A deformed Hermitian Yang-Mills flow

Jixiang Fu

Fudan University

Interaction Between PDEs and Convex Geometry

2021-10-20

This talk is based on the paper:
J. Fu and Dekai Zhang. A deformed Hermitian Yang-Mills flow. arXiv:2105.13576.

1. Introduction.

Let (M, ω) be a compact Kähler manifold of complex dimension n and χ a closed real $(1,1)$-form on M.

Motivated by mirror symmetry, the deformed Hermitian YangMills ($\mathrm{dH} Y \mathrm{M}$) equation on (M, ω, χ) is

$$
\begin{equation*}
\operatorname{Re}\left(\chi_{u}+\sqrt{-1} \omega\right)^{n}=\cot \theta_{0} \operatorname{Im}\left(\chi_{u}+\sqrt{-1} \omega\right)^{n} \tag{1}
\end{equation*}
$$

Here $\chi_{u}=\chi+\sqrt{-1} \partial \bar{\partial} u$ for a real smooth function u on M and θ_{0} is the argument of the complex number $\int_{M}(\chi+\sqrt{-1} \omega)^{n}$.

The dHYM equation is called supercritical if $\theta_{0} \in(0, \pi)$ and hypercritical if $\theta_{0} \in\left(0, \frac{\pi}{2}\right)$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the eigenvalues of χ_{u} with respect to ω. If necessary we denote λ by $\lambda\left(\chi_{u}\right)$ and λ_{i} by $\lambda_{i}\left(\chi_{u}\right)$ for each $1 \leq i \leq n$. Let $\lambda_{i}=\cot \theta_{i}$. Then

$$
\begin{aligned}
\left(\chi_{u}+\sqrt{-1} \omega\right)^{n} & =\prod_{i=1}^{n}\left(\lambda_{i}+\sqrt{-1}\right) \omega^{n} \\
& =\frac{\exp \left(\sqrt{-1} \sum_{i=1}^{n} \theta_{i}\right)}{\prod_{i=1}^{n} \sin \theta_{i}} \omega^{n} \\
& =\frac{\cos \left(\sum_{i=1}^{n} \theta_{i}\right)}{\prod_{i=1}^{n} \sin \theta_{i}} \omega^{n}+\sqrt{-1} \frac{\sin \left(\sum_{i=1}^{n} \theta_{i}\right)}{\prod_{i=1}^{n} \sin \theta_{i}} \omega^{n}
\end{aligned}
$$

So the dHYM equation becomes

$$
\cos \left(\sum_{i=1}^{n} \theta_{i}\right)=\cot \theta_{0} \sin \left(\sum_{i=1}^{n} \theta_{i}\right)
$$

or

$$
\begin{equation*}
\theta\left(\chi_{u}\right)=\theta_{0}, \tag{2}
\end{equation*}
$$

if we define

$$
\theta\left(\chi_{u}\right):=\sum_{i=1}^{n} \theta_{i}=\sum_{i=1}^{n} \operatorname{arccot} \lambda_{i} .
$$

In 2014, Jacob-Yau [2017ma] initiated to study the dHYM equation.

They solved the equation for $n=2$, by translating it into the complex Monge-Ampère equation which was solved by Yau.
[2017ma] A. Jacob, S.-T. Yau. A special Lagrangian type equation for holomorphic line bundles. Math. Ann. 369(2017), 869-898.

When $n \geq 3$, Collins-Jacob-Yau [2020cjm] solved the dHYM equation for the supercritical case by assuming the following two conditions hold:
(i) THere exists a subsolution \underline{u}, which means $\chi_{\underline{u}}$ satisfies the inequality

$$
\begin{equation*}
A_{0}:=\max _{M} \max _{1 \leq j \leq n} \sum_{i \neq j} \operatorname{arccot} \lambda_{i}\left(\chi_{\underline{u}}\right)<\theta_{0} ; \tag{3}
\end{equation*}
$$

(ii) $\chi_{\underline{u}}$ also satisfies the inequality

$$
\begin{equation*}
B_{0}:=\max _{M} \theta\left(\chi_{\underline{u}}\right)<\pi . \tag{4}
\end{equation*}
$$

[2020cjm] T. Collins, A. Jacob, S.-T. Yau. (1,1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions. Camb. J. Math. 8 (2020), 407-452.

