Non-traditional costs and set dualities

Katarzyna Wyczesany

Tel Aviv University

joint work with S. Artstein-Avidan and S. Sadovsky

October 18, 2021

Outline

1 Introduction to optimal transport problem

- Cost induced transforms
- c-subgradient
- Geometric notion of optimality

2 Existence of a potential

Transporting measuresCompatibility

Transport of measures

Let $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$ be two probability measures.

T transports μ to ν if $\mu(T^{-1}(A)) = \nu(A)$ for all ν -measurable sets $A \subset Y$.

Transport of measures

Let $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$ be two probability measures.

T transports μ to ν if $\mu(T^{-1}(A)) = \nu(A)$ for all ν -measurable sets $A \subset Y$. We say that $\pi \in \mathcal{P}(X \times Y)$ is a **transport plan**, $\pi \in \Pi(\mu, \nu)$, if for any measurable sets $A \subset X$ and $B \subset Y$ we have

$$\pi(A\times Y)=\mu(A) \quad \text{and} \quad \pi(X\times B)=\nu(B)$$

Kantorovich duality

Given a cost function $c: X \times Y \to (-\infty, \infty]$ one is interested in finding an **optimal plan**, that is the plan $\pi \in \Pi(\mu, \nu)$ with infimal **total cost**

$$C(\mu,\nu) = \inf \int_{X \times Y} c(x,y) d\pi(x,y)$$

Kantorovich duality

Given a cost function $c: X \times Y \to (-\infty, \infty]$ one is interested in finding an **optimal plan**, that is the plan $\pi \in \Pi(\mu, \nu)$ with infimal **total cost**

$$C(\mu,\nu) = \inf \int_{X \times Y} c(x,y) d\pi(x,y)$$

Theorem

Theorem (Kantorovich) For a lower semicontinuous cost function $c: X \times Y \to (-\infty, \infty]$ and probability measures μ, ν we have

$$C(\mu,\nu) = \sup\left\{\int_X \varphi(x)d\mu(x) + \int_Y \psi(y)d\nu(y) : \varphi(x) + \psi(y) \le c(x,y)\right\},\$$

where $\varphi \in L^1(X,\mu)$, $\psi \in L^1(Y,\nu)$.

Definition. A pair of functions φ, ψ is called *c*-admissible if for all x, y

 $\varphi(x) + \psi(y) \leq c(x,y)$

Definition. A pair of functions φ, ψ is called *c*-admissible if for all x, y

 $\varphi(x) + \psi(y) \le c(x,y)$

Definition. The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

Definition. A pair of functions φ, ψ is called *c*-admissible if for all x, y

 $\varphi(x) + \psi(y) \le c(x, y)$

Definition. The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

Note that:

- *c*-transform is order reversing
- \bullet For any admissible pair (φ,ψ) we have $\psi\leq\varphi^c$
- $\bullet\,$ Further, we have that $\varphi \leq \varphi^{cc}$ and hence $\varphi^{ccc} = \varphi^c$

Definition. A pair of functions φ, ψ is called *c*-admissible if for all x, y

 $\varphi(x) + \psi(y) \le c(x, y)$

Definition. The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

Note that:

- *c*-transform is order reversing
- \bullet For any admissible pair (φ,ψ) we have $\psi\leq\varphi^c$
- $\bullet\,$ Further, we have that $\varphi \leq \varphi^{cc}$ and hence $\varphi^{ccc} = \varphi^c$

The c-class associated to a cost function c is the image of the c-transform.

The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

For $c(x,y) = |x-y|^2/2$ we have

$$\varphi^{c}(y) = \inf_{x} (|x|^{2}/2 - \langle x, y \rangle + |y|^{2}/2 - \varphi(x))$$

= $|y|^{2}/2 - \sup_{x} (\langle x, y \rangle - (|x|^{2}/2 - \varphi(x)))$

The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

For $c(x,y) = |x-y|^2/2$ we have

$$\varphi^{c}(y) = \inf_{x} (|x|^{2}/2 - \langle x, y \rangle + |y|^{2}/2 - \varphi(x))$$

= $|y|^{2}/2 - \sup_{x} (\langle x, y \rangle - (|x|^{2}/2 - \varphi(x)))$

Hence,

$$|y|^2/2 - \varphi^c(y) = \mathcal{L}\left(|x|^2/2 - \varphi(x)\right),\,$$

where we recall

$$\mathcal{L}\varphi(y) = \sup_{x \in \mathbb{R}^n} \left(\langle x, y \rangle - \varphi(x) \right).$$

