\right)^n \ge n^n \omega_n \parallel f \parallel_{\frac{n}{n-1}}$$

• Sobolev (Soviet, 1908 - 1989) inequalities, relating norms in Sobolev spaces, are used to prove Sobolev embedding theorem.

- 4 周 ト 4 戸 ト 4 戸 ト

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

5. It quickly implies the Brunn concavity theorem.

The Brunn concavity theorem

Suppose that K is a convex bodies in \mathbb{R}^n . Then for $\forall u \in \mathbb{S}^{n-1}$

$$F_{\mathcal{K}}(t) = V_{n-1}(\mathcal{K} \cap (tu+u^{\perp}))^{\frac{1}{n-1}}, \quad t \in \mathbb{R},$$

is concave on its support.

• H. Brunn, About ovals and eggforms, München, 1887.

- 4 同 2 4 日 2 4 日 2

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

6. It is equivalent to the Minkowski first inequality.

The Minkowski first inequality

Suppose that K, L are convex bodies in \mathbb{R}^n . Then

$$V_1(K,L) \geq V_n(K)^{\frac{n-1}{n}} V_n(L)^{\frac{1}{n}},$$

with equality if and only if K, L are homothetic.

• $V_1(K, L)$ is the first mixed volume of K and L, defined by

$$V_1(K,L) = rac{1}{n} \lim_{\epsilon o 0^+} rac{V_n(K+\epsilon L) - V_n(K)}{\epsilon}.$$

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

7. An extension of the Brunn-Minkowski theorem

The general Brunn-Minkowski theorem

Suppose that E, F are Lebesgue measurable sets in \mathbb{R}^n and their sum E + F is also measurable. Then

$$V_n(E+F)^{\frac{1}{n}} \ge V_n(E)^{\frac{1}{n}} + V_n(F)^{\frac{1}{n}}.$$

• The inequality was first proved in 1935 by Lyusternik (Soviet, 1899-1981).

• Hadwiger and Ohmann found a simple and beautiful proof in 1956, now called the Hadwiger-Ohmann cut.

《曰》《聞》 《臣》 《臣》

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

- 8. Further extensions of the Brunn-Minkowski theorem
- C. Borell, The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975), 207 - 216.
- B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200 (2015), 149 - 200.
- A. Figalli, D. Jerison, Quantitative stability for the Brunn-Minkowski inequality. Adv. Math. 314 (2017), 1-47.
- A. Figalli, Quantitative stability results for the Brunn-Minkowski inequality. Proceedings of ICM, 2014.

・ロト ・同ト ・ヨト ・ヨト

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.2 The significance of the Brunn-Minkowski theorem

- A. Okounkov, Brunn-Minkowski inequality for multiplicities. Invent. Math. 125 (1996), 405 - 411.
- Y. Ollivier, C. Villani, A curved Brunn-Minkowski inequality on the discrete hypercube. SIAM J. Discrete Math. 26 (2012), 983 996.
- A. Colesanti, P. Salani, The Brunn-Minkowski inequality for p-capacity of convex bodies. Math. Ann. 327 (2003), 459 479.
- L. Caffarelli, D. Jerison, E. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity. Adv. Math. 117 (1996), 193 207.

(日) (同) (三) (三)

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.3 Proof of the Brunn-Minkowski theorem

1. Proof. (By induction)

• Due to H. Kneser (German, 1898 - 1973) and W. Süss (German, 1895 - 1958, the first director of the MRI of Oberwolfach) in 1932. **Step 1**. The volume of convex body K in \mathbb{R}^n can be expressed as

$$V_n(K) = \int_{\xi_K}^{\eta_K} V_{n-1}(K \cap H_{u,t}) dt,$$

where $u \in \mathbb{S}^{n-1}$, $H_{u,t} = \{x \in \mathbb{R}^n : x \cdot u = t\}, \xi_K, \eta_K \in \mathbb{R}.$

・ロト ・同ト ・ヨト ・ヨト

- 1.1 The Brunn-Minkowski theorem
- 1.2 The significance of the Brunn-Minkowski theorem
- 1.3 Proof of the Brunn-Minkowski theorem

1.3 Proof of the Brunn-Minkowski theorem

Step 2. For convex bodies K, L in \mathbb{R}^n and $0 < \alpha < 1$, there holds the inclusion relation

$$((1-\alpha)K+\alpha L)\cap H_{u,t}\supseteq (1-\alpha)(K\cap H_{u,t})+\alpha(L\cap H_{u,t}).$$

Step 3. According to the monotonicity of volume and the induction hypothesis, the inequality can be derived.