When $n=3$, without condition (4) did Pingali [2019arxiv] then solve the equation by translating it into a mixed Monge-Ampère type equation.

On the other hand, C. Lin [2020arxiv] generalized Collins-JacobYau's result to the Hermitian case (M, ω) with $\partial \bar{\partial} \omega=\partial \bar{\partial} \omega^{2}=0$.

Huang-Zhang-Zhang [2020arxiv] also considered the solution on a compact almost Hermitian manifold for the hypercritical case.

For the parabolic flow method, there are also several results.

Jacob-Yau [2017ma] and Collins-Jacob-Yau [2020cjm] proved the existence and convergence of the line bundle mean curvature flow

$$
\left\{\begin{array}{l}
u_{t}=\theta_{0}-\theta\left(\chi_{u}\right) \tag{5}\\
u(0)=\underline{u}
\end{array}\right.
$$

for the hypercritical case. Here \underline{u} is a subsolution of the dHYM equation such that

$$
\theta\left(\chi_{\underline{u}}\right) \in\left(0, \frac{\pi}{2}\right)
$$

Han-Jin [2020arxiv] considered the stability result of the above flow.

Takahashi [2020ijm] proved the existence and convergence of the tangent Lagrangian phase flow

$$
\left\{\begin{array}{l}
u_{t}=\tan \left(\theta_{0}-\theta\left(\chi_{u}\right)\right) \tag{6}\\
u(0)=\underline{u}
\end{array}\right.
$$

for the hypercritical case. Here \underline{u} is a subsolution of the dHYM equation such that

$$
\theta\left(\chi_{\underline{u}}\right)-\theta_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) .
$$

There are two problems raised by Collins-Jacob-Yau [2020cjm]. One is whether condition (4) is superfluous.

The other is to find a sufficient and necessary geometric condition on the existence of a solution to the dHYM equation. There are some important progresses made by G. Chen [2021im].
[2021im] G. Chen. The J-equation and the supercritical deformed Hermitian-Yang-Mills equation. Invent. Math. 225 (2021), 529-602.
[2021arxiv] J. Song. Nakai-Moishezon criterions for complex Hessian equations. arxiv: 2012.07956.

Recently, motivated by G. Chen [2021im] and J. Song [2021arxiv], Chu-Lee-Takahashi [2021arxiv] established the following

Theorem. (Chu-Lee-Takahashi) The deformed Hermitian YangMills equation on a compact Kähler manifold (M, ω) with complex dimension n is solvable for the supercritical case if and only if there exists a Kähler metric γ on M such that for any $1 \leq k \leq n$,

$$
\int_{M}\left(\operatorname{Re}(\chi+\sqrt{-1} \omega)^{k}-\cot \theta_{0} \operatorname{Im}(\chi+\sqrt{-1} \omega)^{k}\right) \wedge \gamma^{n-k} \geq 0
$$

and for any proper m-dimensional subvariety Y of M and $1 \leq k \leq$ m,

$$
\int_{Y}\left(\operatorname{Re}(\chi+\sqrt{-1} \omega)^{k}-\cot \theta_{0} \operatorname{Im}(\chi+\sqrt{-1} \omega)^{k}\right) \wedge \gamma^{m-k}>0
$$

[2021arxiv] J. Chu, M.-C. Lee, R. Takahashi. A Nakai-Moishezon type criterion for supercritical deformed Hermitian-Yang-Mills equation. arxiv:2105.10725.

