A deformed Hermitian Yang-Mills flow

Jixiang Fu

Fudan University

Interaction Between PDEs and Convex Geometry

2021-10-20

This talk is based on the paper:

J. Fu and Dekai Zhang. A deformed Hermitian Yang-Mills flow. arXiv:2105.13576.

1. Introduction.

Let (M, ω) be a compact Kähler manifold of complex dimension n and χ a closed real (1, 1)-form on M.

Motivated by mirror symmetry, the deformed Hermitian Yang-Mills (dHYM) equation on (M, ω, χ) is

$$\operatorname{Re}(\chi_u + \sqrt{-1}\omega)^n = \cot\theta_0 \operatorname{Im}(\chi_u + \sqrt{-1}\omega)^n.$$
(1)

Here $\chi_u = \chi + \sqrt{-1}\partial \bar{\partial} u$ for a real smooth function u on M and θ_0 is the argument of the complex number $\int_M (\chi + \sqrt{-1}\omega)^n$.

The dHYM equation is called supercritical if $\theta_0 \in (0, \pi)$ and hypercritical if $\theta_0 \in (0, \frac{\pi}{2})$.

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be the eigenvalues of χ_u with respect to ω . If necessary we denote λ by $\lambda(\chi_u)$ and λ_i by $\lambda_i(\chi_u)$ for each $1 \leq i \leq n$. Let $\lambda_i = \cot \theta_i$. Then

$$(\chi_u + \sqrt{-1}\omega)^n = \prod_{i=1}^n (\lambda_i + \sqrt{-1})\omega^n$$

=
$$\frac{\exp(\sqrt{-1}\sum_{i=1}^n \theta_i)}{\prod_{i=1}^n \sin \theta_i}\omega^n$$

=
$$\frac{\cos(\sum_{i=1}^n \theta_i)}{\prod_{i=1}^n \sin \theta_i}\omega^n + \sqrt{-1}\frac{\sin(\sum_{i=1}^n \theta_i)}{\prod_{i=1}^n \sin \theta_i}\omega^n$$

So the dHYM equation becomes

$$\cos\left(\sum_{i=1}^{n}\theta_{i}\right) = \cot\theta_{0}\sin\left(\sum_{i=1}^{n}\theta_{i}\right),$$

or

$$\theta(\chi_u) = \theta_0, \tag{2}$$

if we define

$$\theta(\chi_u) := \sum_{i=1}^n \theta_i = \sum_{i=1}^n \operatorname{arccot} \lambda_i.$$

In 2014, Jacob-Yau [2017ma] initiated to study the dHYM equation.

They solved the equation for n = 2, by translating it into the complex Monge-Ampère equation which was solved by Yau.

[2017ma] A. Jacob, S.-T. Yau. A special Lagrangian type equation for holomorphic line bundles. Math. Ann. **369**(2017), 869-898. When $n \ge 3$, Collins-Jacob-Yau [2020cjm] solved the dHYM equation for the supercritical case by assuming the following two conditions hold:

(i) There exists a subsolution \underline{u} , which means $\chi_{\underline{u}}$ satisfies the inequality

$$A_0 := \max_{M} \max_{1 \le j \le n} \sum_{i \ne j} \operatorname{arccot} \lambda_i(\chi_{\underline{u}}) < \theta_0; \tag{3}$$

(ii) $\chi_{\underline{u}}$ also satisfies the inequality

$$B_0 := \max_M \theta(\chi_{\underline{u}}) < \pi.$$
(4)

[2020cjm] T. Collins, A. Jacob, S.-T. Yau. (1,1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions. Camb. J. Math. **8** (2020), 407-452. When n = 3, without condition (4) did Pingali [2019arxiv] then solve the equation by translating it into a mixed Monge-Ampère type equation.

On the other hand, C. Lin [2020arxiv] generalized Collins-Jacob-Yau's result to the Hermitian case (M, ω) with $\partial \overline{\partial} \omega = \partial \overline{\partial} \omega^2 = 0$.

Huang-Zhang-Zhang [2020arxiv] also considered the solution on a compact almost Hermitian manifold for the hypercritical case. For the parabolic flow method, there are also several results.

Jacob-Yau [2017ma] and Collins-Jacob-Yau [2020cjm] proved the existence and convergence of the line bundle mean curvature flow

$$\begin{cases} u_t = \theta_0 - \theta(\chi_u) \\ u(0) = \underline{u} \end{cases}$$
(5)

for the hypercritical case. Here \underline{u} is a subsolution of the dHYM equation such that

$$heta(\chi_{\underline{u}})\in (0,rac{\pi}{2}).$$

Han-Jin [2020arxiv] considered the stability result of the above flow.