• H. Kneser, W. Süss, Die Volumina in linearen Scharen konvexer Körper, Mat. Tidsskr. B (1932), 19-25.

- 4 同 2 4 日 2 4 日 2

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle 4. Applications 2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L'_p Brunn-Minkowski type inequalities

2. The L_p Brunn-Minkowski type inequalities

2. The L_p Brunn-Minkowski type inequalities

2. The L_p Brunn-Minkowski type inequalities

Our work: The L_p transference principle
 4. Applications

2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L'_p Brunn-Minkowski type inequalities

2.1 The L_p combination

1. In 1962, Firey introduced the L_p combinations of convex bodies, and established the L_p Brunn-Minkowski inequality.

- W. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17-24.
- For $1 \leq p < \infty$, the L_p combination $\alpha \cdot_p K +_p \beta \cdot_p L$ of convex bodies K, L, is defined by $\alpha \cdot_p K = \alpha^{1/p} K$, $\beta \cdot_p L = \beta^{1/p} L$,

$$K +_{p} L = \{ (1 - \gamma)^{\frac{p-1}{p}} x + \gamma^{\frac{p-1}{p}} y : x \in K, y \in L, 0 \le \gamma \le 1 \}.$$

• $\alpha \cdot_{p} K +_{p} \beta \cdot_{p} L$ is a convex body with origin in its interior.

(日) (同) (日) (日) (日)

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle 4. Applications 2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L'_p Brunn-Minkowski type inequalities

2.1 The L_p combination

2. Further developments of the L_p Brunn-Minkowski theory were greatly impelled by E. Lutwak in 1990s.

• E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, JDG 38 (1993), 131-150. [cited 416]

• E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294. [cited 343]

・ロト ・同ト ・ヨト ・ヨト

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle 4. Applications 2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L_p Brunn-Minkowski type inequalities

2.2 The L_p Brunn-Minkowski theorem

The *L_p* Brunn-Minkowski theorem

Suppose that ${\it K},{\it L}\in {\it K}^n_o, \ {\it p}\in (1,+\infty)$ and $lpha\in (0,1)$, then

$$V_n((1-\alpha)\cdot_p K+_p\alpha\cdot_p L)^{\frac{p}{n}} \ge (1-\alpha)V_n(K)^{\frac{p}{n}} + \alpha V_n(L)^{\frac{p}{n}}$$

with equality if and only if K, L are dilates.

- \mathcal{K}_o^n : the set of convex bodies with the origin in their interiors.
- The functional $V_n^{\frac{p}{n}}: \mathcal{K}_o^n \to [0,\infty)$ is concave.
- An equivalent form: $V_n(K +_p L)^{\frac{p}{n}} \ge V_n(K)^{\frac{p}{n}} + V_n(L)^{\frac{p}{n}}$.

・ロト ・同ト ・ヨト ・ヨト

2. The L_p Brunn-Minkowski type inequalities

Our work: The L_p transference principle
 Applications

2.1 The L_p combination

2.2 The L'_p Brunn-Minkowski theorem

2.3 The Lp Brunn-Minkowski type inequalities

2.3 The L_p Brunn-Minkowski type inequalities

1. For a convex body $K \in \mathcal{K}^n$, its quermassintegrals $W_0(K)$, $W_1(K)$, ..., $W_{n-1}(K)$ are defined by

$$W_{n-j}(K) = rac{\omega_n}{\omega_j} \int_{\mathrm{G}_{n,j}} V_j(K|\xi) d\mu_j(\xi)$$

for j = 1, ..., n - 1. $W_0(K) = V_n(K)$ and $W_n(K) = V_n(B)$.

• The Grassmann manifold $G_{n,j}$ is endowed with the normalized Haar measure μ_j ; $K|\xi$ is the orthogonal projection of K onto ξ .

• If K has a C^2 boundary, $W_i(K)$ are the integrals of elementary symmetric functions of the principal curvatures over ∂K .