Motivated by the concavity of $\cot \theta\left(\chi_{u}\right)$ by G. Chen [2021im], we consider a dHYM flow:

$$
\left\{\begin{array}{l}
u_{t}=\cot \theta\left(\chi_{u}\right)-\cot \theta_{0} \tag{7}\\
u(x, 0)=\underline{u}(x)
\end{array}\right.
$$

The main result of this paper is

Theorem 1. (F.-Zhang) Let (M, ω) be a compact Kähler manifold and χ a closed real $(1,1)$ form. Assume that there exists a subsolution \underline{u} of $d H Y M$ equation (2) in the sense of (3) which also satisfies (4). Then for the supercritical case, there exists a longtime solution $u(x, t)$ of dHYM flow (7) and it converges to a smooth solution u^{∞} to the dHYM equation:

$$
\theta\left(\chi_{u} \infty\right)=\theta_{0}
$$

Hence we reprove the Collins-Jacob-Yau's existence theorem [2020cjm]. Our proof looks like simpler than the one in Collins-Jacob-Yau.

The advantage of our flow is that the imaginary part of the Calabi-Yau functional is constant along the flow.

However, we do not know whether condition (4) is superfluous.

2. Properties.

2.1 The linearized operator. Note

$$
\begin{equation*}
\cot \theta\left(\chi_{u}\right)=\frac{\operatorname{Re}\left(\chi_{u}+\sqrt{-1} \omega\right)^{n}}{\operatorname{Im}\left(\chi_{u}+\sqrt{-1} \omega\right)^{n}} . \tag{8}
\end{equation*}
$$

Lemma 2. The linearized operator \mathcal{P} of the dHYM flow has the form:

$$
\mathcal{P}(v)=v_{t}-F^{i \bar{j}} v_{i \bar{j}},
$$

where

$$
F^{i \bar{j}}=\csc ^{2} \theta\left(\chi_{u}\right)\left(w g^{-1} w+g\right)^{i \bar{j}}
$$

where $g=\left(g_{i \bar{j}}\right)_{n \times n}, w=\left(w_{i \bar{j}}\right)_{n \times n}$ for $w_{i \bar{j}}=\chi_{i \bar{j}}+u_{i \bar{j}}$, and $D^{i \bar{j}}:=$ $\left(D^{-1}\right)_{i \bar{j}}$ for an invertible Hermitian symmetric matrix D.
2.2 The concavity. Let

$$
\begin{equation*}
\theta(\lambda):=\sum_{i=1}^{n} \operatorname{arccot} \lambda_{i} \quad \text { for } \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n} \tag{9}
\end{equation*}
$$

and

$$
\Gamma_{\tau}:=\left\{\lambda \in \mathbb{R}^{n} \mid \theta(\lambda)<\tau\right\} \subset \mathbb{R}^{n} \quad \text { for } \tau \in(0, \pi) .
$$

We have the following two useful lemmas.

Lemma 3. (Yuan [2006pams], Wang-Yuan [2014ajm]) If $\theta(\lambda) \leq$ $\tau \in(0, \pi)$ for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then the following inequalities hold.
(i) $\lambda_{n-1} \geq \cot \frac{\tau}{2}(>0)$;
(ii) $\lambda_{n-1} \geq\left|\lambda_{n}\right|$; and
(iii) $\lambda_{1}+(n-1) \lambda_{n} \geq 0$.

Moreover, Γ_{τ} is convex for any $\tau \in(0, \pi)$.
[2006pams] Y. Yuan. Global solutions to special Lagrangian equations. Proc. Amer. Math. Soc. 134(2006), 1355-1358.
[2014ajm] D. Wang, Y. Yuan. Hessian estimates for special Lagrangian equations with critical and supercritical phases in general dimensions. Amer. J.
Math. 136(2014), 481-499.

Lemma 4. (Chen [2021im]) For any $\tau \in(0, \pi)$, the function $\cot \theta(\lambda)$ on Γ_{τ} is concave.
proof. When $n=1, \cot \theta(\lambda)=\lambda_{1}$ is obviously concave. We now assume $n \geq 2$. By the definition of $\theta(\lambda)$, we have

$$
\frac{\partial^{2} \cot \theta(\lambda)}{\partial \lambda_{i} \partial \lambda_{j}}=-2 \csc ^{2} \theta(\lambda)\left(\frac{\lambda_{i} \delta_{i j}}{\left(1+\lambda_{i}^{2}\right)^{2}}-\frac{\cot \theta(\lambda)}{\left(1+\lambda_{i}^{2}\right)\left(1+\lambda_{j}^{2}\right)}\right) .
$$

Hence the function $\cot \theta(\lambda)$ on Γ_{τ} is concave if and only if the matrix

$$
\wedge=\left(\lambda_{i} \delta_{i j}-\cot \theta(\lambda)\right)_{n \times n}
$$

is posotive definite.