Katarzyna Wyczesany

The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

For $p(x,y)=-\ln(\langle x,y\rangle-1)_+$ we have

$$\begin{split} \varphi^p(y) &= \inf_x (-\ln(\langle x, y \rangle - 1)_+ - \varphi(x)) \\ &= -\ln\left(\sup_x \frac{(\langle x, y \rangle - 1)_+}{e^{-\varphi(x)}}\right) \end{split}$$

The c-transform of a function $\varphi:X\to [-\infty,+\infty]$ is given by

$$\varphi^{c}(y) = \inf_{x} \left(c(x, y) - \varphi(x) \right)$$

For $p(x,y) = -\ln(\langle x,y\rangle -1)_+$ we have

$$\varphi^{p}(y) = \inf_{x} (-\ln(\langle x, y \rangle - 1)_{+} - \varphi(x))$$
$$= -\ln\left(\sup_{x} \frac{(\langle x, y \rangle - 1)_{+}}{e^{-\varphi(x)}}\right)$$

Which we rewrite as

$$e^{-\varphi^{p}(y)} = \mathcal{A}\left(e^{-\varphi(\cdot)}\right)(y),$$

where

$$\mathcal{A}\varphi(y) = \sup_{x} \frac{(\langle x, y \rangle - 1)_{+}}{\varphi(x)}.$$

c-subgradient

For any admissible pair (φ,φ^c) and any transport plan π we obviously have

$$\sup\left(\int \varphi(x)d\mu(x) + \int \varphi^c(y)d\nu(y)\right) \le \inf \int c(x,y)d\pi(x,y)$$

To find and optimal plan we need "=".

c-subgradient

For any admissible pair (φ,φ^c) and any transport plan π we obviously have

$$\sup\left(\int \varphi(x)d\mu(x) + \int \varphi^c(y)d\nu(y)\right) \le \inf \int c(x,y)d\pi(x,y)$$

To find and optimal plan we need "=".

Definition. Given a *c*-class function $\varphi: X \to [-\infty, \infty]$ consider the set

$$\partial^c \varphi = \{(x,y): \varphi(x) + \varphi^c(y) = c(x,y) < \infty\} \subset X \times Y$$

We call the section $\partial^c \varphi(x)$ the *c*-subgradient of φ at $x \in X$.

Analogously, $\partial^c \varphi^c(y)$ denotes the *c*-subgradient of φ^c at $y \in Y$.

c-cyclic monotonicity

Definition. The set $G \subseteq X \times Y$ is called *c*-cyclically monotone if for any $(x, y) \in G$ we have that $c(x, y) < \infty$ and for any $m \in \mathbb{N}$ and any $\{(x_i, y_i)\}_{i=1}^m \subset G$ we have that

$$\sum_{i=1}^{m} \left(c(x_i, y_i) - c(x_{i+1}, y_i) \right) \le 0,$$

where we identify $x_{m+1} = x_1$.

c-cyclic monotonicity

Definition. The set $G \subseteq X \times Y$ is called *c*-cyclically monotone if for any $(x, y) \in G$ we have that $c(x, y) < \infty$ and for any $m \in \mathbb{N}$ and any $\{(x_i, y_i)\}_{i=1}^m \subset G$ we have that

$$\sum_{i=1}^{m} \left(c(x_i, y_i) - c(x_{i+1}, y_i) \right) \le 0,$$

where we identify $x_{m+1} = x_1$.

Fact. For any cost function c and any function φ in the c-class the set

$$\partial^c \varphi = \{ (x, \partial^c \varphi(x)) : x \in X \} \subset X \times Y$$

is *c*-cyclically monotone.

Rockafellar-Rochet-Rüschendorf theorem

Theorem

Let X, Y be two arbitrary sets, $c : X \times Y \to \mathbb{R}$ a real-valued cost function and fix a set $G \subset X \times Y$. Then G is c-cyclically monotone if and only if there exists a c-class function $\varphi : X \to [-\infty, +\infty]$ such that $G \subset \partial^c \varphi$.

Fix some element $(x_0, y_0) \in G$ and define

$$\varphi(x) = \inf\{c(x, y_m) - c(x_0, y_0) + \sum_{i=1}^m (c(x_i, y_{i-1}) - c(x_i, y_i))\}.$$

Here the infimum runs over all $m \in \mathbb{N}$ and all *m*-tuples $(x_i, y_i) \in G, i = 1, \dots, m$.

