Stability and index estimates of compact or noncompact capillary surfaces

Han Hong

Yau Mathematical Science Center

October 18, 2021 BIRS-IASM: Interaction Between PDE and Convex Geometry

Two topics:

- Index for **compact** capillary surfaces
- Stability rigidity results for **noncompact** capillary surfaces.

Consider a compact 3-manifold M with boundary.

Let Σ be a (compact, connected) capillary surface in *M*, i.e., it is a surface with constant mean curvature and it intersects ∂*M* at a constant angle θ ∈ (0, π).

Consider a compact 3-manifold M with boundary.

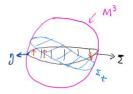
- Let Σ be a (compact, connected) capillary surface in *M*, i.e., it is a surface with constant mean curvature and it intersects ∂*M* at a constant angle θ ∈ (0, π).
- Σ is a critical point of the energy functional E(Σ_t) = Area(Σ_t) − cos θ · W(t) among surfaces that have same volume functional V(Σ_t).

$$W(t) = \int_{\partial \Sigma imes [0,t]} X^* \ dA_{\partial M}$$

$$V(\Sigma_t) = \int_{\Sigma imes [0,t]} X^* \ dV_M$$

where X is the isometric immersion of Σ .

Capillary CMC surfaces



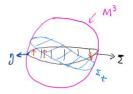
We calculate the first variational formula:

$$\frac{d}{dt}\bigg|_{t=0} E(\varphi(\Sigma,t)) = -\int_{\Sigma} uH + \int_{\partial\Sigma} u\langle \nu,\eta - \cos\theta T\rangle,$$

where $\int_{\Sigma} u = 0$ since $V(t)' = \int_{\Sigma} u$.

Thus Σ is a (volume preserving) critical point iff $H \equiv c$ and Σ intersects $\partial \Omega$ at a costant angle θ .

Capillary CMC surfaces



We calculate the first variational formula:

$$\frac{d}{dt}\Big|_{t=0} E(\varphi(\Sigma,t)) = -\int_{\Sigma} uH + \int_{\partial\Sigma} u\langle \nu, \eta - \cos\theta T \rangle,$$

where $\int_{\Sigma} u = 0$ since $V(t)' = \int_{\Sigma} u$.

Thus Σ is a (volume preserving) critical point iff $H \equiv c$ and Σ intersects $\partial \Omega$ at a costant angle θ .

Such surfaces are *capillary surfaces*. In particular, when $\theta = \pi/2$, they are *free boundary surfaces*. There are infinitely many FBCMC surfaces (different topologies) in convex bodies, especially, in the unit ball.

Han Hong (YMSC)

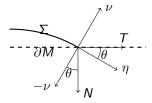
Capillary surfaces

Second variation

At a critical point, we have

$$Q(u, u) = \int_{\Sigma} |\nabla u|^{2} - (\operatorname{Ric}_{M}(\nu, \nu) + |A_{\Sigma}|^{2})u^{2} - \int_{\partial \Sigma} qu^{2}$$
$$= -\int_{\Sigma} u Ju + \int_{\partial \Sigma} u \left(\frac{\partial u}{\partial \eta} - qu\right),$$

where $q = \frac{1}{\sin\theta} h_{\partial M}(T,T) + \cot\theta A_{\Sigma}(\eta,\eta)$ and $J = \Delta + |A_{\Sigma}|^2 + \operatorname{Ric}_{M}(\nu,\nu)$

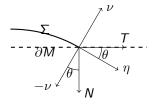


Second variation

At a critical point, we have

$$Q(u, u) = \int_{\Sigma} |\nabla u|^2 - (\operatorname{Ric}_{M}(\nu, \nu) + |A_{\Sigma}|^2)u^2 - \int_{\partial \Sigma} qu^2$$
$$= -\int_{\Sigma} u Ju + \int_{\partial \Sigma} u \left(\frac{\partial u}{\partial \eta} - qu\right),$$

where $q = \frac{1}{\sin \theta} h_{\partial M}(T, T) + \cot \theta A_{\Sigma}(\eta, \eta)$ and $J = \Delta + |A_{\Sigma}|^2 + \operatorname{Ric}_{M}(\nu, \nu)$



Along $\partial \Sigma$, $q + \kappa_{\partial \Sigma} = \frac{1}{\sin \theta} H_{\partial M} + \cot \theta H_{\Sigma} = \frac{1}{\sin \theta} (H_{\partial M} + \cos \theta H_{\Sigma}).$

Denote by Ind_w(Σ) the maximal dimension of a subspace of
{u ∈ C[∞](Σ) : ∫_Σ u = 0} in which the second variation of E(Σ_t) is negative,
i.e., Q(u, u) < 0. If Ind_w(Σ) = 0, we say the surface is weakly stable.