Without loss of generality, we assume $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Since $\theta(\lambda) \in(0, \pi)$, by Lemma 3(1), we have $\lambda_{n-1}>0$.
2.3 Parabolic subsolution. Motivated by B. Guan's definition [2014dmj] of a subsolution of fully nonlinear equations, Székelyhidi [2019jdg] gave a weaker version of a subsolution and Collins-Jacob-Yau [2020cjm] used it to the dHYM equation which is equivalent to (3).
[2014dmj] B. Guan. Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163(2014), 14911524.
[2018jdg] G. Székelyhidi. Fully non-linear elliptic equations on compact Hermitian manifolds. J. Differential Geom. 109(2018), 337-378.

On the other hand, Phong-Tô [2017arxiv] modified Székelyhidi's definition to the parabolic case. We use their definition to the dHYM flow.

Definition 5. A smooth function $\underline{u}(x, t)$ on $M \times[0, T)$ is called a subsolution of the dHYM flow if there exists a constant $\delta>0$ such that for any $(x, t) \in M \times[0, T)$, the subset of \mathbb{R}^{n+1}

$$
\begin{aligned}
S_{\delta}(x, t):= & \left\{(\mu, \tau) \in \mathbb{R}^{n} \times \mathbb{R} \mid \mu_{i}>-\delta \text { for each } i, \tau>-\delta,\right. \text { and } \\
& \left.\cot \theta\left(\lambda\left(\chi_{\underline{u}(x, t)}\right)+\mu\right)-\underline{u}_{t}(x, t)+\tau=\cot \theta_{0}\right\}
\end{aligned}
$$

is uniformly bounded.
[2017arxiv] D. H. Phong, D. Tô. Fully non-linear parabolic equations on compact Hermitian manifolds. arXiv: 1711.10697.

We have the following observation.

Lemma 6. If \underline{u} is a subsolution of the dHYM equation with $B_{0}<\pi$, then the function $\underline{u}(x, t)=\underline{u}(x)$ on $M \times[0, \infty)$ is also a subsolution of the dHYM flow.
2.4 The Calabi-Yau Functional. Recall the definition of the Calabi-Yau functional by Collins-Yau [2021apde]: for any $v \in$ $C^{2}(M, \mathbb{R})$,

$$
\mathrm{CY}_{\mathbb{C}}(v):=\frac{1}{n+1} \sum_{i=0}^{n} \int_{M} v\left(\chi_{v}+\sqrt{-1} \omega\right)^{i} \wedge(\chi+\sqrt{-1} \omega)^{n-i}
$$

Let $v(s) \in C^{2,1}(M \times[0, T], \mathbb{R})$ be a variation of the function v, i.e., $v(0)=v$. The integration by parts gives

$$
\begin{equation*}
\frac{d}{d s} \mathrm{CY}_{\mathbb{C}}(v(s))=\int_{M} \frac{\partial v(s)}{\partial s}\left(\chi_{v(s)}+\sqrt{-1} \omega\right)^{n} . \tag{10}
\end{equation*}
$$

[2021apde] T. Collins, S.-T. Yau. Moment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesics. Ann. PDE 7, 11(2021).