Let $p(x,y) = -\ln(\langle x,y\rangle - 1)_+$. Then

$$G = \{(x, y) : \frac{3}{4} \le x < 1, \ y = 3 - 2x\} \cup \{(\frac{3}{2}, \frac{3}{4})\}$$

is *p*-cyclically monotone but does not have a potential.

S. Artstein-Avidan, S. Sadovsky, K. W.

Theorem

Let X, Y be two arbitrary sets and $c : X \times Y \to (-\infty, \infty]$ an arbitrary cost function. For a given subset $G \subset X \times Y$ there exists a *c*-class function $\varphi : X \to [-\infty, \infty]$ such that $G \subset \partial^c \varphi$ if and only if G is *c*-path-bounded.

S. Artstein-Avidan, S. Sadovsky, K. W.

Theorem

Let X, Y be two arbitrary sets and $c : X \times Y \to (-\infty, \infty]$ an arbitrary cost function. For a given subset $G \subset X \times Y$ there exists a *c*-class function $\varphi : X \to [-\infty, \infty]$ such that $G \subset \partial^c \varphi$ if and only if G is *c*-path-bounded.

Definition. The set $G \subset X \times Y$ is called *c*-**path-bounded** if it satisfies that for any $(x_i, y_i), (x_j, y_j) \in G$ there exists some constant M = M(i, j)such that for any $m \in \mathbb{N}$ and any $\{(x_i, y_i) : 2 \leq i \leq m - 1\} \subset G$, letting $(x_i, y_i) = (x_1, y_1)$ and $(x_j, y_j) = (x_m, y_m)$, we have

$$\sum_{i=1}^{m-1} \left(c(x_i, y_i) - c(x_{i+1}, y_i) \right) \le M.$$

Note that the *c*-path-boundedness implies *c*-cyclic monotonicity. Indeed, if $(x_i, y_i) = (x_j, y_j)$, then if there is some path for which the sum is positive, one can duplicate it many times to get paths with arbitrarily large sums.

Note that the *c*-path-boundedness implies *c*-cyclic monotonicity. Indeed, if $(x_i, y_i) = (x_j, y_j)$, then if there is some path for which the sum is positive, one can duplicate it many times to get paths with arbitrarily large sums.

For a real-valued cost we also have that *c*-cyclic monotonicity implies *c*-path-boundedness: consider two points $(x_1, y_1), (x_m, y_m) \in G$, then for any path $\{(x_i, y_i)\}_{i=2}^{m-1}$ we have

$$\sum_{i=1}^{m-1} \left(c(x_i, y_i) - c(x_{i+1}, y_i) \right) + c(x_m, y_m) - c(x_1, y_m) \le 0.$$

Note that the *c*-path-boundedness implies *c*-cyclic monotonicity. Indeed, if $(x_i, y_i) = (x_j, y_j)$, then if there is some path for which the sum is positive, one can duplicate it many times to get paths with arbitrarily large sums.

For a real-valued cost we also have that *c*-cyclic monotonicity implies *c*-path-boundedness: consider two points $(x_1, y_1), (x_m, y_m) \in G$, then for any path $\{(x_i, y_i)\}_{i=2}^{m-1}$ we have

$$\sum_{i=1}^{m-1} \left(c(x_i, y_i) - c(x_{i+1}, y_i) \right) + c(x_m, y_m) - c(x_1, y_m) \le 0.$$

It is important to note that we relied heavily on the fact that $c(x_1, y_m) < \infty$, otherwise this upper bound might be infinite, and therefore meaningless.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Consider discrete probability measures $\mu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{x_i}$, $\nu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{y_i}$.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Consider discrete probability measures $\mu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{x_i}$, $\nu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{y_i}$.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Consider discrete probability measures $\mu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{x_i}$, $\nu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{y_i}$.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Consider discrete probability measures $\mu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{x_i}$, $\nu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{y_i}$.

Theorem (Hall's Marriage Theorem)

A bipartite graph G with a vertex set $V_1 \cup V_2$, such that $|V_1| = |V_2|$, contains a complete matching if and only if G satisfies Hall's condition

 $|S| \leq |N_G(S)|$ for every $S \subset V_1$,

where $N_G(S) \subset V_2$ is the set of all neighbors of vertices in S.

Fix a cost function $c: X \times Y \to (-\infty, \infty]$.

Consider discrete probability measures $\mu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{x_i}$, $\nu = \sum_{i=1}^{m} \frac{1}{m} \mathbb{1}_{y_i}$.