- Denote by Ind_w(Σ) the maximal dimension of a subspace of
 {u ∈ C[∞](Σ) : ∫_Σ u = 0} in which the second variation of E(Σ_t) is negative,
 i.e., Q(u, u) < 0. If Ind_w(Σ) = 0, we say the surface is weakly stable.
- Ind_w(Σ) is equal to the number of negative eigenvalues of

$$\begin{cases} \tilde{J}u + \tilde{\lambda}u = 0 & \text{in } \Sigma\\ \frac{\partial u}{\partial \eta} = qu & \text{on } \partial \Sigma, \end{cases}$$
(1)

where $\tilde{J}u = Ju - \frac{1}{|\Sigma|} \int_{\Sigma} Ju$.

- Denote by Ind_w(Σ) the maximal dimension of a subspace of
 {u ∈ C[∞](Σ) : ∫_Σ u = 0} in which the second variation of E(Σ_t) is negative,
 i.e., Q(u, u) < 0. If Ind_w(Σ) = 0, we say the surface is weakly stable.
- Ind_w(Σ) is equal to the number of negative eigenvalues of

$$\begin{cases} \tilde{J}u + \tilde{\lambda}u = 0 & \text{in } \Sigma\\ \frac{\partial u}{\partial \eta} = qu & \text{on } \partial \Sigma, \end{cases}$$
(1)

where $\tilde{J}u = Ju - \frac{1}{|\Sigma|} \int_{\Sigma} Ju$.

• Eigenvalues have the min-max characterization:

$$ilde{\lambda}_k = \inf\{Q(u,u) : \|u\|_2 = 1, u \perp 1, \varphi_1, \cdots, \varphi_{k-1}\}$$

where φ_i is the *i*-th eigenfunction.

- Denote by Ind_w(Σ) the maximal dimension of a subspace of
 {u ∈ C[∞](Σ) : ∫_Σ u = 0} in which the second variation of E(Σ_t) is negative,
 i.e., Q(u, u) < 0. If Ind_w(Σ) = 0, we say the surface is weakly stable.
- $Ind_w(\Sigma)$ is equal to the number of negative eigenvalues of

$$\begin{cases} \tilde{J}u + \tilde{\lambda}u = 0 & \text{in } \Sigma\\ \frac{\partial u}{\partial \eta} = qu & \text{on } \partial \Sigma, \end{cases}$$
(1)

where $\tilde{J}u = Ju - \frac{1}{|\Sigma|} \int_{\Sigma} Ju$.

• Eigenvalues have the min-max characterization:

$$\widetilde{\lambda}_k = \inf\{Q(u, u) : \|u\|_2 = 1, u \perp 1, \varphi_1, \cdots, \varphi_{k-1}\}$$

where φ_i is the *i*-th eigenfunction.

• We want to bound Morse index:

$$\operatorname{Ind}_w(\Sigma) \geq C_1g + C_2r$$

where g, r are the number of genus and boundary components of Σ .

Theorem (H&Saturnino,21'; H&Aiex,20')

Let M be a 3-dimensional oriented Riemannian manifold with boundary isometrically embedded in \mathbb{R}^d and let Σ be a compact capillary surface immersed in M at a constant angle θ with genus g and r boundary components. Suppose that every non-zero $\xi \in \mathcal{H}(\Sigma, \partial \Sigma)$ satisfies

$$\int_{\Sigma} \sum_{i=1}^{2} |\Pi_{M}(e_{i},\xi)|^{2} + |\Pi_{M}(e_{i},\star\xi)|^{2} dA - \int_{\Sigma} R_{M}|\xi|^{2} dA$$
$$< \int_{\Sigma} H_{\Sigma}^{2}|\xi|^{2} dA + \int_{\partial\Sigma} (2\cot\theta H_{\Sigma} + \frac{2}{\sin\theta} H_{\partial M})|\xi|^{2} d\ell$$

Then

$$\operatorname{Ind}_w(\Sigma) \geq \frac{2g+r-1-d}{2d}.$$

• $\{e_1, e_2\}$ is a local O.N. basis, $\star \xi$ is the dual harmonic vector field.