・ロト ・得ト ・ヨト ・ヨト

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle 4. Applications 2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L_p^{r} Brunn-Minkowski type inequalities

2.3 The L_p Brunn-Minkowski type inequalities

2. The Brunn-Minkowski inequality for quermassintegrals

Suppose that $K, L \in \mathcal{K}^n$, and $j = 1, \ldots, n-1$. Then

$$W_{n-j}(K+L)^{\frac{1}{j}} \geq W_{n-j}(K)^{\frac{1}{j}} + W_{n-j}(L)^{\frac{1}{j}},$$

with equality if and only if K and L are homothetic.

- The functional $W_{n-j}^{\frac{1}{j}}$ is concave on \mathcal{K}^n .
- R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, 2014.

・ロト ・同ト ・ヨト ・ヨト

2. The L_p Brunn-Minkowski type inequalities

Our work: The L_p transference principle
 4. Applications

2.1 The L_p combination

2.2 The L_p Brunn-Minkowski theorem

2.3 The L_p^{r} Brunn-Minkowski type inequalities

2.3 The L_p Brunn-Minkowski type inequalities

3. The L_p Brunn-Minkowski inequality for quermassintegrals

Suppose that $K, L \in \mathcal{K}_o^n, j = 1, \dots, n-1$ and 1 . Then

$$W_{n-j}(K+_pL)^{\frac{p}{j}} \geq W_{n-j}(K)^{\frac{p}{j}} + W_{n-j}(L)^{\frac{p}{j}},$$

with equality if and only if K and L are dilates.

- The functional $W_{n-j}^{\frac{p}{j}}$ is concave on \mathcal{K}_o^n .
- E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, JDG 38 (1993), 131-150.

The L_p Brunn-Minkowski type inequalities

3. Our work: The Lp transference principle

4. Applications

- 3.1 Motivation: A unified treatment for Lp B-M type ineq
- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3. Our work: The L_p transference principle

3. Our work: The L_p transference principle

1. The classical Brunn-Minkowski inequality 2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

3.1 Motivation: A unified treatment for Lp B-M type ineq

- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.1 Motivation: A unified treatment for L_p BM type inequalities

Known Facts:

The functionals $V_n^{\frac{1}{n}}$, $W_{n-j}^{\frac{1}{j}}$, \cdots , are concave on \mathcal{K}^n w.r.t. Minkowski combinations, then $V_n^{\frac{p}{n}}$, $W_{n-j}^{\frac{p}{j}}$, \cdots , are concave on \mathcal{K}_o^n w.r.t. L_p combinations.

Question

Suppose a functional F is concave on \mathcal{K}^n , w.r.t. Minkowski combinations. Under what conditions F^p is concave on \mathcal{K}^n_o , w.r.t. L_p combinations? If answered, then a unified treatment is obtained!

イロン 不同 とくほう イロン

1. The classical Brunn-Minkowski inequality 2. The L_n Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 3.1 Motivation: A unified treatment for L_p B-M type ineq
- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.2 The L_p transference principle

1. Given a functional $F : \mathcal{K}^n \to [0, \infty)$, we say that F is (1) positively homogeneous, provided

$$F(\alpha K) = \alpha F(K), \quad \alpha > 0.$$

(2) increasing, provided

$$K \subseteq L \implies F(K) \leq F(L).$$

Moreover, F is strictly increasing, provided

$$K \subsetneq L \implies F(K) < F(L).$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 3.1 Motivation: A unified treatment for L_p B-M type ineq
- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.2 The L_p transference principle

(3) *p*-concave, provided

$$F((1-\alpha)\cdot_{p}K+_{p}\alpha\cdot_{p}L)^{p} \geq (1-\alpha)F(K)^{p}+\alpha F(L)^{p}, \quad \alpha \in (0,1).$$

As usual, 1-concave is called concavity for brevity.

(4) translation invariant, provided

$$F(K+x) = F(K), \quad x \in \mathbb{R}^n.$$

- 4 同 🕨 - 4 目 🕨 - 4 目

The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 3.1 Motivation: A unified treatment for L_p B-M type ineq
- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.2 The L_p transference principle

2. Theorem **3.1** (L_p transference principle)

Suppose that $F : \mathcal{K}^n \to [0, \infty)$ is positively homogeneous, increasing and concave, and $p \in (1, \infty)$. If $K, L \in \mathcal{K}_o^n$, then

$$F((1-\alpha)\cdot_{p}K+_{p}\alpha\cdot_{p}L)^{p} \geq (1-\alpha)F(K)^{p}+\alpha F(L)^{p}, \quad \alpha \in (0,1).$$

Furthermore, if $F : \mathcal{K}_o^n \to [0, \infty)$ is strictly increasing, the equality holds if and only if K and L are dilates.

