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The main results

Theorem 1. Let K and L be star bodies in IR", let 0 < k < n be an integer,
and let f,g be non-negative continuous functions on K and L, respectively, so
that ||g||coc = g(0) = 1. Then
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Here |K| is volume of proper dimension, Gr,_y is the Grassmanian of
(n— k)-dimensional subspaces of IR", and BP} is the class of generalized
k-intersection bodies in IR".
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Theorem 2. Let K and L be two bounded Borel sets in R”. Let f and g be
two bounded non-negative measurable functions on K and L, respectively, and
assume that ||g|l1 > 0 and ||g]jocc = 1. For every 1 < k < n—1 we have that

fo §(C-ovr(K))k max 7meHf
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where C > 0 is an absolute constant.

If K is symmetric convex then both constants are < +/n.
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The outer volume ratio distance from a star body K to the class BP}, is
defined by

1/n
dove (K, BP}) = inf () : Kc D, DeBP},
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The outer volume ratio distance from a star body K to the class BP}, is

defined by
|D| 1/n
dovr(K,Bpg):mf{<|K|> . KcCD, DeBpg}.

It was proved in K., Paouris, Zymonopoulou (2013) that for any
origin-symmetric convex body K in R”

dowe(K, BPR) < €[ T1ogh (<7).
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The outer volume ratio distance from a star body K to the class BP}, is
defined by

|D| 1/n
dovr(K,BPZ):inf{<|K|> . KCD, DeBPZ}.

It was proved in K., Paouris, Zymonopoulou (2013) that for any
origin-symmetric convex body K in R”

dowe(K, BPR) < €[ T1ogh (<7).

For many classes of bodies, this distance is bounded by an absolute constant.
It was proved in K. (2015) that for unconditional convex bodies K one has
dovr(K,BP}) < e. If K is the unit ball of an n-dimensional subspace of

Lp, p> 2, the distance is less than c,/p, where ¢ > 0 is an absolute constant,
as shown by E.Milman and K.-Pajor. The unit balls of subspaces of L, with

0 < p <2 belong to the classes BP}, for all k,n (K., 1998), so the distance for
these bodies is equal to 1.
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It was proved in K., Paouris, Zymonopoulou (2013) that for any
origin-symmetric convex body K in R”

dowe(K, BPR) < €[ T1ogh (<7).

For many classes of bodies, this distance is bounded by an absolute constant.
It was proved in K. (2015) that for unconditional convex bodies K one has
dovr(K,BP}) < e. If K is the unit ball of an n-dimensional subspace of

Lp, p> 2, the distance is less than c,/p, where ¢ > 0 is an absolute constant,
as shown by E.Milman and K.-Pajor. The unit balls of subspaces of L, with

0 < p <2 belong to the classes BP}, for all k,n (K., 1998), so the distance for
these bodies is equal to 1.

The outer volume ratio of K is defined by

1/n
ovr(K) =inf <||£K||> : € origin — symmetric ellipsoids such that K C &
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Slicing inequality for arbitrary functions

Slicing problem: Does there exist an absolute constant C so that for any
né€ N, any 0 < k < n and any origin-symmetric convex body K in IR"

n—k

|K| ™"

<CK max |KNH|?
HeGrn—k
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Slicing inequality for arbitrary functions

Slicing problem: Does there exist an absolute constant C so that for any
né€ N, any 0 < k < n and any origin-symmetric convex body K in IR"

n—k

|K| ™"

<CK max |KNH|?
HeGrn—k

Bourgain (1991) proved that C < O(n1/4log n). Klartag (2006) removed the
logarithmic term from Bourgain's estimate. Chen (2021) proved that
C < o(n®) for every € > 0, as the dimension goes to infinity.
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Slicing inequality for arbitrary functions

Slicing problem: Does there exist an absolute constant C so that for any
né€ N, any 0 < k < n and any origin-symmetric convex body K in IR"

n—k

|K| ™"

<CK max |KNH|?
HeGrn—k

Bourgain (1991) proved that C < O(n1/4log n). Klartag (2006) removed the
logarithmic term from Bourgain's estimate. Chen (2021) proved that
C < o(n®) for every € > 0, as the dimension goes to infinity.

An extension of the slicing problem to arbitrary functions was proved in K.
(2015): for any n € IN, any star body K in IR" and any non-negative
continuous function f on K,

/f < (e-dovr(K,BPﬂ))k|K|k/" max / f.
K HeGrn—k [kAH

If K is symmetric convex, by John's theorem,

F< g f.
/K = (evhy|KI™S e ]
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Slicing inequality from Theorem 1

f f
et = < (dowe(K,BPJ)) " max §K0H
(ng)T |K]|» - rn—k JiAn8
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Slicing inequality from Theorem 1

f f
et = < (dowe(K,BPJ)) " max §K0H
(ng)T |K]|» - rn—k JiAn8

Slicing inequality: Put L= Bj and g=1:

/fs n_|B| (dow(mBPk"))k\Kﬁmﬁx/ f.
K

— —k
n—k B3| KNH
Bn n—k
Note that the constant llél,:‘ is less than 1, and - < k.
2
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Slicing inequality from Theorem 1

f f
et = < (dowe(K,BPJ)) " max ?mH.
(ng)T‘Kh - m—k J1AHE

Slicing inequality: Put L= Bj and g=1:

n e
t/fs n_|B| (%WUCBPDyWKﬁnE&/ f.
K

n—k |ByK| KNH

|Bn|n—k
2

Note that the constant :‘ is less than 1, and nfk < ek,

=
Mean value inequality for the Radon transform: Let K =L, and g=1. Then

fo< n fKan

K| = n—k KNH|"

@mw(K,BPQDknﬁx

Alexander Koldobsky Inequalities for the Radon transform on convex sets.