Takahashi [2020ijm] proved the existence and convergence of the tangent Lagrangian phase flow

$$\begin{cases} u_t = \tan(\theta_0 - \theta(\chi_u)) \\ u(0) = \underline{u} \end{cases}$$
(6)

for the hypercritical case. Here \underline{u} is a subsolution of the dHYM equation such that

$$heta(\chi_{\underline{u}}) - heta_0 \in (-rac{\pi}{2}, rac{\pi}{2}).$$

There are two problems raised by Collins-Jacob-Yau [2020cjm]. One is whether condition (4) is superfluous.

The other is to find a sufficient and necessary geometric condition on the existence of a solution to the dHYM equation. There are some important progresses made by G. Chen [2021im].

[2021im] G. Chen. The J-equation and the supercritical deformed Hermitian-Yang-Mills equation. Invent. Math. **225** (2021), 529-602.

[2021arxiv] J. Song. Nakai-Moishezon criterions for complex Hessian equations. arxiv: 2012.07956. Recently, motivated by G. Chen [2021im] and J. Song [2021arxiv], Chu-Lee-Takahashi [2021arxiv] established the following

Theorem. (Chu-Lee-Takahashi) The deformed Hermitian Yang-Mills equation on a compact Kähler manifold (M, ω) with complex dimension n is solvable for the supercritical case if and only if there exists a Kähler metric γ on M such that for any $1 \le k \le n$,

$$\int_{M} \left(\operatorname{Re}(\chi + \sqrt{-1}\omega)^{k} - \cot \theta_{0} \operatorname{Im}(\chi + \sqrt{-1}\omega)^{k} \right) \wedge \gamma^{n-k} \geq 0$$

and for any proper m-dimensional subvariety Y of M and $1\leq k\leq m$,

$$\int_{Y} \left(\operatorname{Re}(\chi + \sqrt{-1}\omega)^{k} - \cot \theta_{0} \operatorname{Im}(\chi + \sqrt{-1}\omega)^{k} \right) \wedge \gamma^{m-k} > 0.$$

[2021arxiv] J. Chu, M.-C. Lee, R. Takahashi. A Nakai-Moishezon type criterion for supercritical deformed Hermitian-Yang-Mills equation. arxiv:2105.10725. Motivated by the concavity of $\cot \theta(\chi_u)$ by G. Chen [2021im], we consider a dHYM flow:

$$\begin{cases} u_t = \cot \theta(\chi_u) - \cot \theta_0, \\ u(x, 0) = \underline{u}(x). \end{cases}$$
(7)

The main result of this paper is

Theorem 1. (F.–Zhang) Let (M, ω) be a compact Kähler manifold and χ a closed real (1,1) form. Assume that there exists a subsolution \underline{u} of dHYM equation (2) in the sense of (3) which also satisfies (4). Then for the supercritical case, there exists a longtime solution u(x,t) of dHYM flow (7) and it converges to a smooth solution u^{∞} to the dHYM equation:

$$\theta(\chi_u\infty)=\theta_0.$$

Hence we reprove the Collins-Jacob-Yau's existence theorem [2020cjm]. Our proof looks like simpler than the one in Collins-Jacob-Yau.

The advantage of our flow is that the imaginary part of the Calabi-Yau functional is constant along the flow.

However, we do not know whether condition (4) is superfluous.

2. Properties.

2.1 The linearized operator. Note

$$\cot \theta(\chi_u) = \frac{\operatorname{Re}(\chi_u + \sqrt{-1}\omega)^n}{\operatorname{Im}(\chi_u + \sqrt{-1}\omega)^n}.$$
(8)

Lemma 2. The linearized operator \mathcal{P} of the dHYM flow has the form:

$$\mathcal{P}(v) = v_t - F^{i\overline{j}}v_{i\overline{j}},$$

where

$$F^{i\overline{j}} = \csc^2\theta(\chi_u) \left(wg^{-1}w + g\right)^{i\overline{j}},$$

where $g = (g_{i\bar{j}})_{n \times n}$, $w = (w_{i\bar{j}})_{n \times n}$ for $w_{i\bar{j}} = \chi_{i\bar{j}} + u_{i\bar{j}}$, and $D^{i\bar{j}} := (D^{-1})_{i\bar{j}}$ for an invertible Hermitian symmetric matrix D.