• Equivalent form: $F(K +_p L)^p \ge F(K)^p + F(L)^p$.

(日)

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 3.1 Motivation: A unified treatment for L_p B-M type ineq
- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.2 The L_p transference principle

Lemma 3.1

Suppose that $K, L \in \mathcal{K}_o^n$ and $1 \le p < \infty$. Then, F is *p*-concave, if and only if $F_{p;K,L}$ is concave.

•
$$F_{\rho;K,L}: [0,1] \to [0,\infty), \ F_{\rho;K,L}(\alpha) = F\left((1-\alpha) \cdot_{\rho} K +_{\rho} \alpha \cdot_{\rho} L\right)^{\rho}$$
.

Lemma 3.2

Suppose that $K, L \in \mathcal{K}_o^n$, $1 and <math>0 < \alpha < 1$. Then

$$(1-\alpha) \cdot_{\rho} K +_{\rho} \alpha \cdot_{\rho} L \supseteq (1-\alpha)K + \alpha L,$$

with equality if and only if K = L.

・ 同 ト ・ ヨ ト ・ ヨ

2. The L_n Brunn-Minkowski type inequalities

Our work: The L_p transference principle
 Applications

3.1 Motivation: A unified treatment for Lp B-M type ineq

- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.3 Characterizations of equality conditions

Remark: For many L_p Brunn-Minkowski type inequalities, equality only occurs when the convex bodies are dilates, not homothetic. This phenomenon can be completely characterized.

Theorem 3.2

Suppose that $F : \mathcal{K}^n \to [0, \infty)$ is positively homogeneous, increasing and concave, and $p \in (1, \infty)$. Then the following assertions are equivalent.

(1) For $K, L \in \mathcal{K}_o^n$, the function $F_{p;K,L}$ is affine if and only if K and L are dilates.

(2) When restricted to \mathcal{K}_{o}^{n} , the functional F is strictly increasing.

(日)

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

3.1 Motivation: A unified treatment for Lp B-M type ineq

- 3.2 The L_p transference principle
- 3.3 Characterizations of equality conditions

3.3 Characterizations of equality conditions

Theorem 3.3

Suppose $F : \mathcal{K}^n \to [0, \infty)$ is translation invariant, positively homogeneous, increasing and concave, and $p \in (1, \infty)$. Then the following assertion (1) implies assertion (2).

(1) For $K, L \in \mathcal{K}^n$, the function $F_{1;K,L}$ is affine if and only if K and L are homothetic.

(2) For $K, L \in \mathcal{K}_o^n$, the function $F_{p;K,L}$ is affine if and only if K and L are dilates.

イロト イポト イヨト イヨト 二日

- 1. The classical Brunn-Minkowski inequality
- The L_p Brunn-Minkowski type inequalities
- 3. Our work: The Lp transference principle
 - 4. Applications
- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4. Applications

Ge Xiong A unified treatment for L_p Brunn-Minkowski type inequalities

< ロ > < 同 > < 回 > < 回 >

- 1. The classical Brunn-Minkowski inequality
- The L_p Brunn-Minkowski type inequalities
- 3. Our work: The L_p transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.1 An application to harmonic quermassintegrals

1. For a convex body $K \in \mathcal{K}^n$, Hadwiger introduced the harmonic quermassintegrals \hat{W}_0 , \hat{W}_1 , ..., \hat{W}_{n-1} , defined by $\hat{W}_0(K) = V_n(K)$, and for j = 1, ..., n-1,

$$\hat{W}_{n-j}(K) = rac{\omega_n}{\omega_j} \left(\int_{\mathrm{G}_{n,j}} V_j(K|\xi)^{-1} d\mu_j(\xi)
ight)^{-1}$$

• H. Hadwiger (Swiss, 1908-1981), Vorlesungen über Inhalt, Oberäche, und Isoperimetrie, Springer-Verlag, Berlin, 1957.

- 4 周 ト 4 戸 ト 4 戸 ト

- 1. The classical Brunn-Minkowski inequality
- The L_p Brunn-Minkowski type inequalities
- 3. Our work: The L_p transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.1 An application to harmonic quermassintegrals

2. The Brunn-Minkowski inequality for harmonic quermassintegrals

Suppose that $K, L \in \mathcal{K}^n$ and $j \in \{1, \dots, n-1\}$. Then

$$\hat{W}_j(K+L)^{rac{1}{n-j}} \geq \hat{W}_j(K)^{rac{1}{n-j}} + \hat{W}_j(L)^{rac{1}{n-j}},$$

with equality if and only if K and L are homothetic.