In Euclidean space

Let *M* be a smooth domain in \mathbb{R}^3 or \mathbb{S}^3 .

Corollary

Suppose that $H_{\partial M} + H_{\Sigma} \cos \theta \ge 0$ along $\partial \Sigma$ and that one of the following holds:

 $H_{\Sigma} > 0, \ \text{or} \quad H_{\partial M} > 0$

at some point in $\partial \Sigma$. Then

$$\operatorname{Ind}_w(\Sigma) \geq rac{2g+r-4}{6}.$$

- When $\theta = \pi/2$, this corollary was obtained by Cavalcante and de Oliverira previously. Our result works for domain in general manifolds and without capillary boundary.
- It gives topological information for (weakly) stable capillary surfaces.

Idea of the proof

• Recall quadratic form:

$$Q(u, u) = \int_{\Sigma} |\nabla^{\Sigma} u|^2 - |A|^2 - \int_{\partial \Sigma} h^{\partial \Omega}(N, N) u^2$$

• Let $\mathcal{H}(\Sigma, \partial \Sigma) = \{$ harmonic vector fields ξ tangential along boundary $\partial \Sigma \}$. Weitzenbock's formula:

$$\Delta_1 \xi = \nabla \nabla \xi + \mathsf{Ric}_{\Sigma}(\xi)$$

Hodge theorem says:

 $\mathcal{H}(\Sigma,\partial\Sigma)\cong \mathcal{H}_1(\Sigma,\partial\Sigma,\mathbb{R}) \text{ and } \dim(\mathcal{H}_1(\Sigma,\partial\Sigma,\mathbb{R}))=2g+r-1$

- We check coordinates $\xi \in \mathcal{H}^1_T(\Sigma)$ are admissible, that is, $\int_{\Sigma} \langle \xi, E_i \rangle = 0$ for i = 1, 2, 3.
- We calculate that

$$Q(\langle \xi, E_i \rangle, \langle \xi, E_i \rangle).$$

• Finally, using the Rank-Nullity theorem and a contradiction argument, we conclude the theorem.

Han Hong (YMSC)

II: Rigidity result for stable noncompact capillary surfaces.

Complete minimal surfaces with finite index

We review some classical theorems on complete, noncompact, minimal surfaces Σ in a 3-manifold M (by R. Schoen&Fischer-Colbrie). The index of Σ :

$$\operatorname{Ind}(\Sigma) = \lim_{R \to \infty} \operatorname{Ind}(D_R)$$

where $Ind(D_R)$ is the number of negative eigenvalues of J on D_R with Dirichlet boundary condition. The associated quadratic form is

$$Q(u,u)=-\int_{D_R} uJu.$$

Complete minimal surfaces with finite index

We review some classical theorems on complete, noncompact, minimal surfaces Σ in a 3-manifold M (by R. Schoen&Fischer-Colbrie). The index of Σ :

$$\operatorname{Ind}(\Sigma) = \lim_{R \to \infty} \operatorname{Ind}(D_R)$$

where $Ind(D_R)$ is the number of negative eigenvalues of J on D_R with Dirichlet boundary condition. The associated quadratic form is

$$Q(u,u)=-\int_{D_R} uJu.$$

Proposition (Fischer-Colbrie,85')

If Σ has finite index, then there exists u > 0 on Σ and a compact subset $C \subset \Sigma$ such that Ju = 0 in $\Sigma \setminus C$.

In particular, when index is zero, $C = \emptyset$. (Fischer-Colbrie&Schoen,82')

Theorem (Fischer-Colbrie,85')

Let Σ be a complete, finite index, oriented minimal surface in a 3-manifold M with $R_M \ge 0$, then Σ is conformally equivalent to a closed Riemann surface punctured at finite many points.