The Busemann-Petty problem for arbitrary functions

The Busemann-Petty problem (1956): Let K and L be origin-symmetric
convex bodies in IR", and suppose that the (n— 1)-dimensional volume of every
central hyperplane section of K is smaller than the corresponding one for L, i.e.
|KNet| < LN for every € € ™1 Here ¢1 = {x € R": (x,£) =0} is the
central hyperplane perpendicular to & € S$"1 Does it necessarily follow that
the n-dimensional volume of K is smaller than the volume of L, i.e. |K| <|L|?
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convex bodies in IR", and suppose that the (n— 1)-dimensional volume of every
central hyperplane section of K is smaller than the corresponding one for L, i.e.
|KNet| < LN for every € € ™1 Here ¢1 = {x € R": (x,£) =0} is the
central hyperplane perpendicular to & € S$"1 Does it necessarily follow that
the n-dimensional volume of K is smaller than the volume of L, i.e. |K| <|L|?

The answer is affirmative if the dimension n < 4, and it is negative when n > 5.
Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis,
Rogers, Schlumprecht, Zhang
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central hyperplane section of K is smaller than the corresponding one for L, i.e.
|KNet| < LN for every € € ™1 Here ¢1 = {x € R": (x,£) =0} is the
central hyperplane perpendicular to & € S$"1 Does it necessarily follow that
the n-dimensional volume of K is smaller than the volume of L, i.e. |K| <|L|?

The answer is affirmative if the dimension n < 4, and it is negative when n > 5.
Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis,
Rogers, Schlumprecht, Zhang

An extension of the Busemann-Petty problem to arbitrary functions was found
by Zvavitch (2005). Suppose that f is an even continuous strictly positive
function on IR", and K and L are origin-symmetric convex bodies in IR" so that

/ fg/ £, vees" L
KNegL LngL

Does it necessarily follow that fK f< fL f? The answer is the same as for the
volume, affirmative if n <4 and negative if n > 5.
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Isomorphic Busemann-Petty problem

Isomorphic Busemann-Petty problem: Does there exist an absolute constant
C so that for any dimension n, any 0 < k < n, and any pair of origin-symmetric
convex bodies K and L in IR" satisfying

|[KNH| <|LNH|, VH € Grp_y,

we have
n—k

K|

n—

k
n 7

< L
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Isomorphic Busemann-Petty problem
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n—k n—k
n 7

K|

< L
K. (2015):

n—k n—k

IKI"% < (dove(K,BP))|L|
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Isomorphic Busemann-Petty problem

Isomorphic Busemann-Petty problem: Does there exist an absolute constant
C so that for any dimension n, any 0 < k < n, and any pair of origin-symmetric
convex bodies K and L in IR" satisfying

|[KNH| <|LNH|, VH € Grp_y,

we have
n—k

< AL 7

n—k

K|

K. (2015):

n—k n—k
0

k
IKI'™ < (dove(K,BPR)) " IL]
We show a little stronger result:
n—k

K\ T . KOH]
7l < (dove(K, .
(|L < (dor(K,BPR))"  max
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Isomorphic BP for arbitrary functions

K., Zvavitch (2015): Suppose that f is a non-negative continuous function on
IR", 0 < k < n, K, L are star bodies in IR" so that

/ fg/ £, VHE Gry_.
KNH LNH

/KfS (dBM(K,BPZ))k/Lf,

dem(K,BP;) =inf{a>0:3D € BP}: D C K C aD}

is the Banach-Mazur distance from K to the class of generalized k-intersection
bodies.

Then

where
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Another version

Another version of the isomorphic Busemann-Petty problem was proved in K.,
Paouris, Zvavitch (2019+). Let K and L be star bodies in IR", let 0 < k < n be
an integer, and let f, g be non-negative continuous functions on K and L,
respectively, so that ||g]lco = g(0) =1,

/ f</ g, VYHeEGr_y,
KNH LNH
n—k
n n k k "
/ng — (dovr(K,BPZ)) " |K|" (/Lg)

then
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Another version

Another version of the isomorphic Busemann-Petty problem was proved in K.,
Paouris, Zvavitch (2019+). Let K and L be star bodies in IR", let 0 < k < n be
an integer, and let f, g be non-negative continuous functions on K and L,
respectively, so that ||g]lco = g(0) =1,

