Affine spectral inequalities and the affine Laplace operator

Julián Haddad (UFMG, Brazil)
joint work with H. Jiménez and M. Montenegro
work supported by CAPES, CNPq, FAPEMIG and IMPA

BIRS-IASM 2021
Interaction Between Partial Differential Equations and Convex Geometry

Rayleigh quotients

For an open and bounded $\Omega \subset \mathbb{R}^{n}$ and $1 \leq p, q \leq \infty$, let

$$
\lambda(\Omega)=\inf \left\{\left.\frac{\||\nabla f|\|_{p}}{\|f\|_{q}} \right\rvert\, f: \bar{\Omega} \rightarrow \mathbb{R} \text { smooth and } f=0 \text { in } \partial \Omega\right\}
$$

Rayleigh quotients

For an open and bounded $\Omega \subset \mathbb{R}^{n}$ and $1 \leq p, q \leq \infty$, let

$$
\lambda(\Omega)=\inf \left\{\left.\frac{\||\nabla f|\|_{p}}{\|f\|_{q}} \right\rvert\, f: \bar{\Omega} \rightarrow \mathbb{R} \text { smooth and } f=0 \text { in } \partial \Omega\right\}
$$

1870 The theory of sound, John William Strutt (3rd Baron Rayleigh)

$$
\lambda_{2, \Omega}=\inf \left\{\left.\frac{\||\nabla f|\|_{2}}{\|f\|_{2}} \right\rvert\, f \in W_{0}^{1,2}(\Omega)\right\}
$$

Rayleigh quotients

For an open and bounded $\Omega \subset \mathbb{R}^{n}$ and $1 \leq p, q \leq \infty$, let

$$
\lambda(\Omega)=\inf \left\{\left.\frac{\||\nabla f|\|_{p}}{\|f\|_{q}} \right\rvert\, f: \bar{\Omega} \rightarrow \mathbb{R} \text { smooth and } f=0 \text { in } \partial \Omega\right\}
$$

1870 The theory of sound, John William Strutt (3rd Baron Rayleigh)

$$
\lambda_{2, \Omega}=\inf \left\{\left.\frac{\||\nabla f|\|_{2}}{\|f\|_{2}} \right\rvert\, f \in W_{0}^{1,2}(\Omega)\right\}
$$

- There is a unique minimizer $f \in W_{0}^{1,2}(\Omega)$.
- It solves the differential equation

$$
\left\{\begin{aligned}
\Delta f+\lambda_{2, \Omega}^{2} f & =0 \text { in } \Omega \\
f & =0 \text { in } \partial \Omega .
\end{aligned}\right.
$$

- $f(x) \sin \left(\lambda_{2, \Omega} \cdot t\right)$ describes a vibrating membrane with the boundary fixed at $\partial \Omega$.

[^0]
Rayleigh quotients

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

'99, G. Zhang - The affine Sobolev Inequality

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...
'16, Nguyen - New approach to the affine Polya-Szegö principle...

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

$\mathcal{E}_{p}(f \circ T)=\mathcal{E}_{p} f$ for volume-preserving T.
'99, G. Zhang - The affine Sobolev Inequality
'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...
'16, Nguyen - New approach to the affine Polya-Szegö principle...

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n}-1}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

$\mathcal{E}_{p}(f \circ T)=\mathcal{E}_{p} f$ for volume-preserving T.
'09, G. Zhang - The affine Sobolev Inequality

$$
\||\nabla f|\|_{1} \geq \mathcal{E}_{1} f \geq C_{n}\|f\|_{\frac{n}{n-1}}
$$

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities
'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...
'16, Nguyen - New approach to the affine Polya-Szegö principle...

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

$\mathcal{E}_{p}(f \circ T)=\mathcal{E}_{p} f$ for volume-preserving T.
'99, G. Zhang - The affine Sobolev Inequality

$$
\||\nabla f|\|_{1} \geq \mathcal{E}_{1} f \geq C_{n}\|f\|_{\frac{n}{n-1}}
$$

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

$$
\||\nabla f|\|_{p} \geq \mathcal{E}_{p} f \geq C_{p, n}\|f\|_{\frac{n p}{n-p}}
$$

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...
'16, Nguyen - New approach to the affine Polya-Szegö principle...