In particular, (Fischer-Colbrie&Schoen, 82')

- When index is zero, Σ is conformally equivalent to a complex plane C or a cylinder.
- Stable oriented minimal surface in \mathbb{R}^3 must be a plane.

Theorem (Fischer-Colbrie,85')

Let Σ be a complete, finite index, oriented minimal surface in a 3-manifold M with $R_M \ge 0$, then Σ is conformally equivalent to a closed Riemann surface punctured at finite many points.

In particular, (Fischer-Colbrie&Schoen, 82')

- When index is zero, Σ is conformally equivalent to a complex plane C or a cylinder.
- Stable oriented minimal surface in \mathbb{R}^3 must be a plane.

Theorem (Fischer-Colbrie,85')

Let Σ be a complete, finite index, oriented minimal surface in a 3-manifold M with $Ric_M \ge 0$, then it has finite total curvature. Moreover, when $M = \mathbb{R}^3$, finite index of Σ is equivalent to finite total curvature of Σ .

Some of these results are generalized by da Silveria to CMC case (H = c) later.

Let Σ be a noncompact capillary surface in a 3-manifold M with boundary at a constant angle θ . Similarly, we define the index to be

$$\operatorname{Ind}(\Sigma) = \lim_{n \to \infty} \operatorname{Ind}(\Omega_n)$$

where $\Omega_1 \subset \cdots \subset \Omega_n \cdots$ exhaust Σ . Here, $Ind(\Omega_n)$ is the number of negative eigenvalues of

$$\begin{cases} Ju + \lambda u = 0 & \text{ in } \Omega_n \\ \frac{\partial u}{\partial \eta} - qu = 0 & \text{ on } \Gamma = \partial \Omega_n \cap \partial M \\ u = 0 & \text{ in } \partial \Omega_n \setminus \Gamma. \end{cases}$$

Let Σ be a noncompact capillary surface in a 3-manifold M with boundary at a constant angle θ . Similarly, we define the index to be

$$\operatorname{Ind}(\Sigma) = \lim_{n \to \infty} \operatorname{Ind}(\Omega_n)$$

where $\Omega_1 \subset \cdots \subset \Omega_n \cdots$ exhaust Σ . Here, $Ind(\Omega_n)$ is the number of negative eigenvalues of

$$\begin{cases} Ju + \lambda u = 0 & \text{in } \Omega_n \\ \frac{\partial u}{\partial \eta} - qu = 0 & \text{on } \Gamma = \partial \Omega_n \cap \partial M \\ u = 0 & \text{in } \partial \Omega_n \setminus \Gamma. \end{cases}$$

In particular, we say Σ is stable if

$$Q(u,u) = \int_{\Sigma} |\nabla u|^2 - (|A_{\Sigma}|^2 + \operatorname{Ric}_M(\nu,\nu))u^2 - \int_{\partial \Sigma} qu^2 \ge 0$$

for any compactly supported u.

Stability with boundary

Let $M = \mathbb{R}^3_+$.

A capillary Σ in \mathbb{R}^3_+ at a contact angle θ is weakly stable if

$$Q(u,u) = \int_{\Sigma} |\nabla u|^2 - |A_{\Sigma}|^2 u^2 - \int_{\partial \Sigma} \cot \theta A_{\Sigma}(\eta,\eta) u^2 \ge 0$$

for any $u \in C_c^{\infty}(\Sigma)$ such that $\int_{\Sigma} u = 0$.

• A half plane in half-space is weakly stable since

$$Q(u,u)=\int_{\Sigma}|\nabla u|^2\geq 0.$$

• We'd like to show that

weakly stable
$$\rightarrow$$
 half-plane

Our main target is to prove following theorem:

Theorem (H&Sartunino,21')

Let Σ be a noncompact capillary surface immersed in a half-space of \mathbb{R}^3 at constant angle θ . Assume that $H_{\Sigma} \cos \theta \ge 0$. Then Σ is weakly stable if and only if it is a half-plane.

Remark: This result is stronger than the one previously proved in our preprint arXiv:2105.12662:

Let Then Σ is strongly stable if and only if it is a half-plane.