Lemma 7. Let $u(x, t)$ be a solution of the dHYM flow. Then

$$
\operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(u(\cdot, t))\right)=\operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(\underline{u})\right)
$$

Proof. Denote by $u(t):=u(x, t)$ for simplicity.

$$
\begin{aligned}
& \frac{d}{d t} \operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(u(t))\right)=\operatorname{Im} \frac{d}{d t} \mathrm{CY} \mathbb{C}(u(t)) \\
= & \int_{M} \frac{\partial u(t)}{\partial t} \operatorname{Im}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n} \\
= & \int_{M}\left(\frac{\operatorname{Re}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n}}{\operatorname{Im}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n}}-\cot \theta_{0}\right) \operatorname{Im}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n} \\
= & \int_{M} \operatorname{Re}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n}-\cot \theta_{0} \int_{M} \operatorname{Im}\left(\chi_{u(t)}+\sqrt{-1} \omega\right)^{n} \\
= & \int_{M} \operatorname{Re}(\chi+\sqrt{-1} \omega)^{n}-\cot \theta_{0} \int_{M} \operatorname{Im}(\chi+\sqrt{-1} \omega)^{n} \\
= & 0,
\end{aligned}
$$

where each equality is successively by (10), (7) and (8), Stokes' theorem, and the definition of θ_{0}. Hence the conclusion holds as $u(0)=\underline{u}$.

3. Estimates.

We assume that u is the solution of dHYM flow (7) in $M \times[0, T)$, where T is the maximal existence time. By showing the uniform a priori estimates, we can prove $T=\infty$.
3.1 The u_{t}-estimate.

Lemma 8. For any $(x, t) \in M \times[0, T)$,

$$
\begin{equation*}
\left.\min _{M} u_{t}\right|_{t=0} \leq u_{t}(x, t) \leq\left.\max _{M} u_{t}\right|_{t=0} \tag{11}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
0<\min _{M} \theta\left(\chi_{\underline{u}(x)}\right) \leq \theta\left(\chi_{u(x, t)}\right) \leq B_{0}<\pi \tag{12}
\end{equation*}
$$

Proof. The u_{t} satisfies the equation:

$$
\left(u_{t}\right)_{t}=F^{i \bar{j}}\left(u_{t}\right)_{i \bar{j}}
$$

By the maximum principle, u_{t} attains its maximum and minimum on the initial time, i.e., inequality (11) holds, i.e.,

$$
\min _{M} \cot \theta\left(\chi_{\underline{u}}\right) \leq u_{t}(x, t)+\cot \theta_{0} \leq \max _{M} \cot \theta\left(\chi_{\underline{u}}\right),
$$

or

$$
\min _{M} \cot \theta\left(\chi_{\underline{u}}\right) \leq \cot \theta\left(\chi_{u(x, t)}\right) \leq \max _{M} \cot \theta\left(\chi_{\underline{u}}\right) .
$$

Thus we obtain

$$
0<\min _{M} \theta\left(\chi_{\underline{u}}\right) \leq \theta\left(\chi_{u}(x, t)\right) \leq \max _{M} \theta\left(\chi_{\underline{u}}\right)=B_{0}
$$

We have an useful corollary of the above lemma.

Corollary 9. Let $\lambda_{n}(x, t)$ be the minimum eigenvalue of χ_{u} with respect to the metric ω at (x, t). Then

$$
\max _{M \times[0, T)}\left|\lambda_{n}\right| \leq A_{1} \quad \text { for } \quad A_{1}:=\left|\cot B_{0}\right|+\left|\cot \left(\frac{\min _{M} \theta\left(\chi_{\underline{u}}\right)}{n}\right)\right|
$$

Proof. By Lemma 8, we have

$$
0<\frac{\min _{M} \theta\left(\chi_{\underline{u}}\right)}{n} \leq \frac{\theta\left(\chi_{u}\right)}{n} \leq \operatorname{arccot} \lambda_{n} \leq B_{0}<\pi
$$

Hence we have

$$
\cot B_{0} \leq \lambda_{n} \leq \cot \left(\frac{\min _{M} \theta\left(\chi_{\underline{u}}\right)}{n}\right)
$$

3.2 The C^{0}-estimate. We first prove a Harnack type inequality along the dHYM flow.

Lemma 10. Let u be the solution of the dHYM flow on $M \times$ $[0, T)$. Then for any $T_{0}<T$ we have the following Harnack type inequality:

$$
\sup _{M \times\left[0, T_{0}\right]} u(x, t) \leq C\left(-\inf _{M \times\left[0, T_{0}\right]}(u(x, t)-\underline{u}(x))+1\right) .
$$