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

$\mathcal{E}_{p}(f \circ T)=\mathcal{E}_{p} f$ for volume-preserving T.
'99, G. Zhang - The affine Sobolev Inequality

$$
\||\nabla f|\|_{1} \geq \mathcal{E}_{1} f \geq C_{n}\|f\|_{\frac{n}{n-1}}
$$

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

$$
\||\nabla f|\|_{p} \geq \mathcal{E}_{p} f \geq C_{p, n}\|f\|_{\frac{n p}{n-p}}
$$

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

$$
\mathcal{E}_{p} f^{*} \leq \mathcal{E}_{p} f
$$

'16, Nguyen - New approach to the affine Polya-Szegö principle...

The Affine Invariant World

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

$\mathcal{E}_{p}(f \circ T)=\mathcal{E}_{p} f$ for volume-preserving T.
'99, G. Zhang - The affine Sobolev Inequality

$$
\||\nabla f|\|_{1} \geq \mathcal{E}_{1} f \geq C_{n}\|f\|_{\frac{n}{n-1}}
$$

'03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

$$
\||\nabla f|\|_{p} \geq \mathcal{E}_{p} f \geq C_{p, n}\|f\|_{\frac{n p}{n-p}}
$$

'09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

$$
\mathcal{E}_{p} f^{*} \leq \mathcal{E}_{p} f
$$

'16, Nguyen - New approach to the affine Polya-Szegö principle...
Equality case (Brothers-Ziemer result)

The Affine Term $\mathcal{E}_{p} f$

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

The Affine Term $\mathcal{E}_{p} f$

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

f defines a norm

$$
\|\xi\|_{f}=\left\|\partial_{\xi} f\right\|_{p}, \quad \operatorname{vol}\left(B_{f}\right)^{-1 / n}=\mathcal{E}_{p} f
$$

The Affine Term $\mathcal{E}_{p} f$

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

f defines a norm

$$
\|\xi\|_{f}=\left\|\partial_{\xi} f\right\|_{p}, \quad \operatorname{vol}\left(B_{f}\right)^{-1 / n}=\mathcal{E}_{p} f
$$

A simple case

For $f=\chi_{K}, K$ convex and $p=1$

$$
\left\|\partial_{\xi} f\right\|_{1}=2\left|P_{\langle\xi\rangle^{\perp}} K\right|_{n-1}
$$

The Affine Term $\mathcal{E}_{p} f$

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

f defines a norm

$$
\|\xi\|_{f}=\left\|\partial_{\xi} f\right\|_{p}, \quad \operatorname{vol}\left(B_{f}\right)^{-1 / n}=\mathcal{E}_{p} f
$$

A simple case

For $f=\chi_{K}, K$ convex and $p=1$

$$
\left\|\partial_{\xi} f\right\|_{1}=2\left|P_{\langle\xi\rangle^{\perp}} K\right|_{n-1}
$$

The polar projection body

$$
\operatorname{vol}\left(\Pi^{\circ} K\right)^{-1 / n}=\mathcal{E}_{1} f
$$

The Affine Term $\mathcal{E}_{p} f$

Definition

$$
\mathcal{E}_{p} f=c_{n, p}\left(\int_{\mathbb{S}^{n-1}}\left\|\partial_{\xi} f\right\|_{p}^{-n} d \xi\right)^{-1 / n}
$$

f defines a norm

$$
\|\xi\|_{f}=\left\|\partial_{\xi} f\right\|_{p}, \quad \operatorname{vol}\left(\Pi_{p}^{\circ} f\right)^{-1 / n}=\mathcal{E}_{p} f
$$

A simple case

For $f=\chi_{K}, K$ convex and $p=1$

$$
\left\|\partial_{\xi} f\right\|_{1}=2\left|P_{\langle\xi\rangle^{\perp}} K\right|_{n-1}
$$

The polar projection body

$$
\operatorname{vol}\left(\Pi^{\circ} K\right)^{-1 / n}=\mathcal{E}_{1} f
$$

Affine Rayleigh quotients

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$

We know that $\mathcal{E}_{p} f \leq\||\nabla f|\|_{p}$.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega)\left|\||\nabla f|\|_{p} \leq 1\right\} \subset L^{p}(\Omega)\right.$ is compact. (Rellich-Kondrachov Theorem)

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact. this set is unbounded in $W_{0}^{1, p}(\Omega)$.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p^{\frac{n-1}{n}}}^{\|}\|\nabla f \mid\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \mathrm{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \operatorname{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

Let's call f_{p} the p-affine eigenfunction

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \operatorname{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

Let's call f_{p} the p-affine eigenfunction

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \operatorname{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

Let's call $\lambda_{p, \Omega}^{\mathcal{A}}$ the p-affine eigenvalue

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p^{\frac{n-1}{n}}}^{\|}\|\nabla f \mid\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \mathrm{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

(9) $\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0$ in Ω for $\lambda=\lambda_{p, \Omega}^{\mathcal{A}}$.