2.2 The concavity. Let

$$\theta(\lambda) := \sum_{i=1}^{n} \operatorname{arccot} \lambda_{i} \quad \text{for } \lambda = (\lambda_{1}, \dots, \lambda_{n}) \in \mathbb{R}^{n}$$
(9)

and

$$\Gamma_{\tau} := \{\lambda \in \mathbb{R}^n \mid \theta(\lambda) < \tau\} \subset \mathbb{R}^n \text{ for } \tau \in (0,\pi).$$

We have the following two useful lemmas.

Lemma 3. (Yuan [2006pams], Wang-Yuan [2014ajm]) If $\theta(\lambda) \leq \tau \in (0, \pi)$ for $\lambda = (\lambda_1, \ldots, \lambda_n)$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, then the following inequalities hold.

- (i) $\lambda_{n-1} \ge \cot \frac{\tau}{2} (> 0);$
- (ii) $\lambda_{n-1} \geq |\lambda_n|$; and

(iii) $\lambda_1 + (n-1)\lambda_n \geq 0$.

Moreover, Γ_{τ} is convex for any $\tau \in (0, \pi)$.

[2006pams] Y. Yuan. Global solutions to special Lagrangian equations. Proc. Amer. Math. Soc. **134**(2006), 1355-1358.

[2014ajm] D. Wang, Y. Yuan. Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions. Amer. J. Math. **136**(2014), 481-499. **Lemma 4.** (Chen [2021im]) For any $\tau \in (0, \pi)$, the function $\cot \theta(\lambda)$ on Γ_{τ} is concave.

proof. When n = 1, $\cot \theta(\lambda) = \lambda_1$ is obviously concave. We now assume $n \ge 2$. By the definition of $\theta(\lambda)$, we have

$$\frac{\partial^2 \cot \theta(\lambda)}{\partial \lambda_i \partial \lambda_j} = -2 \csc^2 \theta(\lambda) \Big(\frac{\lambda_i \delta_{ij}}{(1+\lambda_i^2)^2} - \frac{\cot \theta(\lambda)}{(1+\lambda_i^2)(1+\lambda_j^2)} \Big).$$

Hence the function $\cot \theta(\lambda)$ on Γ_{τ} is concave if and only if the matrix

$$\Lambda = \left(\lambda_i \delta_{ij} - \cot \theta(\lambda)\right)_{n \times n}$$

is posotive definite.

Without loss of generality, we assume $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Since $\theta(\lambda) \in (0, \pi)$, by Lemma 3(1), we have $\lambda_{n-1} > 0$. \Box

2.3 Parabolic subsolution. Motivated by B. Guan's definition [2014dmj] of a subsolution of fully nonlinear equations, Székelyhidi [2019jdg] gave a weaker version of a subsolution and Collins-Jacob-Yau [2020cjm] used it to the dHYM equation which is equivalent to (3).

[2014dmj] B. Guan. Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163(2014), 1491-1524.

[2018jdg] G. Székelyhidi. Fully non-linear elliptic equations on compact Hermitian manifolds. J. Differential Geom. 109(2018), 337-378. On the other hand, Phong-Tô [2017arxiv] modified Székelyhidi's definition to the parabolic case. We use their definition to the dHYM flow.

Definition 5. A smooth function $\underline{u}(x,t)$ on $M \times [0,T)$ is called a subsolution of the dHYM flow if there exists a constant $\delta > 0$ such that for any $(x,t) \in M \times [0,T)$, the subset of \mathbb{R}^{n+1}

$$S_{\delta}(x,t) := \left\{ (\mu,\tau) \in \mathbb{R}^n \times \mathbb{R} \mid \mu_i > -\delta \text{ for each } i,\tau > -\delta, \text{ and} \\ \cot \theta \left(\lambda(\chi_{\underline{u}(x,t)}) + \mu \right) - \underline{u}_t(x,t) + \tau = \cot \theta_0 \right\}$$

is uniformly bounded.

[2017arxiv] D. H. Phong, D. Tô. Fully non-linear parabolic equations on compact Hermitian manifolds. arXiv: 1711.10697.

We have the following observation.

Lemma 6. If \underline{u} is a subsolution of the dHYM equation with $B_0 < \pi$, then the function $\underline{u}(x,t) = \underline{u}(x)$ on $M \times [0,\infty)$ is also a subsolution of the dHYM flow.