• Let $F(K) = \hat{W}_j(K)^{\frac{1}{n-j}}$. Then F is positively homogeneous, strictly increasing and concave on \mathcal{K}^n .

- 4 同 6 4 日 6 4 日 6

- 1. The classical Brunn-Minkowski inequality
- The L_p Brunn-Minkowski type inequalities
- 3. Our work: The L_p transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.1 An application to harmonic quermassintegrals

From Theorem 3.1 and Theorem 3.2, it follows that

3. Theorem 4.1

Suppose that $\mathcal{K}, L \in \mathcal{K}_o^n, j \in \{1, \dots, n-1\}$ and 1 . Then

$$\hat{W}_j(K+_p L)^{\frac{p}{n-j}} \geq \hat{W}_j(K)^{\frac{p}{n-j}} + \hat{W}_j(L)^{\frac{p}{n-j}},$$

with equality if and only if K and L are dilates.

- 4 同 2 4 日 2 4 日 2

- 1. The classical Brunn-Minkowski inequality
- The L_p Brunn-Minkowski type inequalities
- 3. Our work: The Lp transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.2 An application to affine quermassintegrals

1. For a convex body $K \in \mathcal{K}^n$, Lutwak introduced the affine quermassintegrals $\Phi_0, \ldots, \Phi_{n-1}$, defined by $\Phi_0(K) = V_n(K)$, and for $j = 1, \ldots, n-1$,

$$\Phi_{n-j}(K) = \frac{\omega_n}{\omega_j} \left(\int_{\mathbf{G}_{n,j}} V_j(K|\xi)^{-n} d\mu_j(\xi) \right)^{-\frac{1}{n}}$$

• Note that all the $\Phi_j(K)$ are affine invariant, i.e.,

 $\Phi_j(TK) = \Phi_j(K)$, for all $T \in SL(n)$.

- 1. The classical Brunn-Minkowski inequality
- 2. The Lp Brunn-Minkowski type inequalities
- 3. Our work: The Lp transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.2 An application to affine quermassintegrals

2. The Brunn-Minkowski inequality for affine quermassintegrals

Suppose that $K, L \in \mathcal{K}^n$ and $j \in \{1, \dots, n-1\}$. Then

$$\Phi_j(\mathcal{K}+\mathcal{L})^{rac{1}{n-j}} \geq \Phi_j(\mathcal{K})^{rac{1}{n-j}} + \Phi_j(\mathcal{L})^{rac{1}{n-j}}.$$

If j = n - 1, equality holds in each inequality if and only if $w_K = \lambda w_L$ for some constant $\lambda > 0$. If $1 \le j < n - 1$, equality holds in each inequality if and only if K and L are homothetic.

• E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), 415-421.

・ロト ・同ト ・ヨト ・ヨト

The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.2 An application to affine quermassintegrals

• For $K \in \mathcal{K}^n$, let $F(K) = \Phi_j(K)^{\frac{1}{n-j}}$. Then functional F is positively homogeneous, strictly increasing and concave on \mathcal{K}^n .

From Theorem 3.1 and Theorem 3.2, it follows that

Theorem 4.2

Suppose that $K, L \in \mathcal{K}_o^n, j \in \{1, \dots, n-1\}$ and 1 . Then

$$\Phi_j(\mathcal{K}+_p L)^{\frac{p}{n-j}} \ge \Phi_j(\mathcal{K})^{\frac{p}{n-j}} + \Phi_j(L)^{\frac{p}{n-j}},$$

with equality if and only if K and L are dilates.

・ロト ・同ト ・ヨト ・ヨト

. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals

4.3 An application to moments of inertia

4.4 An application to capacities

4.3 An application to moments of inertia

1. From classic mechanics, we know that for each convex body K in \mathbb{R}^n , its moment of inertia, I(K), is defined by

$$I(K) = \int_K |x - c_K|^2 dx,$$

where c_K denotes the centroid of K.