/ f</ g, VH € Grp_y,
KNH LNH

n—k

1= et ()

Follows from Theorem 1:
f
fL k = n—k
(ng) " IK|

then

Jx
n ﬂH
(dovr(K’BPk)) ngGari( K meg
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B

We need several definitions and facts. A closed bounded set K in IR" is called
a star body if every straight line passing through the origin crosses the
boundary of K at exactly two points different from the origin, the origin is an
interior point of K, and the Minkowski functional of K defined by

[x]lk =min{a>0: x € aK}

is a continuous function on IR". We use the polar formula for the volume |K| of

a star body K :
1 _
KI=2 [ lollz"a.
Sn—l

If f is a continuous function on K, then

ot )
/f:/ / " (r)dr | d6.
K Sn—1 0
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Intersection bodies

For 1 < k < n—1, the (n— k)-dimensional spherical Radon transform
Ro_i : C(S" 1) = C(Gr,_y) is a linear operator defined by

R,_xg(H) = / g(x) dx, VHE Gro_y
Sn—=1nH

for every function g € C(S"1).
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For 1 < k < n—1, the (n— k)-dimensional spherical Radon transform
Ro_i : C(S" 1) = C(Gr,_y) is a linear operator defined by

R,_xg(H) = / g(x) dx, VHE Gro_y
Sn—=1nH

for every function g € C(S"1).
For an integrable function f and any H € Gr,_,

[HPs
= "R ) dr .
fou =it ([ ey s

The class of intersection bodies was introduced by Lutwak, and generalized by
Zhang, as follows. An origin symmetric star body D in IR" is called a
generalized k-intersection body, and we write D € BP}, if there exists a
finite Borel non-negative measure vp on Gr,_j so that for every g € C(5" 1)

/ Ixll5*&(x) dx = / Ro_ie(H) dvp(H).
Sn—1 Gr,_x

When k =1 we get the original Lutwak’s class of intersection bodies
BP] =1In



Proof of Theorem 1.

For a small 6 > 0, let D € BP}, be a body such that K C D and
1 1
D" < (1+9) dove(K,BPY) |K|7, (1)

and let vp be the measure on Gr,_, corresponding to D by the definition of
intersection bodies. Let ¢ = maxy meH f/ meg, then

/ f ge/ g, VH € Gr,_g.
KNH LNH

Writing this in terms of the Radon transform

[BIPs -1
Ry (/0 TR dr> (H)<e Ry (/0 P lg(r ) dr) (H)

for every H € Gr,_. Integrating both sides of the latter inequality with respect
to vp and using the definition of intersection bodies, we get

. llxIl;c* 1
/ 1||><||5 / " (rx) dr | dx (2
= 0
. fIxll* 1
ga/ IxIIp / " g (rx) dr | dx,
sn-1 0
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Proof of Theorem 1; continuation

which is equivalent to
—k —k
[ el e < e [ el se)a )
K L
Since K C D, we have 1 > ||x||x > ||x||p for every x € K. Therefore,

/K Ill5F (x)ebe > /K Il (x)ex > /K .

On the other hand, by a result of V.Milman-Pajor (recall that
g(0) =lgllco =1),

<W>I/<nk> < (Lstoary™

o lIxll p*dx Jpdx

Since fD HXHBkdX = —2|D|, we can estimate the right-hand side of (3) by

n—k
_ n " k
Jimizetia<e 2o ( [&) it
L W L
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Proof of Theorem 1; continuation

Applying (1) and sending & to zero, we see that the latter inequality in
conjunction with (3) implies

n k k
/Kf§€ — (dovi (K, BPR)) " K| "

Now recall that e = max
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Milman's estimate for the isotropic constant
We say that a compact set K with volume 1 in IR" is in isotropic position if for

each ¢ € "1
/<x,£>2dx: Lk
K

where Ly is a constant that is called the isotropic constant of K.
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Milman's estimate for the isotropic constant
We say that a compact set K with volume 1 in IR" is in isotropic position if for

each ¢ € "1
/<x,£>2dx: Lk
K

where Ly is a constant that is called the isotropic constant of K.

Hensley has proved that there exist absolute constants c;, ¢y > 0 so that for any

origin-symmetric convex body K in IR" in isotropic position and any £ € §"1
C1 1 ]
— < |KnN < —=.
o <IKnet|< ]

The following inequality was proved by E. Milman.

For any origin-symmetric isotropic convex body K in IR"

LK S C dovr(K7In),

where C is an absolute constant.
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Proof : Using

n—k

KI\ ™ KNH
(|D|> g(dovr(K,BPZ)) . |

HeGr,—« \DﬁH|

with kK =1 and Hensley's theorem, for any origin-symmetric isotropic convex
bodies K,D in R"
[Knét| Le
dOVI'(K In) ’
LD

1 < dovr(K,Z
ovr( n) ?Sﬂ1|Dﬂ§J‘|_

where c1,c» > 0 are absolute constants, so

LK < € dour(K, ).
Lp

Now put D = B£/|B£\%, and use the fact that Lp is bounded by an absolute
constant.
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