2.4 The Calabi-Yau Functional. Recall the definition of the Calabi-Yau functional by Collins-Yau [2021apde]: for any $v \in C^2(M, \mathbb{R})$,

$$\mathsf{CY}_{\mathbb{C}}(v) := \frac{1}{n+1} \sum_{i=0}^{n} \int_{M} v(\chi_{v} + \sqrt{-1}\omega)^{i} \wedge (\chi + \sqrt{-1}\omega)^{n-i}.$$

Let $v(s) \in C^{2,1}(M \times [0,T],\mathbb{R})$ be a variation of the function v, i.e., v(0) = v. The integration by parts gives

$$\frac{d}{ds} \mathsf{CY}_{\mathbb{C}}(v(s)) = \int_{M} \frac{\partial v(s)}{\partial s} \left(\chi_{v(s)} + \sqrt{-1} \omega \right)^{n}.$$
 (10)

[2021apde] T. Collins, S.-T. Yau. Moment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesics. Ann. PDE 7, 11(2021). **Lemma 7.** Let u(x,t) be a solution of the dHYM flow. Then $Im(CY_{\mathbb{C}}(u(\cdot,t))) = Im(CY_{\mathbb{C}}(\underline{u})).$

Proof. Denote by u(t) := u(x,t) for simplicity.

$$\begin{split} &\frac{d}{dt} \mathrm{Im} \Big(\mathrm{CY}_{\mathbb{C}}(u(t)) \Big) = \mathrm{Im} \frac{d}{dt} \mathrm{CY}_{\mathbb{C}}(u(t)) \\ &= \int_{M} \frac{\partial u(t)}{\partial t} \mathrm{Im}(\chi_{u(t)} + \sqrt{-1}\omega)^{n} \\ &= \int_{M} \Big(\frac{\mathrm{Re}(\chi_{u(t)} + \sqrt{-1}\omega)^{n}}{\mathrm{Im}(\chi_{u(t)} + \sqrt{-1}\omega)^{n}} - \cot \theta_{0} \Big) \mathrm{Im}(\chi_{u(t)} + \sqrt{-1}\omega)^{n} \\ &= \int_{M} \mathrm{Re}(\chi_{u(t)} + \sqrt{-1}\omega)^{n} - \cot \theta_{0} \int_{M} \mathrm{Im}(\chi_{u(t)} + \sqrt{-1}\omega)^{n} \\ &= \int_{M} \mathrm{Re}(\chi + \sqrt{-1}\omega)^{n} - \cot \theta_{0} \int_{M} \mathrm{Im}(\chi + \sqrt{-1}\omega)^{n} \\ &= 0, \end{split}$$

where each equality is successively by (10), (7) and (8), Stokes' theorem, and the definition of θ_0 . Hence the conclusion holds as $u(0) = \underline{u}$. \Box

3. Estimates.

We assume that u is the solution of dHYM flow (7) in $M \times [0,T)$, where T is the maximal existence time. By showing the uniform a priori estimates, we can prove $T = \infty$.

3.1 The u_t -estimate.

Lemma 8. For any $(x,t) \in M \times [0,T)$,

$$\min_{M} u_t|_{t=0} \le u_t(x,t) \le \max_{M} u_t|_{t=0};$$
(11)

in particular,

$$0 < \min_{M} \theta(\chi_{\underline{u}(x)}) \le \theta(\chi_{u(x,t)}) \le B_0 < \pi.$$
(12)

Proof. The u_t satisfies the equation:

$$(u_t)_t = F^{i\overline{j}}(u_t)_{i\overline{j}}.$$

By the maximum principle, u_t attains its maximum and minimum on the initial time, i.e., inequality (11) holds, i.e.,

$$\min_{M} \cot \theta(\chi_{\underline{u}}) \leq u_t(x,t) + \cot \theta_0 \leq \max_{M} \cot \theta(\chi_{\underline{u}}),$$

or

$$\min_{M} \cot \theta(\chi_{\underline{u}}) \leq \cot \theta(\chi_{u(x,t)}) \leq \max_{M} \cot \theta(\chi_{\underline{u}}).$$

Thus we obtain

$$0 < \min_{M} \theta(\chi_{\underline{u}}) \le \theta(\chi_{u(x,t)}) \le \max_{M} \theta(\chi_{\underline{u}}) = B_{0}.$$

We have an useful corollary of the above lemma.