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \operatorname{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

(9) $\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0$ in Ω for $\lambda=\lambda_{p, \Omega}^{\mathcal{A}}$. Yes! Let's call $\Delta_{p}^{\mathcal{A}}$ the affine p-laplacian

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p^{\frac{n-1}{n}}}^{\|}\|\nabla f \mid\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \mathrm{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

(9) $\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0$ in Ω for $\lambda=\lambda_{p, \Omega}^{\mathcal{A}}$.
(0) $\lambda_{p, \Omega}^{\mathcal{A}} \geq \lambda_{p, \mathbb{E}}^{\mathcal{A}}$ (\mathbb{E} ellipsoid of same volume)

Results: bounds, compactness, existence and variation

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $p \geq 1$.
(1) $\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}$
(2) $\left\{f \in W_{0}^{1, p}(\Omega) \mid \mathcal{E}_{p} f \leq 1\right\} \subset L^{p}(\Omega)$ is compact.
(3) \exists Extremal function $f_{p} \in W_{0}^{1, p}(\Omega)$ or $f_{1} \in \operatorname{BV}(\Omega)$ for

$$
\lambda_{p, \Omega}^{\mathcal{A}}=\inf \frac{\mathcal{E}_{p} f}{\|f\|_{p}}
$$

(9) $\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0$ in Ω for $\lambda=\lambda_{p, \Omega}^{\mathcal{A}}$.
(6) $\lambda_{p, \Omega}^{\mathcal{A}} \geq \lambda_{p, \mathbb{E}}^{\mathcal{A}}$ (\mathbb{E} ellipsoid of same volume) equality only for ellipsoids.

The affine Laplacian $\Delta_{p}^{\mathcal{A}}$

(1) Laplacian $\Delta f=\operatorname{div}(\nabla f)$

The affine Laplacian $\Delta_{p}^{\mathcal{A}}$

(1) Laplacian $\Delta f=\operatorname{div}(\nabla f)$
(2) p-Laplacian $\Delta_{p} f=\operatorname{div}(\nabla H(\nabla f)), H(x)=\frac{1}{p}|x|^{p}$.

The affine Laplacian $\Delta_{p}^{\mathcal{A}}$

(1) Laplacian $\Delta f=\operatorname{div}(\nabla f)$
(2) p-Laplacian $\Delta_{p} f=\operatorname{div}(\nabla H(\nabla f)), H(x)=\frac{1}{p}|x|^{p}$.
(3) Wulff p-Laplacian $\Delta_{p, K} f=\operatorname{div}\left(\nabla H_{K}(\nabla f)\right), H_{K}(x)=\frac{1}{p}\|x\|_{K}^{p}$.

The affine Laplacian $\Delta_{p}^{\mathcal{A}}$

(1) Laplacian $\Delta f=\operatorname{div}(\nabla f)$
(2) p-Laplacian $\Delta_{p} f=\operatorname{div}(\nabla H(\nabla f)), H(x)=\frac{1}{p}|x|^{p}$.
(3) Wulff p-Laplacian $\Delta_{p, K} f=\operatorname{div}\left(\nabla H_{K}(\nabla f)\right), H_{K}(x)=\frac{1}{p}\|x\|_{K}^{p}$.

Definition

$$
\begin{aligned}
\Delta_{p}^{\mathcal{A}} f & =\Delta_{p, K_{f}}(f) \\
K_{f} & =c_{n, p} \Gamma_{p}^{\circ} \Pi_{p}^{\circ} f
\end{aligned}
$$

The affine Laplacian $\Delta_{p}^{\mathcal{A}}$

(1) Laplacian $\Delta f=\operatorname{div}(\nabla f)$
(2) p-Laplacian $\Delta_{p} f=\operatorname{div}(\nabla H(\nabla f)), H(x)=\frac{1}{p}|x|^{p}$.
(3) Wulff p-Laplacian $\Delta_{p, K} f=\operatorname{div}\left(\nabla H_{K}(\nabla f)\right), H_{K}(x)=\frac{1}{p}\|x\|_{K}^{p}$.