Proof. For any $t \in\left[0, T_{0}\right]$, we have $\theta\left(\chi_{u(t)}\right) \leq B_{0}<\pi$ by Lemma 8. Then by the convexity of $\Gamma_{\omega, B_{0}}:=\left\{\alpha \in \wedge^{1,1}(M, \mathbb{R}) \mid \theta(\alpha)<\right.$ $\left.B_{0}\right\}$ in Lemma 3, we have

$$
\theta\left(\chi_{s u+(1-s) \underline{u}}\right) \leq B_{0} .
$$

Denote $\eta_{0}:=B_{0} / 6+5 \pi / 6$ for convenience. Then $B_{0}<\eta_{0}<\pi$. Hence,

$$
\begin{align*}
& \frac{\operatorname{Im}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n}}{\omega^{n}} \\
= & \prod_{k=1}^{n}\left(1+\lambda_{k}^{2}\left(\chi_{s u(t)+(1-s) \underline{u}}\right)\right)^{\frac{1}{2}} \sin \left(\theta\left(\chi_{s u(t)+(1-s) \underline{u}}\right)\right. \\
\geq & \left\{\begin{array}{l}
\sin \eta_{0}, \text { if } \theta\left(\chi_{s u(t)+(1-s) \underline{u}}\right) \geq \frac{\pi}{6} \\
\sqrt{1+\lambda_{1}^{2}} \sin \operatorname{arccot} \lambda_{1}=1, \text { if } \theta\left(\chi_{s u(t)+(1-s) \underline{u}}\right)<\frac{\pi}{6}
\end{array}\right. \\
\geq & \sin \eta_{0} \triangleq c_{0} . \tag{13}
\end{align*}
$$

By Lemma 7, the imaginary part of the Calabi-Yau functional is constant along the flow. Hence,

$$
\begin{align*}
0 & =\operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(u(t))\right)-\operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(\underline{u})\right) \\
& =\int_{0}^{1} \frac{d}{d s} \operatorname{Im}\left(\mathrm{CY}_{\mathbb{C}}(s u(t)+(1-s) \underline{u})\right) d s \\
& =\int_{0}^{1} \int_{M}(u(t)-\underline{u}) \operatorname{Im}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n} d s \\
& =\int_{M}(u(t)-\underline{u})\left(\int_{0}^{1} \operatorname{Im}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n} d s\right) . \tag{14}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& \int_{M}(u-\underline{u}) \omega^{n} \\
= & \int_{M}(u-\underline{u}) \omega^{n}-\frac{1}{c_{0}} \int_{M}(u-\underline{u})\left(\int_{0}^{1} \operatorname{Im}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n} d s\right) \\
= & \frac{1}{c_{0}} \int_{M}-(u-\underline{u}) \underbrace{\left(-c_{0} \omega^{n}+\int_{0}^{1} \operatorname{Im}\left(\chi_{s u}(t)+(1-s) \underline{u}\right.\right.}_{\text {This term is positive by inequality (13) }}+\sqrt{-1} \omega)^{n} d s) \\
& -\inf _{M \times\left[0, T_{0}\right]}^{c_{0}}(u-\underline{u}) \\
\leq & \int_{M}\left(-c_{0} \omega^{n}+\int_{0}^{1} \operatorname{Im}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n} d s\right) \\
= & \inf _{M \times\left[0, T_{0}\right]}^{c_{0}}(u-\underline{u}) \\
= & \inf _{M \times\left[0, T_{0}\right]}^{c_{0}}(u-\underline{u}) \\
= & \left.-c_{0} \int_{M} \omega^{n}+\int_{0}^{1} \operatorname{Im} \int_{M}\left(\chi_{s u(t)+(1-s) \underline{u}}+\sqrt{-1} \omega\right)^{n} d s\right) \\
\leq & \left.c_{0}^{-1} \operatorname{Im} \int_{M}(\chi+\sqrt{-1} \omega)^{n}+\operatorname{Im} \int_{M}(\chi+\sqrt{-1} \omega)^{n}\right) \\
= & C\left(-\inf _{M \times\left[0, T_{0}\right]}(u-\underline{u})\right) \\
& \text { where } \left.C=c_{0}^{-1} \operatorname{In} \operatorname{Im} \int_{M}(\chi+\underline{u})\right), \\
& (\chi+\sqrt{-1} \omega)^{n} .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\int_{M} u(x, t) \omega^{n} \leq C\left(-\inf _{M \times\left[0, T_{0}\right]}(u(x, t)-\underline{u}(x))+1\right) \tag{15}
\end{equation*}
$$