Theorem (H&Sartunino,21')

Let M be an oriented Riemannian 3-manifold with smooth boundary and let Σ be a noncompact capillary surface with finite index immersed in M at a constant angle θ . Assume that $R_M + H_{\Sigma}^2 \ge 0$ and that one of the following holds:

 $\partial \Sigma$ is compact,

or

$$H_{\partial M} + H_{\Sigma} \cos \theta \geq 0$$
 along $\partial \Sigma$.

Then Σ is conformally equivalent to a compact Riemann surface $\overline{\Sigma}$ with boundary and finitely many points removed, each associated to an end of the surface. Moreover,

$$\int_{\Sigma} R_M + H_{\Sigma}^2 + |A_{\Sigma}|^2 + \int_{\partial \Sigma} H_{\partial M} + H_{\Sigma} \cos \theta < \infty.$$

Corollary (H&Sartunino,21')

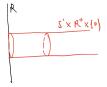
Let M be an oriented 3-manifold with smooth boundary and let Σ be a stable noncompact capillary surface immersed in M at a constant angle θ . Assume that $R_M + H_{\Sigma}^2 \ge 0$ in Σ and $H_{\partial M} + H_{\Sigma} \cos \theta \ge 0$ along $\partial \Sigma$. Then the compact Riemann surface $\overline{\Sigma}$ is a disk and the ends of Σ can only have one of the following configurations:

- There are two boundary ends and no interior ends.
- **2** There are no boundary ends and a single interior end.
- **③** There is a single boundary end and no interior ends.

Moreover, if (1) or (2) holds, then Σ is totally geodesic, $R_M = 0$ in Σ and $H_{\partial M} = 0$ along $\partial \Sigma$.

• Let $M = \mathbb{R}^2 \times [0, 1]$ and let Σ be an infinite flat strip in M meeting the boundary at a constant angle $\theta \in (0, \pi)$;

- Let $M = \mathbb{R}^2 \times [0, 1]$ and let Σ be an infinite flat strip in M meeting the boundary at a constant angle $\theta \in (0, \pi)$;
- Let $M = \mathbb{S}^1 \times \mathbb{R}^+ \times \mathbb{R}$ and take $\Sigma = \mathbb{S}^1 \times \mathbb{R}^+ \times \{0\};$



- Let $M = \mathbb{R}^2 \times [0, 1]$ and let Σ be an infinite flat strip in M meeting the boundary at a constant angle $\theta \in (0, \pi)$;
- Let $M = \mathbb{S}^1 \times \mathbb{R}^+ \times \mathbb{R}$ and take $\Sigma = \mathbb{S}^1 \times \mathbb{R}^+ \times \{0\};$
- Let M be a half-space of \mathbb{R}^3 and take Σ to be a half-plane.

Proof

Now let's prove the claim that

weak stability
$$\longrightarrow$$
 half-plane.

On the contrary, suppose Σ is a non-flat weakly stable capillary surface in half-space. The claim follows if we construct a compactly supported piece-wise smooth function u such that

$$\int_{\Sigma} u = 0, \quad Q(u, u) = \int_{\Sigma} |\nabla u|^2 - |A_{\Sigma}|^2 u^2 - \int_{\partial \Sigma} \cot \theta A_{\Sigma}(\eta, \eta) u^2 < 0.$$

Proof

Now let's prove the claim that

weak stability
$$\longrightarrow$$
 half-plane.

On the contrary, suppose Σ is a non-flat weakly stable capillary surface in half-space. The claim follows if we construct a compactly supported piece-wise smooth function u such that

$$\int_{\Sigma} u = 0, \quad Q(u, u) = \int_{\Sigma} |\nabla u|^2 - |A_{\Sigma}|^2 u^2 - \int_{\partial \Sigma} \cot \theta A_{\Sigma}(\eta, \eta) u^2 < 0.$$

Construction:

• There exists a compact subset Σ_0 such that $\Sigma \setminus \Sigma_0 = (E_1 \cup \cdots \cup E_\ell) \cup (E_{\ell+1} \cup \cdots \cup E_k)$

E₁,..., E_ℓ are conformal equivalent to S¹ × (0,∞) and E_{ℓ+1},..., E_k are conformal equivalent to S¹₊ × (0,∞). Use coordinates on (θ, y) ∈ S¹ × (0,∞).