Definition

$$
\begin{aligned}
\Delta_{p}^{\mathcal{A}} f & =\Delta_{p, K_{f}}(f) \\
K_{f} & =c_{n, p} \Gamma_{p}^{\circ} \Pi_{p}^{\circ} f
\end{aligned}
$$

The affine PDE

The Equation

$$
\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0 \text { in } \Omega
$$

The affine PDE

The Equation

$$
\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0 \text { in } \Omega
$$

Theorem

(1) The solutions are always bounded and belongs to $C^{1, \alpha}(\Omega)$ and to $C^{1, \alpha}(\bar{\Omega})$ if $\partial \Omega$ is $C^{2, \alpha}$.

The affine PDE

The Equation

$$
\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0 \text { in } \Omega
$$

Theorem

(1) The solutions are always bounded and belongs to $C^{1, \alpha}(\Omega)$ and to $C^{1, \alpha}(\bar{\Omega})$ if $\partial \Omega$ is $C^{2, \alpha}$.
(2) The solution can be taken positive.

The affine PDE

The Equation

$$
\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0 \text { in } \Omega
$$

Theorem

(1) The solutions are always bounded and belongs to $C^{1, \alpha}(\Omega)$ and to $C^{1, \alpha}(\bar{\Omega})$ if $\partial \Omega$ is $C^{2, \alpha}$.
(2) The solution can be taken positive.
(3) It is log-concave if Ω is convex.

The affine PDE

The Equation

$$
\Delta_{p}^{\mathcal{A}} f+\lambda^{p}|f|^{p-2} f=0 \text { in } \Omega
$$

Theorem

(1) The solutions are always bounded and belongs to $C^{1, \alpha}(\Omega)$ and to $C^{1, \alpha}(\bar{\Omega})$ if $\partial \Omega$ is $C^{2, \alpha}$.
(2) The solution can be taken positive.
(3) It is log-concave if Ω is convex.
(9) The differential equation is affine invariant.

Open questions

Open questions

Existence of minimizers for mixed (p, q)-quotients?

Affine Rayleigh quotients

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}
$$

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\begin{aligned}
\mathcal{E}_{p} f & \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} \\
& \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}
\end{aligned}
$$

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\begin{aligned}
\mathcal{E}_{p} f & \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} \\
& \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}
\end{aligned}
$$

Existence of minimizers for $p<q<\frac{n p}{n-p}$

$$
\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{p^{\frac{n-1}{n}}}^{\||\nabla f|\|_{p}^{1 / n}, ~}
$$

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\begin{aligned}
\mathcal{E}_{p} f & \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} \\
& \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n}
\end{aligned}
$$

Existence of minimizers for $p<q<\frac{n p}{n-p}$

$$
\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} ?
$$

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\begin{aligned}
\mathcal{E}_{p} f & \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} \\
& \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\|\mid \nabla f\|_{p}^{1 / n}
\end{aligned}
$$

Existence of minimizers for $p<q<\frac{n p}{n-p}$

$$
\begin{aligned}
& \mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} ? \\
&\left\|\partial_{\xi} f\right\|_{p}^{p}=\int_{\xi^{\perp}} \int_{-\infty}^{\infty}\left|\frac{\partial}{\partial t} f(t \xi+x)\right|^{p} d t d x \\
& \geq t_{p}^{p} \int_{\xi^{\perp}} \int_{-\infty}^{\infty}|f(t \xi+x)|^{p} d t d x \mathrm{w}(\Omega, \xi)^{-p} \\
&=t_{p}^{p}\|f\|_{p}^{p} \mathrm{w}(\Omega, \xi)^{-p} .
\end{aligned}
$$

Open questions

Existence of minimizers for $1 \leq q<p$

$$
\begin{aligned}
\mathcal{E}_{p} f & \geq C_{n, p}(\Omega)\|f\|_{p}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} \\
& \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\|\mid \nabla f\|_{p}^{1 / n}
\end{aligned}
$$