Corollary 9. Let $\lambda_n(x,t)$ be the minimum eigenvalue of χ_u with respect to the metric ω at (x,t). Then

$$\max_{M \times [0,T)} |\lambda_n| \le A_1 \quad \text{for} \quad A_1 := |\cot B_0| + \left| \cot \left(\frac{\min_M \theta(\chi_{\underline{u}})}{n} \right) \right|.$$

Proof. By Lemma 8, we have

$$0 < \frac{\min_M \theta(\chi_{\underline{u}})}{n} \le \frac{\theta(\chi_u)}{n} \le \operatorname{arccot} \lambda_n \le B_0 < \pi.$$

Hence we have

$$\cot B_0 \le \lambda_n \le \cot\left(\frac{\min_M \theta(\chi_{\underline{u}})}{n}\right)$$

٠

3.2 The C^0 -estimate. We first prove a Harnack type inequality along the dHYM flow.

Lemma 10. Let u be the solution of the dHYM flow on $M \times [0,T)$. Then for any $T_0 < T$ we have the following Harnack type inequality:

$$\sup_{M\times[0,T_0]} u(x,t) \le C \left(-\inf_{M\times[0,T_0]} \left(u(x,t) - \underline{u}(x) \right) + 1 \right).$$

Proof. For any $t \in [0, T_0]$, we have $\theta(\chi_{u(t)}) \leq B_0 < \pi$ by Lemma 8. Then by the convexity of $\Gamma_{\omega, B_0} := \{\alpha \in \Lambda^{1,1}(M, \mathbb{R}) \mid \theta(\alpha) < B_0\}$ in Lemma 3, we have

$$\theta(\chi_{su+(1-s)\underline{u}}) \leq B_0.$$

Denote $\eta_0 := B_0/6 + 5\pi/6$ for convenience. Then $B_0 < \eta_0 < \pi$. Hence,

$$\frac{\operatorname{Im}(\chi_{su(t)+(1-s)\underline{u}}+\sqrt{-1}\omega)^{n}}{\omega^{n}} = \prod_{k=1}^{n} (1+\lambda_{k}^{2}(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}}\sin(\theta(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}})^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}})^{\frac{1}{2}} \sin(\theta(\chi_{su(t)+(1-s)\underline{u}}))^{\frac{1}{2}} \sin(\theta(\chi_{su}))^{\frac{1}{2}} \sin(\theta(\chi_{su}))^{\frac$$

By Lemma 7, the imaginary part of the Calabi-Yau functional is constant along the flow. Hence,

$$0 = \operatorname{Im}\left(\operatorname{CY}_{\mathbb{C}}(u(t))\right) - \operatorname{Im}\left(\operatorname{CY}_{\mathbb{C}}(\underline{u})\right)$$

$$= \int_{0}^{1} \frac{d}{ds} \operatorname{Im}\left(\operatorname{CY}_{\mathbb{C}}(su(t) + (1-s)\underline{u})\right) ds$$

$$= \int_{0}^{1} \int_{M} (u(t) - \underline{u}) \operatorname{Im}\left(\chi_{su(t) + (1-s)\underline{u}} + \sqrt{-1}\omega\right)^{n} ds$$

$$= \int_{M} (u(t) - \underline{u}) \left(\int_{0}^{1} \operatorname{Im}\left(\chi_{su(t) + (1-s)\underline{u}} + \sqrt{-1}\omega\right)^{n} ds\right).$$
(14)

