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The main results

Theorem 1. Let K and L be star bodies in IRn, let 0< k < n be an integer,
and let f ,g be non-negative continuous functions on K and L, respectively, so
that ‖g‖∞ = g(0) = 1. Then∫

K f(∫
L g
) n−k

n |K | kn
≤ n

n−k
(
dovr(K ,BPn

k)
)k max

H∈Grn−k

∫
K∩H f∫
L∩H g

.

Here |K | is volume of proper dimension, Grn−k is the Grassmanian of
(n−k)-dimensional subspaces of IRn, and BPn

k is the class of generalized
k-intersection bodies in IRn.

Theorem 2. Let K and L be two bounded Borel sets in Rn. Let f and g be
two bounded non-negative measurable functions on K and L, respectively, and
assume that ‖g‖1 > 0 and ‖g‖∞ = 1. For every 1≤ k ≤ n−1 we have that∫

K f(∫
L g
) n−k

n |K | kn
≤ (C ·ovr(K))k max

H∈Grn−k

∫
K∩H f∫
L∩H g

,

where C > 0 is an absolute constant.

If K is symmetric convex then both constants are ≤
√

n.
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Constants
The outer volume ratio distance from a star body K to the class BPn

k is
defined by

dovr(K ,BPn
k) = inf

{(
|D|
|K |

)1/n
: K ⊂ D, D ∈ BPn

k

}
.

It was proved in K., Paouris, Zymonopoulou (2013) that for any
origin-symmetric convex body K in Rn

dovr(K ,BPn
k)≤ C

√n
k log

3
2

(en
k

)
.

For many classes of bodies, this distance is bounded by an absolute constant.
It was proved in K. (2015) that for unconditional convex bodies K one has
dovr(K ,BPn

k)≤ e. If K is the unit ball of an n-dimensional subspace of
Lp , p > 2, the distance is less than c√p, where c > 0 is an absolute constant,
as shown by E.Milman and K.-Pajor. The unit balls of subspaces of Lp with
0< p ≤ 2 belong to the classes BPn

k for all k,n (K., 1998), so the distance for
these bodies is equal to 1.
The outer volume ratio of K is defined by

ovr(K) = inf

{(
|E|
|K |

)1/n
: E origin− symmetric ellipsoids such that K ⊆ E

}
.
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Slicing inequality for arbitrary functions

Slicing problem: Does there exist an absolute constant C so that for any
n ∈ IN, any 0< k < n and any origin-symmetric convex body K in IRn

|K |
n−k

n ≤ Ck max
H∈Grn−k

|K ∩H| ?

Bourgain (1991) proved that C ≤ O(n1/4 logn). Klartag (2006) removed the
logarithmic term from Bourgain’s estimate. Chen (2021) proved that
C ≤ o(nε) for every ε > 0, as the dimension goes to infinity.

An extension of the slicing problem to arbitrary functions was proved in K.
(2015): for any n ∈ IN, any star body K in IRn and any non-negative
continuous function f on K ,∫

K
f ≤

(
e ·dovr(K ,BPn

k)
)k |K |k/n max

H∈Grn−k

∫
K∩H

f .

If K is symmetric convex, by John’s theorem,∫
K

f ≤ (e
√

n)k |K |k/n max
H∈Grn−k

∫
K∩H

f .
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Slicing inequality from Theorem 1

∫
K f(∫

L g
) n−k

n |K | kn
≤ n

n−k
(
dovr(K ,BPn

k)
)k max

H∈Grn−k

∫
K∩H f∫
L∩H g

.

Slicing inequality: Put L = Bn
2 and g ≡ 1 :∫

K
f ≤ n

n−k
|Bn

2 |
n−k

n

|Bn−k
2 |

(
dovr(K ,BPn

k )
)k |K |

k
n max

H

∫
K∩H

f .

Note that the constant |B
n
2 |

n−k
n

|Bn−k
2 |

is less than 1, and n
n−k ≤ ek .

Mean value inequality for the Radon transform: Let K = L, and g ≡ 1. Then∫
K f
|K | ≤

n
n−k

(
dovr(K ,BPn

k )
)k max

H

∫
K∩H f
|K ∩H| .
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The Busemann-Petty problem for arbitrary functions

The Busemann-Petty problem (1956): Let K and L be origin-symmetric
convex bodies in IRn, and suppose that the (n−1)-dimensional volume of every
central hyperplane section of K is smaller than the corresponding one for L, i.e.
|K ∩ ξ⊥| ≤ |L∩ ξ⊥| for every ξ ∈ Sn−1. Here ξ⊥ = {x ∈ IRn : 〈x , ξ〉= 0} is the
central hyperplane perpendicular to ξ ∈ Sn−1. Does it necessarily follow that
the n-dimensional volume of K is smaller than the volume of L, i.e. |K | ≤ |L|?