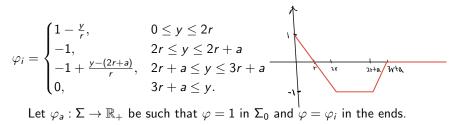
- E₁,..., E_ℓ are conformal equivalent to S¹ × (0,∞) and E_{ℓ+1},..., E_k are conformal equivalent to S¹₊ × (0,∞). Use coordinates on (θ, y) ∈ S¹ × (0,∞).
- Since $|A_{\Sigma}| \neq 0$, let *r* be fixed such that

$$\int_{\Sigma_0} |A_{\Sigma}|^2 \geq \frac{12(k+\ell)\pi}{r(1-\cos\theta)}$$

- E₁,..., E_ℓ are conformal equivalent to S¹ × (0,∞) and E_{ℓ+1},..., E_k are conformal equivalent to S¹₊ × (0,∞). Use coordinates on (θ, y) ∈ S¹ × (0,∞).
- Since $|A_{\Sigma}| \neq 0$, let *r* be fixed such that

$$\int_{\Sigma_0} |\mathcal{A}_{\Sigma}|^2 \geq rac{12(k+\ell)\pi}{r(1-\cos heta)}.$$

• For each a > 0, we can define functions $\varphi_i : E \to \mathbb{R}_+$ by



• Let $u = \frac{1}{\sin \theta} + \cot \theta \langle \nu, -E_3 \rangle$. We can choose $a_0 > 0$ such that

$$\int_{\Sigma} u\varphi_{a_0} = 0$$

• Let $u = \frac{1}{\sin \theta} + \cot \theta \langle \nu, -E_3 \rangle$. We can choose $a_0 > 0$ such that

$$\int_{\Sigma} u\varphi_{a_0} = 0$$

• We show that $Q(u\varphi_{a_0}, u\varphi_{a_0}) < 0.$

• In fact,

$$\begin{cases} \Delta u + |A_{\Sigma}|^2 u = \frac{|A_{\Sigma}|^2}{\sin\theta}, & \text{in } \Sigma\\ \frac{\partial u}{\partial\eta} = \cot\theta A_{\Sigma}(\eta, \eta) u, & \text{on } \partial \Sigma. \end{cases}$$

Then

$$\begin{aligned} Q(u\varphi_{a_0}, u\varphi_{a_0}) &= \int_{\Sigma} u^2 |\nabla \varphi_{a_0}|^2 - \varphi_{a_0}^2 u \frac{|A_{\Sigma}|^2}{\sin \theta} \\ &\leq \frac{4}{\sin^2 \theta} \sum_{i=1}^n \int_{\Sigma_i} |\nabla \varphi_{a_0}|^2 - \frac{1 - \cos \theta}{\sin^2 \theta} \int_{\Sigma_0} |A_{\Sigma}|^2 \end{aligned}$$

$$\begin{split} Q(u\varphi_{a_0}, u\varphi_{a_0}) &= \int_{\Sigma} u^2 |\nabla \varphi_{a_0}|^2 - \varphi_{a_0}^2 u \frac{|A_{\Sigma}|^2}{\sin \theta} \\ &\leq \frac{4}{\sin^2 \theta} \sum_{i=1}^n \int_{\Sigma_i} |\nabla \varphi_{a_0}|^2 - \frac{1 - \cos \theta}{\sin^2 \theta} \int_{\Sigma_0} |A_{\Sigma}|^2 \\ &= \frac{4}{\sin^2 \theta} \left(3r \cdot 2\pi \cdot \frac{1}{r^2} \cdot \ell + 3r \cdot \pi \cdot \frac{1}{r^2} \cdot (n-\ell) \right) - \frac{1 - \cos \theta}{\sin^2 \theta} \int_{\Sigma_0} |A_{\Sigma}|^2 \\ &= \frac{12\pi^2(k+\ell)}{r \sin^2 \theta} - \frac{1 - \cos \theta}{\sin^2 \theta} \int_{\Sigma_0} |A_{\Sigma}|^2 \\ &< 0. \end{split}$$

THANK YOU