Theorem (Hall's Marriage Theorem)

A bipartite graph G with a vertex set $V_1 \cup V_2$, such that $|V_1| = |V_2|$, contains a complete matching if and only if G satisfies Hall's condition

 $|S| \leq |N_G(S)|$ for every $S \subset V_1$,

where $N_G(S) \subset V_2$ is the set of all neighbors of vertices in S.

The condition can be reformulated in terms of the measures, as

$$\mu(A) \leq \nu(\{y: \exists x \in A, \ c(x,y) < \infty\}) \ \text{ for all } A \subset X.$$

Definition. Let X, Y be measure spaces and $c: X \times Y \to (-\infty, \infty]$ be a measurable cost function. We say that two probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ are *c*-compatible if for any measurable $A \subset X$ it holds that

$$\mu(A) + \nu(\{y : \forall x \in A, \ c(x,y) = \infty\}) \le 1.$$

Definition. Let X, Y be measure spaces and $c: X \times Y \to (-\infty, \infty]$ be a measurable cost function. We say that two probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ are *c*-compatible if for any measurable $A \subset X$ it holds that

$$\mu(A) + \nu(\{y : \forall x \in A, \ c(x,y) = \infty\}) \le 1.$$

Lemma

Let X, Y be measure spaces and $c : X \times Y \to (-\infty, \infty]$ be a measurable cost function. Given $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, assume there exists $\pi \in \Pi(\mu, \nu)$ which is concentrated on

$$S = \{(x,y) \in X \times Y : c(x,y) < \infty\}.$$

Then μ and ν are *c*-compatible.

S. Artstein-Avidan, S. Sadovsky, K. W.

Theorem

Let X = Y be a Polish space, let $c : X \times Y \to (-\infty, \infty]$ be a **continuous** and symmetric cost function, essentially bounded from below with respect to probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$. Assume μ and ν are strongly *c*-compatible, namely satisfy that for any measurable $A \subset X$ we have

$$\mu(A) + \nu(\{y \in Y : \forall x \in A, \ c(x,y) = \infty\}) < 1.$$

If there exists some finite cost plan transporting μ to ν , then there exists a c-class function φ and an optimal transport plan $\pi \in \Pi(\mu, \nu)$ concentrated on $\partial^c \varphi$.

Cost duality for sets

Definition

Let X, Y be two sets and let $c : X \times Y \to (-\infty, \infty]$. Fix $t \in (-\infty, \infty]$ (which will be omitted in the notation as it is a fixed parameter). For $K \subset X$ define the c-dual set of K as

$$K^{c} = \bigcap_{x \in K} \{ y \in Y : c(x, y) \ge t \} = \{ y \in Y : c(x, y) \ge t, \ \forall x \in K \}.$$

Cost duality for sets

Definition

Let X, Y be two sets and let $c : X \times Y \to (-\infty, \infty]$. Fix $t \in (-\infty, \infty]$ (which will be omitted in the notation as it is a fixed parameter). For $K \subset X$ define the c-dual set of K as

$$K^{c} = \bigcap_{x \in K} \{ y \in Y : c(x, y) \ge t \} = \{ y \in Y : c(x, y) \ge t, \ \forall x \in K \}.$$

Lemma

For every $K, L \subset X$, the following hold

- $M \subset (K^c)^c = K^{cc},$
- (i) if $L \subset K$ then $K^c \subset L^c$,
- $W^c = K^{ccc}.$

Cost duality for sets

Definition

Let X, Y be two sets and let $c : X \times Y \to (-\infty, \infty]$. Fix $t \in (-\infty, \infty]$ (which will be omitted in the notation as it is a fixed parameter). For $K \subset X$ define the c-dual set of K as

$$K^{c} = \bigcap_{x \in K} \{ y \in Y : c(x, y) \ge t \} = \{ y \in Y : c(x, y) \ge t, \ \forall x \in K \}.$$

Definition

Fix a cost function c. The c-class of sets consists of all closed sets $K \subset X$ such that there exists some $L \subset X$ with $K = L^c$.

For any set $K \subset X$ we define its c-envelope as the set K^{cc} , which is the smallest c-class set containing K.

S. Artstein-Avidan, S. Sadovsky, K. W.

Theorem

Let $T : \mathcal{P}(X) \to \mathcal{P}(X)$ be an order-reversing quasi-involution, that is, for every $K, L \subset X$ we have:

(i) $K \subset TTK$ (ii) if $K \subset L$ then $TL \subset TK$.

Then, there exists a cost function $c: X \times X \to (-\infty, \infty]$ such that T is induced by c, that is for all $K \subset X$ we have $TK = K^c$.

Thank you for your attention!