The answer is affirmative if the dimension n ≤ 4, and it is negative when n ≥ 5.
Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis,
Rogers, Schlumprecht, Zhang

An extension of the Busemann-Petty problem to arbitrary functions was found
by Zvavitch (2005). Suppose that f is an even continuous strictly positive
function on IRn, and K and L are origin-symmetric convex bodies in IRn so that∫

K∩ξ⊥
f ≤

∫
L∩ξ⊥

f , ∀ξ ∈ Sn−1.

Does it necessarily follow that
∫

K f ≤
∫

L f ? The answer is the same as for the
volume, affirmative if n ≤ 4 and negative if n ≥ 5.
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Isomorphic Busemann-Petty problem

Isomorphic Busemann-Petty problem: Does there exist an absolute constant
C so that for any dimension n, any 0< k < n, and any pair of origin-symmetric
convex bodies K and L in IRn satisfying

|K ∩H| ≤ |L∩H|, ∀H ∈ Grn−k ,

we have
|K |

n−k
n ≤ Ck |L|

n−k
n ?

K. (2015):
|K |

n−k
n ≤

(
dovr(K ,BPn

k)
)k |L|

n−k
n .

We show a little stronger result:(
|K |
|L|

) n−k
n

≤
(
dovr(K ,BPn

k)
)k max

H∈Grn−k

|K ∩H|
|L∩H| .
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Isomorphic BP for arbitrary functions

K., Zvavitch (2015): Suppose that f is a non-negative continuous function on
IRn, 0< k < n, K ,L are star bodies in IRn so that∫

K∩H
f ≤

∫
L∩H

f , ∀H ∈ Grn−k .

Then ∫
K

f ≤
(
dBM(K ,BPn

k)
)k
∫

L
f ,

where
dBM(K ,BPn

k) = inf{a > 0 : ∃D ∈ BPn
k : D ⊂ K ⊂ aD}

is the Banach-Mazur distance from K to the class of generalized k-intersection
bodies.
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Another version

Another version of the isomorphic Busemann-Petty problem was proved in K.,
Paouris, Zvavitch (2019+). Let K and L be star bodies in IRn, let 0< k < n be
an integer, and let f ,g be non-negative continuous functions on K and L,
respectively, so that ‖g‖∞ = g(0) = 1,∫

K∩H
f ≤

∫
L∩H

g , ∀H ∈ Grn−k ,

then ∫
K

f ≤ n
n−k

(
dovr(K ,BPn

k )
)k |K |

k
n

(∫
L

g
) n−k

n

.

Follows from Theorem 1:∫
K f(∫

L g
) n−k

n |K | kn
≤ n

n−k
(
dovr(K ,BPn

k)
)k max

H∈Grn−k

∫
K∩H f∫
L∩H g

.
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Definitions

We need several definitions and facts. A closed bounded set K in IRn is called
a star body if every straight line passing through the origin crosses the
boundary of K at exactly two points different from the origin, the origin is an
interior point of K , and the Minkowski functional of K defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}

is a continuous function on IRn. We use the polar formula for the volume |K | of
a star body K :

|K |= 1
n

∫
Sn−1
‖θ‖−n

K dθ.

If f is a continuous function on K , then∫
K

f =
∫

Sn−1

(∫ ‖θ‖−1
K

0
rn−1f (rθ)dr

)
dθ.
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Intersection bodies
For 1≤ k ≤ n−1, the (n−k)-dimensional spherical Radon transform
Rn−k : C(Sn−1)→ C(Grn−k) is a linear operator defined by

Rn−kg(H) =
∫

Sn−1∩H
g(x) dx , ∀H ∈ Grn−k

for every function g ∈ C(Sn−1).

For an integrable function f and any H ∈ Grn−k ,∫
K∩H

f = Rn−k

(∫ ‖·‖−1
K

0
rn−k−1f (r ·) dr

)
(H).