On the other hand, let $G(x, z)$ be Green's function of the metric ω on M. Then for any $(x, t) \in M \times\left[0, T_{0}\right]$,

$$
u(x, t)=\left(\int_{M} \omega^{n}\right)^{-1} \int_{M} u(z, t) \omega^{n}-\int_{z \in M} \Delta_{\omega} u(z, t) G(x, z) \omega^{n}
$$

Since $\Delta_{\omega} u>-\operatorname{tr}_{\omega} \chi>-C_{0}$ and $G(x, y)$ is bounded from below, there exits a uniform constant C such that

$$
\begin{equation*}
u(x, t) \leq\left(\int_{M} \omega^{n}\right)^{-1} \int_{M} u(z, t) \omega^{n}+C . \tag{16}
\end{equation*}
$$

Combing (15) with (16), we obtain the desired estimate.

Now we prove the C^{0} estimate similar as Phong-Tô [2017arxiv].

Proposition 11. Along the dHYM flow, there exists a uniform constant M_{0} independent of T such that

$$
|u|_{C^{0}(M \times[0, T))} \leq M_{0}
$$

Proof. Combining (14) with (13) implies for any $t \in[0, T)$,

$$
\sup _{x \in M}(u(x, t)-\underline{u}(x)) \geq 0
$$

Combing the above inequality with the concavity of the equation, we can apply Lemma 1 in Phong-Tô [2017arxiv]: there exists a uniform constant C_{1} such that

$$
\inf _{M \times\left[0, T_{0}\right]}(u(x, t)-\underline{u}(x)) \geq-C_{1} \quad \text { for any } T_{0}<T .
$$

Then combing this estimate with the Harnack type inequality in Lemma 10, we have

$$
\sup _{M \times\left[0, T_{0}\right]} u \leq C
$$

3.3 The gradient estimate. We can prove the gradient estimate following the argument in the elliptic case by Collins-Yau [2018arxiv].

Proposition 12. Let u be the solution of dHYM flow (7). There exists a uniform constant M_{1} such that

$$
\max _{M \times[0, T)}|\nabla u|_{\omega} \leq M_{1}
$$

3.4 Second order estimates. In the elliptic case, Collins-JacobYau [2020cjm] used an auxiliary function containing the gradient term which modifies the one in Hou-Ma-Wu [2010mrl]. Our auxiliary function does not contain the gradient term.

Proposition 14. There exists a uniform constant M_{2} such that

$$
\sup _{M \times[0, T)}|\partial \bar{\partial} u|_{\omega} \leq M_{2} .
$$

4. Proof of the main theorem.

So we can prove the uniform a priori estimates up to the second order. By the concavity of $\theta\left(\chi_{u}(x, t)\right)$, we have the uniform $C^{2, \alpha}$ estimates and then the higher estimates hold. Thus we have the longtime existence.

The proof of the convergence is the similar as the one in PhongTô [2017arxiv]. We can prove $u(x, t)$ converges exponentially to a function u^{∞}. By the uniform C^{k} estimates of $u(x, t)$ for all $k \in \mathbb{N}, u(x, t)$ converges to u^{∞} in C^{∞} and u^{∞} satisfies

$$
\theta\left(\chi_{u} \infty\right):=\sum_{i=1}^{n} \operatorname{arccot} \lambda_{i}\left(\chi_{u} \infty\right)=\theta_{0}
$$

Thank You!