2. The Brunn-Minkowski inequality for moments of inertia

Suppose $K, L \in \mathcal{K}^n$. Then $I(K + L)^{\frac{1}{n+2}} \ge I(K)^{\frac{1}{n+2}} + I(L)^{\frac{1}{n+2}}$.

• H. Hadwiger, Konkave Eikörperfunktionale und höhere Trägheitsmomente, Comment. Math. Helv. 30 (1956), 285-296.

- 4 同 6 4 日 6 4 日 6

The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.3 An application to moments of inertia

• For $K \in \mathcal{K}^n$, let $F(K) = I(K)^{\frac{1}{n+2}}$. Then F is positively homogeneous and concave.

• If K is origin-symmetric, then the centroid c_K of K is at the origin. when the domain of F is restricted to the the class of origin-symmetric convex bodies \mathcal{K}_{os}^n , then $F : \mathcal{K}_{os}^n \to (0, \infty)$ is strictly increasing.

(4月) イヨト イヨト

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals

4.3 An application to moments of inertia

4.4 An application to capacities

4.3 An application to moments of inertia

From Theorem 3.1 and Theorem 3.2, it follows that

Theorem 4.3

Suppose that $K, L \in \mathcal{K}_o^n$ are origin-symmetric and 1 . Then

$$I(K +_{p} L)^{\frac{p}{n+2}} \ge I(K)^{\frac{p}{n+2}} + I(L)^{\frac{p}{n+2}},$$

with equality if and only if K and L are dilates.

< ロ > < 同 > < 回 > < 回 >

2. The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.4 An application to capacities

1. The *q*-capacity of a convex body K in \mathbb{R}^n , for $1 \le q < n$, is defined by

$$\operatorname{Cap}_q(K) = \inf\left\{\int_{\mathbb{R}^n} |\nabla f|^q dx\right\},$$

where the infimum is taken over all nonnegative functions f such that $f \in L^{\frac{nq}{n-q}}(\mathbb{R}^n)$, $\nabla f \in L^q(\mathbb{R}^n;\mathbb{R}^n)$ and $K \subseteq \{x : f(x) \ge 1\}$.

2. The Brunn-Minkowski type inequality for capacities

Suppose $K, L \in \mathcal{K}^n$, and $1 \leq q < n$. Then

$$\operatorname{Cap}_{q}(K+L)^{\frac{1}{n-q}} \geq \operatorname{Cap}_{q}(K)^{\frac{1}{n-q}} + \operatorname{Cap}_{q}(L)^{\frac{1}{n-q}}$$

with equality if and only if K and L are homothetic.

イロト イポト イラト イラト

The L_p Brunn-Minkowski type inequalities

3. Our work: The L_p transference principle

4. Applications

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.4 An application to capacities

- C. Borell, Capacitary inequalities of the Brunn-Minkowski type, Math. Ann. 263 (1983), 179-184.
- L. Caffarelli, D. Jerison, E. Lieb, On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math. 117 (1996), 193-207.
- A. Colesanti, P. Salani, The Brunn-Minkowski inequality for p-capacity of convex bodies, Math. Ann. 327 (2003), 459-479.
- L. Evans, R. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.

(日) (同) (三) (三)

- 1. The classical Brunn-Minkowski inequality
- 2. The L_p Brunn-Minkowski type inequalities
- 3. Our work: The L_p transference principle

- 4.1 An application to harmonic quermassintegrals
- 4.2 An application to affine quermassintegrals
- 4.3 An application to moments of inertia
- 4.4 An application to capacities

4.4 An application to capacities

• For
$$K \in \mathcal{K}^n$$
, let $F(K) = \operatorname{Cap}_q(K)^{\frac{1}{n-q}}$.

• By Evans and Gariepy, *F* is positively homogeneous, increasing, concave and translation invariant.

From Theorem 3.1 and Theorem 3.3, it follows that

Theorem 4.4

Suppose $K, L \in \mathcal{K}_o^n$, $1 \le q < n$, and 1 . Then

$$\operatorname{Cap}_{q}(\mathcal{K}+_{p}L)^{\frac{p}{n-q}} \geq \operatorname{Cap}_{q}(\mathcal{K})^{\frac{p}{n-q}} + \operatorname{Cap}_{q}(L)^{\frac{p}{n-q}}$$

with equality if and only if K and L are dilates.

Acknowledgement

Thank You !!!

Ge Xiong A unified treatment for L_p Brunn-Minkowski type inequalities

- 4 同 2 4 日 2 4 日