The class of intersection bodies was introduced by Lutwak, and generalized by
Zhang, as follows. An origin symmetric star body D in IRn is called a
generalized k-intersection body, and we write D ∈ BPn

k , if there exists a
finite Borel non-negative measure νD on Grn−k so that for every g ∈ C(Sn−1)∫

Sn−1
‖x‖−k

D g(x) dx =
∫

Grn−k

Rn−kg(H) dνD(H).

When k = 1 we get the original Lutwak’s class of intersection bodies
BPn

1 = In
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Intersection bodies
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K∩H
f = Rn−k

(∫ ‖·‖−1
K

0
rn−k−1f (r ·) dr

)
(H).
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Proof of Theorem 1.
For a small δ > 0, let D ∈ BPn

k be a body such that K ⊂ D and

|D|
1
n ≤ (1+ δ) dovr(K ,BPn

k) |K |
1
n , (1)

and let νD be the measure on Grn−k corresponding to D by the definition of
intersection bodies. Let ε= maxH

∫
K∩H f /

∫
L∩H g , then∫

K∩H
f ≤ ε

∫
L∩H

g , ∀H ∈ Grn−k .

Writing this in terms of the Radon transform

Rn−k

(∫ ‖·‖−1
K

0
rn−k−1f (r ·) dr

)
(H)≤ ε Rn−k

(∫ ‖·‖−1
L

0
rn−k−1g(r ·) dr

)
(H)

for every H ∈ Grn−k . Integrating both sides of the latter inequality with respect
to νD and using the definition of intersection bodies, we get∫

Sn−1
‖x‖−k

D

(∫ ‖x‖−1
K

0
rn−k−1f (rx) dr

)
dx (2)

≤ ε
∫

Sn−1
‖x‖−k

D

(∫ ‖x‖−1
L

0
rn−k−1g(rx) dr

)
dx ,
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Proof of Theorem 1; continuation

which is equivalent to∫
K
‖x‖−k

D f (x)dx ≤ ε
∫

L
‖x‖−k

D g(x)dx . (3)

Since K ⊂ D, we have 1≥ ‖x‖K ≥ ‖x‖D for every x ∈ K . Therefore,∫
K
‖x‖−k

D f (x)dx ≥
∫

K
‖x‖−k

K f (x)dx ≥
∫

K
f .

On the other hand, by a result of V.Milman-Pajor (recall that
g(0) = ‖g‖∞ = 1),(∫

L ‖x‖
−k
D g(x)dx∫

D ‖x‖
−k
D dx

)1/(n−k)

≤
(∫

L g(x)dx∫
D dx

)1/n

.

Since
∫

D ‖x‖
−k
D dx = n

n−k |D|, we can estimate the right-hand side of (3) by∫
L
‖x‖−k

D g(x)dx ≤ ε n
n−k

(∫
L

g
) n−k

n

|D|
k
n .
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Proof of Theorem 1; continuation

Applying (1) and sending δ to zero, we see that the latter inequality in
conjunction with (3) implies∫

K
f ≤ ε n

n−k
(
dovr(K ,BPn

k)
)k |K |

k
n .

Now recall that ε= max
H∈Grn−k

∫
K∩H

f∫
L∩H

g
.
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Milman’s estimate for the isotropic constant

We say that a compact set K with volume 1 in IRn is in isotropic position if for
each ξ ∈ Sn−1 ∫

K
〈x , ξ〉2dx = L2

K

where LK is a constant that is called the isotropic constant of K .

Hensley has proved that there exist absolute constants c1,c2 > 0 so that for any
origin-symmetric convex body K in IRn in isotropic position and any ξ ∈ Sn−1

c1
LK
≤ |K ∩ ξ⊥| ≤ c2

LK
.

The following inequality was proved by E. Milman.

Theorem
For any origin-symmetric isotropic convex body K in IRn

LK ≤ C dovr(K ,In),

where C is an absolute constant.
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Proof

Proof : Using(
|K |
|D|

) n−k
n

≤
(
dovr(K ,BPn

k)
)k max

H∈Grn−k

|K ∩H|
|D∩H| .

with k = 1 and Hensley’s theorem, for any origin-symmetric isotropic convex
bodies K ,D in IRn

1≤ dovr(K ,In) max
ξ∈Sn−1

|K ∩ ξ⊥|
|D∩ ξ⊥|

≤ dovr(K ,In)
c2
LK
c1
LD

,

where c1,c2 > 0 are absolute constants, so

LK
LD
≤ C dovr(K ,In).

Now put D = Bn
2/|Bn

2 |
1
n , and use the fact that LD is bounded by an absolute

constant.
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