Existence of minimizers for $p<q<\frac{n p}{n-p}$

$$
\mathcal{E}_{p} f \geq C_{n, p}(\Omega)\|f\|_{q}^{\frac{n-1}{n}}\||\nabla f|\|_{p}^{1 / n} ?
$$

$$
\begin{aligned}
\left\|\nabla_{\xi} f\right\|_{p}^{p} & =\int_{\xi^{\perp}} \int_{-\infty}^{\infty}\left|\frac{\partial}{\partial t} f(t \xi+x)\right|^{p} d t d x \\
& \geq t_{p}^{p} \int_{\xi^{\perp}}\left(\int_{-\infty}^{\infty}|f(t \xi+x)|^{q} d t\right)^{p / q} d x \mathrm{w}(\Omega, \xi)^{-p} \\
& \geq t_{p}^{p}\|f\|_{p}^{p} \mathrm{w}(\Omega, \xi)^{-p} ?
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p, K} u & =\lambda|u|^{p-2} u \\
\Delta_{p, K} v & =\lambda|v|^{p-2} v
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p, K} u & =\lambda|u|^{p-2} u \\
\Delta_{p, K} v & =\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p}
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p, K} u & =\lambda|u|^{p-2} u \\
\Delta_{p, K} v & =\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p} \\
\left\|\nabla u_{t}\right\|_{K}^{p} & \leq t\|\nabla v(x)\|_{K}^{p}+(1-t)\|\nabla u(x)\|_{K}^{p}
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p, K} u & =\lambda|u|^{p-2} u \\
\Delta_{p, K} v & =\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p} \\
\left\|\nabla u_{t}\right\|_{K}^{p} & \leq t\|\nabla v(x)\|_{K}^{p}+(1-t)\|\nabla u(x)\|_{K}^{p}
\end{aligned}
$$

with equality if and only if $u(x) \nabla v(x)=v(x) \nabla u(x)$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p}^{\mathcal{A}} u & =\lambda|u|^{p-2} u \\
\Delta_{p}^{\mathcal{A}} v & =\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p}
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p}^{\mathcal{A}} u & =\Delta_{p, K_{u}} u=\lambda|u|^{p-2} u \\
\Delta_{p}^{\mathcal{A}} v & =\Delta_{p, K_{v}} v=\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p}
\end{aligned}
$$

Open questions

Is the affine eigenvalue simple?

$$
\begin{aligned}
\Delta_{p}^{\mathcal{A}} u & =\Delta_{p, K_{u}} u=\lambda|u|^{p-2} u \\
\Delta_{p}^{\mathcal{A}} v & =\Delta_{p, K_{v}} v=\lambda|v|^{p-2} v \\
u_{t}(x) & =\left(t v^{p}(x)+(1-t) u^{p}(x)\right)^{1 / p} \\
\left\|\nabla u_{t}\right\|_{?}^{p} & \leq t\left\|\nabla v^{p}(x)\right\|_{?}+(1-t)\left\|\nabla u^{p}(x)\right\|_{?}
\end{aligned}
$$

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{\operatorname{vol}\left(\Pi^{\circ} K\right)^{-1 / n}}{V(K)^{1 / q}}
$$

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}}
$$

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}} \text {, for } q=1 \text { these are the Cheeger sets }
$$

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}} \text {, for } q=1 \text { these are the Cheeger sets }
$$

- False if Ω is not convex

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}}, \text { for } q=1 \text { these are the Cheeger sets }
$$

- False if Ω is not convex
- B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation, '95

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}}, \text { for } q=1 \text { these are the Cheeger sets }
$$

- False if Ω is not convex
- B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation, '95
- V. Alter, V. Caselles, A. Chambole, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, '05

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}}, \text { for } q=1 \text { these are the Cheeger sets }
$$

- False if Ω is not convex
- B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation, '95
- V. Alter, V. Caselles, A. Chambole, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, '05
- V. Caselles, A. Chambole, M. Novaga - Uniqueness of the cheeger set of a convex body, '07

Open questions

A tough question

For $p=1, q \in\left[1, \frac{n}{n-1}\right)$ the eigenfunction is χ_{K} with $K \subseteq \Omega$ minimizing

$$
\frac{S(K)}{V(K)^{1 / q}}, \text { for } q=1 \text { these are the Cheeger sets }
$$

