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Rayleigh quotients

For an open and bounded Ω ⊂ Rn and 1 ≤ p, q ≤ ∞, let

λ(Ω) = inf

{
‖|∇f |‖p
‖f‖q

∣∣∣∣ f : Ω→ R smooth and f = 0 in ∂Ω

}

1870 The theory of sound, John William Strutt (3rd Baron Rayleigh)

λ2,Ω = inf

{
‖|∇f |‖2
‖f‖2

∣∣∣∣ f ∈W 1,2
0 (Ω)

}

There is a unique minimizer f ∈W 1,2
0 (Ω).

It solves the differential equation{
∆f + λ2

2,Ωf = 0 in Ω

f = 0 in ∂Ω.

f(x) sin(λ2,Ω · t) describes a vibrating membrane with the boundary
fixed at ∂Ω.
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The Affine Invariant World

Definition

Epf = cn,p

(∫
Sn−1

‖∂ξf‖−np dξ

)−1/n

’99, G. Zhang - The affine Sobolev Inequality

’03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

’09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

’16, Nguyen - New approach to the affine Polya-Szegö principle...
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The Affine Invariant World

Definition

Epf = cn,p

(∫
Sn−1

‖∂ξf‖−np dξ

)−1/n

Ep(f ◦ T ) = Epf for volume-preserving T .

’99, G. Zhang - The affine Sobolev Inequality

‖|∇f |‖1 ≥ E1f ≥ Cn‖f‖ n
n−1

’03, Lutwak, Yang, Zhang - Sharp affine p-Sobolev Inequalities

‖|∇f |‖p ≥ Epf ≥ Cp,n‖f‖ np
n−p

’09, Cianchi, Lutwak, Yang, Zhang - Affine Moser-Trudinger...

’16, Nguyen - New approach to the affine Polya-Szegö principle...
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The Affine Term Epf

Definition

Epf = cn,p

(∫
Sn−1
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f defines a norm
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A simple case

For f = χK , K convex and p = 1
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The polar projection body
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equality only for ellipsoids.



The affine Laplacian ∆Ap

1 Laplacian ∆f = div(∇f)
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p‖x‖

p
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◦
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The affine PDE

The Equation

∆Ap f + λp|f |p−2f = 0 in Ω.

Theorem

1 The solutions are always bounded and belongs to C1,α(Ω) and to
C1,α(Ω) if ∂Ω is C2,α.

2 The solution can be taken positive.

3 It is log-concave if Ω is convex.

4 The differential equation is affine invariant.
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The end

Thank you