Thus,

$$\begin{split} &\int_{M} (u-\underline{u})\omega^{n} \\ &= \int_{M} (u-\underline{u})\omega^{n} - \frac{1}{c_{0}} \int_{M} (u-\underline{u}) \Big(\int_{0}^{1} \operatorname{Im} \big(\chi_{su(t)+(1-s)\underline{u}} + \sqrt{-1}\omega \big)^{n} ds \Big) \\ &= \frac{1}{c_{0}} \int_{M} - (u-\underline{u}) \underbrace{ \Big(-c_{0}\omega^{n} + \int_{0}^{1} \operatorname{Im} \big(\chi_{su(t)+(1-s)\underline{u}} + \sqrt{-1}\omega \big)^{n} ds \big) }_{\text{This term is positive by inequality (13)}} \\ &\leq \frac{-\inf_{M \times [0,T_{0}]} (u-\underline{u})}{c_{0}} \int_{M} \Big(-c_{0}\omega^{n} + \int_{0}^{1} \operatorname{Im} \big(\chi_{su(t)+(1-s)\underline{u}} + \sqrt{-1}\omega \big)^{n} ds \big) \\ &= \frac{-\inf_{M \times [0,T_{0}]} (u-\underline{u})}{c_{0}} \Big(-c_{0} \int_{M} \omega^{n} + \int_{0}^{1} \operatorname{Im} \int_{M} \big(\chi_{su(t)+(1-s)\underline{u}} + \sqrt{-1}\omega \big)^{n} ds \big) \\ &= \frac{-\inf_{M \times [0,T_{0}]} (u-\underline{u})}{c_{0}} \Big(-c_{0} \int_{M} \omega^{n} + \operatorname{Im} \int_{M} \big(\chi + \sqrt{-1}\omega \big)^{n} \Big) \\ &\leq c_{0}^{-1} \operatorname{Im} \int_{M} \big(\chi + \sqrt{-1}\omega \big)^{n} \Big(- \inf_{M \times [0,T_{0}]} (u-\underline{u}) \Big) \\ &= C \Big(- \inf_{M \times [0,T_{0}]} (u-\underline{u}) \Big), \\ \text{ where } C &= c_{0}^{-1} \operatorname{Im} \int_{M} \big(\chi + \sqrt{-1}\omega \big)^{n}. \end{split}$$

Therefore we have

$$\int_{M} u(x,t)\omega^{n} \leq C \bigg(- \inf_{M \times [0,T_{0}]} \big(u(x,t) - \underline{u}(x) \big) + 1 \bigg).$$
(15)

On the other hand, let G(x, z) be Green's function of the metric ω on M. Then for any $(x, t) \in M \times [0, T_0]$,

$$u(x,t) = \left(\int_M \omega^n\right)^{-1} \int_M u(z,t)\omega^n - \int_{z \in M} \Delta_\omega u(z,t)G(x,z)\omega^n.$$

Since $\Delta_{\omega} u > -\text{tr}_{\omega} \chi > -C_0$ and G(x, y) is bounded from below, there exits a uniform constant C such that

$$u(x,t) \le \left(\int_M \omega^n\right)^{-1} \int_M u(z,t)\omega^n + C.$$
 (16)

Combing (15) with (16), we obtain the desired estimate.

Now we prove the C^0 estimate similar as Phong-Tô [2017arxiv].

Proposition 11. Along the dHYM flow, there exists a uniform constant M_0 independent of T such that

$$|u|_{C^0(M\times[0,T))} \le M_0.$$

Proof. Combining (14) with (13) implies for any $t \in [0,T)$,

$$\sup_{x\in M}(u(x,t)-\underline{u}(x))\geq 0.$$

Combing the above inequality with the concavity of the equation, we can apply Lemma 1 in Phong-Tô [2017arxiv]: there exists a uniform constant C_1 such that

$$\inf_{M \times [0,T_0]} (u(x,t) - \underline{u}(x)) \ge -C_1 \quad \text{ for any } T_0 < T.$$

Then combing this estimate with the Harnack type inequality in Lemma 10, we have

$$\sup_{M \times [0,T_0]} u \le C.$$

3.3 The gradient estimate. We can prove the gradient estimate following the argument in the elliptic case by Collins-Yau [2018arxiv].

Proposition 12. Let u be the solution of dHYM flow (7). There exists a uniform constant M_1 such that

$$\max_{M \times [0,T)} |\nabla u|_{\omega} \le M_1.$$

3.4 Second order estimates. In the elliptic case, Collins-Jacob-Yau [2020cjm] used an auxiliary function containing the gradient term which modifies the one in Hou-Ma-Wu [2010mrl]. Our auxiliary function does not contain the gradient term.

Proposition 14. There exists a uniform constant M_2 such that

$$\sup_{M \times [0,T)} |\partial \bar{\partial} u|_{\omega} \leq M_2.$$

4. Proof of the main theorem.

So we can prove the uniform a priori estimates up to the second order. By the concavity of $\theta(\chi_u(x,t))$, we have the uniform $C^{2,\alpha}$ estimates and then the higher estimates hold. Thus we have the longtime existence.

The proof of the convergence is the similar as the one in Phong-Tô [2017arxiv]. We can prove u(x,t) converges exponentially to a function u^{∞} . By the uniform C^k estimates of u(x,t) for all $k \in \mathbb{N}$, u(x,t) converges to u^{∞} in C^{∞} and u^{∞} satisfies

$$\theta(\chi_u \infty) := \sum_{i=1}^n \operatorname{arccot} \lambda_i(\chi_u \infty) = \theta_0.$$

Thank You!