- False if Ω is not convex
- B. Kawohl, N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation, '95
- V. Alter, V. Caselles, A. Chambole, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, '05
- V. Caselles, A. Chambole, M. Novaga - Uniqueness of the cheeger set of a convex body, '07
- V. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, '08

Open questions

Related question: Brunn-Minkowsky for the quotient

$$
\frac{V(K+L)}{S(K+L)} \geq \frac{V(K)}{S(K)}+\frac{V(L)}{S(L)} ?
$$

Open questions

Related question: Brunn-Minkowsky for the quotient

$$
\frac{V(K+L)}{S(K+L)} \geq \frac{V(K)}{S(K)}+\frac{V(L)}{S(L)} ?
$$

No.

Open questions

Related question: Brunn-Minkowsky for the quotient

$$
\frac{V(K+L)}{S(K+L)} \geq \frac{V(K)}{S(K)}+\frac{V(L)}{S(L)} ?
$$

No.
M. Fradelizi, A. Giannopoulos, M. Meyer, Some inequalities about mixed volumes, '03

Open questions

Related question: Brunn-Minkowsky for the quotient

$$
\frac{V(K+L)}{\operatorname{vol}\left(\Pi^{\circ}(K+L)\right)^{-1 / n}} \geq \frac{V(K)}{\operatorname{vol}\left(\Pi^{\circ} K\right)^{-1 / n}}+\frac{V(L)}{\operatorname{vol}\left(\Pi^{\circ} L\right)^{-1 / n}} ?
$$

Open questions

- Brunn-Minkowsky type inequality?

$$
\lambda_{p, t \Omega_{1}+(1-t) \Omega_{2}}^{\mathcal{A}}{ }^{-1} \geq t \lambda_{p, \Omega_{1}}^{\mathcal{A}}{ }^{-1}+(1-t) \lambda_{p, \Omega_{2}}^{\mathcal{A}}{ }^{-1}
$$

Open questions

- Brunn-Minkowsky type inequality?

$$
\lambda_{p, t \Omega_{1}+(1-t) \Omega_{2}}^{\mathcal{A}}{ }^{-1} \geq t \lambda_{p, \Omega_{1}}^{\mathcal{A}}{ }^{-1}+(1-t) \lambda_{p, \Omega_{2}}^{\mathcal{A}}{ }^{-1}
$$

- Continuity of $\lambda_{p, \Omega}^{\mathcal{A}}$ with respect to p and Ω ?

Open questions

- Brunn-Minkowsky type inequality?

$$
\lambda_{p, t \Omega_{1}+(1-t) \Omega_{2}}^{\mathcal{A}}{ }^{-1} \geq t \lambda_{p, \Omega_{1}}^{\mathcal{A}}{ }^{-1}+(1-t) \lambda_{p, \Omega_{2}}^{\mathcal{A}}{ }^{-1}
$$

- Continuity of $\lambda_{p, \Omega}^{\mathcal{A}}$ with respect to p and Ω ?
- Affine invariant flow

Open questions

- Brunn-Minkowsky type inequality?

$$
\lambda_{p, t \Omega_{1}+(1-t) \Omega_{2}}^{\mathcal{A}}{ }^{-1} \geq t \lambda_{p, \Omega_{1}}^{\mathcal{A}}{ }^{-1}+(1-t) \lambda_{p, \Omega_{2}}^{\mathcal{A}}{ }^{-1}
$$

- Continuity of $\lambda_{p, \Omega}^{\mathcal{A}}$ with respect to p and Ω ?
- Affine invariant flow
- Neumann boundary conditions

Open questions

- Brunn-Minkowsky type inequality?

$$
\lambda_{p, t \Omega_{1}+(1-t) \Omega_{2}}^{\mathcal{A}}{ }^{-1} \geq t \lambda_{p, \Omega_{1}}^{\mathcal{A}}{ }^{-1}+(1-t) \lambda_{p, \Omega_{2}}^{\mathcal{A}}{ }^{-1}
$$

- Continuity of $\lambda_{p, \Omega}^{\mathcal{A}}$ with respect to p and Ω ?
- Affine invariant flow
- Neumann boundary conditions
- Characterize John position by solvability of a PDE?

The end

Thank you

[^0]:

