Inequalities for the Radon transform on convex sets.

Alexander Koldobsky

University of Missouri-Columbia
joint work with A.Giannopoulos and A.Zvavitch

Theorem 1. Let K and L be star bodies in \mathbb{R}^{n}, let $0<k<n$ be an integer, and let f, g be non-negative continuous functions on K and L, respectively, so that $\|g\|_{\infty}=g(0)=1$. Then

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g}
$$

Here $|K|$ is volume of proper dimension, $G r_{n-k}$ is the Grassmanian of ($n-k$)-dimensional subspaces of \mathbb{R}^{n}, and $\mathcal{B} \mathcal{P}_{k}^{n}$ is the class of generalized k-intersection bodies in \mathbb{R}^{n}.

Theorem 1. Let K and L be star bodies in \mathbb{R}^{n}, let $0<k<n$ be an integer, and let f, g be non-negative continuous functions on K and L, respectively, so that $\|g\|_{\infty}=g(0)=1$. Then

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g}
$$

Here $|K|$ is volume of proper dimension, $G r_{n-k}$ is the Grassmanian of ($n-k$)-dimensional subspaces of \mathbb{R}^{n}, and $\mathcal{B} \mathcal{P}_{k}^{n}$ is the class of generalized k-intersection bodies in \mathbb{R}^{n}.

Theorem 2. Let K and L be two bounded Borel sets in \mathbb{R}^{n}. Let f and g be two bounded non-negative measurable functions on K and L, respectively, and assume that $\|g\|_{1}>0$ and $\|g\|_{\infty}=1$. For every $1 \leq k \leq n-1$ we have that

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq(C \cdot \operatorname{ovr}(K))^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g}
$$

where $C>0$ is an absolute constant.
If K is symmetric convex then both constants are $\leq \sqrt{n}$.

Constants

The outer volume ratio distance from a star body K to the class $\mathcal{B} \mathcal{P}_{k}^{n}$ is defined by

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)=\inf \left\{\left(\frac{|D|}{|K|}\right)^{1 / n}: K \subset D, D \in \mathcal{B} \mathcal{P}_{k}^{n}\right\} .
$$

The outer volume ratio distance from a star body K to the class $\mathcal{B} \mathcal{P}_{k}^{n}$ is defined by

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)=\inf \left\{\left(\frac{|D|}{|K|}\right)^{1 / n}: K \subset D, D \in \mathcal{B} \mathcal{P}_{k}^{n}\right\} .
$$

It was proved in K., Paouris, Zymonopoulou (2013) that for any origin-symmetric convex body K in \mathbb{R}^{n}

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right) \leq C \sqrt{\frac{n}{k}} \log ^{\frac{3}{2}}\left(\frac{e n}{k}\right) .
$$

Constants

The outer volume ratio distance from a star body K to the class $\mathcal{B} \mathcal{P}_{k}^{n}$ is defined by

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)=\inf \left\{\left(\frac{|D|}{|K|}\right)^{1 / n}: K \subset D, D \in \mathcal{B} \mathcal{P}_{k}^{n}\right\} .
$$

It was proved in K., Paouris, Zymonopoulou (2013) that for any origin-symmetric convex body K in \mathbb{R}^{n}

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right) \leq C \sqrt{\frac{n}{k}} \log ^{\frac{3}{2}}\left(\frac{e n}{k}\right) .
$$

For many classes of bodies, this distance is bounded by an absolute constant. It was proved in K. (2015) that for unconditional convex bodies K one has $d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right) \leq e$. If K is the unit ball of an n-dimensional subspace of $L_{p}, p>2$, the distance is less than $c \sqrt{p}$, where $c>0$ is an absolute constant, as shown by E.Milman and K.-Pajor. The unit balls of subspaces of L_{p} with $0<p \leq 2$ belong to the classes $\mathcal{B} \mathcal{P}_{k}^{n}$ for all $k, n(\mathrm{~K} ., 1998)$, so the distance for these bodies is equal to 1 .

The outer volume ratio distance from a star body K to the class $\mathcal{B P}{ }_{k}^{n}$ is defined by

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)=\inf \left\{\left(\frac{|D|}{|K|}\right)^{1 / n}: K \subset D, D \in \mathcal{B} \mathcal{P}_{k}^{n}\right\} .
$$

It was proved in K., Paouris, Zymonopoulou (2013) that for any origin-symmetric convex body K in \mathbb{R}^{n}

$$
d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right) \leq C \sqrt{\frac{n}{k}} \log ^{\frac{3}{2}}\left(\frac{e n}{k}\right) .
$$

For many classes of bodies, this distance is bounded by an absolute constant. It was proved in K. (2015) that for unconditional convex bodies K one has $d_{\text {ovr }}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right) \leq e$. If K is the unit ball of an n-dimensional subspace of $L_{p}, p>2$, the distance is less than $c \sqrt{p}$, where $c>0$ is an absolute constant, as shown by E.Milman and K.-Pajor. The unit balls of subspaces of L_{p} with $0<p \leq 2$ belong to the classes $\mathcal{B} \mathcal{P}_{k}^{n}$ for all k, n (K., 1998), so the distance for these bodies is equal to 1 .
The outer volume ratio of K is defined by
$\operatorname{ovr}(K)=\inf \left\{\left(\frac{|\mathcal{E}|}{|K|}\right)^{1 / n}: \mathcal{E}\right.$ origin - symmetric ellipsoids such that $\left.K \subseteq \mathcal{E}\right\}$.

Slicing problem: Does there exist an absolute constant C so that for any $n \in \mathbb{N}$, any $0<k<n$ and any origin-symmetric convex body K in \mathbb{R}^{n}

$$
|K|^{\frac{n-k}{n}} \leq C^{k} \max _{H \in G r n-k}|K \cap H| ?
$$

Slicing problem: Does there exist an absolute constant C so that for any $n \in \mathbb{N}$, any $0<k<n$ and any origin-symmetric convex body K in \mathbb{R}^{n}

$$
|K|^{\frac{n-k}{n}} \leq C^{k} \max _{H \in G r n-k}|K \cap H| ?
$$

Bourgain (1991) proved that $C \leq O\left(n^{1 / 4} \log n\right)$. Klartag (2006) removed the logarithmic term from Bourgain's estimate. Chen (2021) proved that $C \leq o\left(n^{\epsilon}\right)$ for every $\epsilon>0$, as the dimension goes to infinity.

Slicing problem: Does there exist an absolute constant C so that for any $n \in \mathbb{N}$, any $0<k<n$ and any origin-symmetric convex body K in \mathbb{R}^{n}

$$
|K|^{\frac{n-k}{n}} \leq C^{k} \max _{H \in G r n-k}|K \cap H| ?
$$

Bourgain (1991) proved that $C \leq O\left(n^{1 / 4} \log n\right)$. Klartag (2006) removed the logarithmic term from Bourgain's estimate. Chen (2021) proved that $C \leq o\left(n^{\epsilon}\right)$ for every $\epsilon>0$, as the dimension goes to infinity.

An extension of the slicing problem to arbitrary functions was proved in K. (2015): for any $n \in \mathbb{N}$, any star body K in \mathbb{R}^{n} and any non-negative continuous function f on K,

$$
\int_{K} f \leq\left(e \cdot d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k}|K|^{k / n} \max _{H \in G r n-k} \int_{K \cap H} f
$$

If K is symmetric convex, by John's theorem,

$$
\int_{K} f \leq(e \sqrt{n})^{k}|K|^{k / n} \max _{H \in G r n-k} \int_{K \cap H} f
$$

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g}
$$

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g}
$$

Slicing inequality: Put $L=B_{2}^{n}$ and $g \equiv 1$:

$$
\int_{K} f \leq \frac{n}{n-k} \frac{\left|B_{2}^{n}\right|^{\frac{n-k}{n}}}{\left|B_{2}^{n-k}\right|}\left(d_{\mathrm{ovr}}\left(K, B P_{k}^{n}\right)\right)^{k}|K|^{\frac{k}{n}} \max _{H} \int_{K \cap H} f
$$

Note that the constant $\frac{\left|B_{2}^{n}\right| \frac{n-k}{n}}{\left|B_{2}^{n-k}\right|}$ is less than 1 , and $\frac{n}{n-k} \leq e^{k}$.

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g} .
$$

Slicing inequality: Put $L=B_{2}^{n}$ and $g \equiv 1$:

$$
\int_{K} f \leq \frac{n}{n-k} \frac{\left|B_{2}^{n}\right|^{\frac{n-k}{n}}}{\left|B_{2}^{n-k}\right|}\left(d_{\mathrm{ovr}}\left(K, B P_{k}^{n}\right)\right)^{k}|K|^{\frac{k}{n}} \max _{H} \int_{K \cap H} f .
$$

Note that the constant $\frac{\left|B_{B^{n}}^{n}\right| \frac{n-k}{n}}{\left|B_{2}^{n-k}\right|}$ is less than 1 , and $\frac{n}{n-k} \leq e^{k}$.
Mean value inequality for the Radon transform: Let $K=L$, and $g \equiv 1$. Then

$$
\frac{\int_{K} f}{|K|} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, B P_{k}^{n}\right)\right)^{k} \max _{H} \frac{\int_{K \cap H} f}{|K \cap H|} .
$$

The Busemann-Petty problem (1956): Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}, and suppose that the ($n-1$)-dimensional volume of every central hyperplane section of K is smaller than the corresponding one for L, i.e. $\left|K \cap \xi^{\perp}\right| \leq\left|L \cap \xi^{\perp}\right|$ for every $\xi \in S^{n-1}$. Here $\xi^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=0\right\}$ is the central hyperplane perpendicular to $\xi \in S^{n-1}$. Does it necessarily follow that the n-dimensional volume of K is smaller than the volume of L, i.e. $|K| \leq|L|$?

The Busemann-Petty problem (1956): Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}, and suppose that the ($n-1$)-dimensional volume of every central hyperplane section of K is smaller than the corresponding one for L, i.e. $\left|K \cap \xi^{\perp}\right| \leq\left|L \cap \xi^{\perp}\right|$ for every $\xi \in S^{n-1}$. Here $\xi^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=0\right\}$ is the central hyperplane perpendicular to $\xi \in S^{n-1}$. Does it necessarily follow that the n-dimensional volume of K is smaller than the volume of L, i.e. $|K| \leq|L|$?

The answer is affirmative if the dimension $n \leq 4$, and it is negative when $n \geq 5$. Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

The Busemann-Petty problem (1956): Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}, and suppose that the ($n-1$)-dimensional volume of every central hyperplane section of K is smaller than the corresponding one for L, i.e. $\left|K \cap \xi^{\perp}\right| \leq\left|L \cap \xi^{\perp}\right|$ for every $\xi \in S^{n-1}$. Here $\xi^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=0\right\}$ is the central hyperplane perpendicular to $\xi \in S^{n-1}$. Does it necessarily follow that the n-dimensional volume of K is smaller than the volume of L, i.e. $|K| \leq|L|$?

The answer is affirmative if the dimension $n \leq 4$, and it is negative when $n \geq 5$. Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

An extension of the Busemann-Petty problem to arbitrary functions was found by Zvavitch (2005). Suppose that f is an even continuous strictly positive function on \mathbb{R}^{n}, and K and L are origin-symmetric convex bodies in \mathbb{R}^{n} so that

$$
\int_{K \cap \xi^{\perp}} f \leq \int_{L \cap \xi^{\perp}} f, \quad \forall \xi \in S^{n-1}
$$

Does it necessarily follow that $\int_{K} f \leq \int_{L} f$? The answer is the same as for the volume, affirmative if $n \leq 4$ and negative if $n \geq 5$.

Isomorphic Busemann-Petty problem: Does there exist an absolute constant C so that for any dimension n, any $0<k<n$, and any pair of origin-symmetric convex bodies K and L in \mathbb{R}^{n} satisfying

$$
|K \cap H| \leq|L \cap H|, \quad \forall H \in G r_{n-k}
$$

we have

$$
|K|^{\frac{n-k}{n}} \leq C^{k}|L|^{\frac{n-k}{n}} ?
$$

Isomorphic Busemann-Petty problem: Does there exist an absolute constant C so that for any dimension n, any $0<k<n$, and any pair of origin-symmetric convex bodies K and L in \mathbb{R}^{n} satisfying

$$
|K \cap H| \leq|L \cap H|, \quad \forall H \in G r_{n-k}
$$

we have

$$
|K|^{\frac{n-k}{n}} \leq C^{k}|L|^{\frac{n-k}{n}} ?
$$

K. (2015):

$$
|K|^{\frac{n-k}{n}} \leq\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k}|L|^{\frac{n-k}{n}}
$$

Isomorphic Busemann-Petty problem: Does there exist an absolute constant C so that for any dimension n, any $0<k<n$, and any pair of origin-symmetric convex bodies K and L in \mathbb{R}^{n} satisfying

$$
|K \cap H| \leq|L \cap H|, \quad \forall H \in G r_{n-k}
$$

we have

$$
|K|^{\frac{n-k}{n}} \leq C^{k}|L|^{\frac{n-k}{n}} ?
$$

K. (2015):

$$
|K|^{\frac{n-k}{n}} \leq\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k}|L|^{\frac{n-k}{n}}
$$

We show a little stronger result:

$$
\left(\frac{|K|}{|L|}\right)^{\frac{n-k}{n}} \leq\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{|K \cap H|}{|L \cap H|}
$$

K., Zvavitch (2015): Suppose that f is a non-negative continuous function on $\mathbb{R}^{n}, 0<k<n, K, L$ are star bodies in \mathbb{R}^{n} so that

$$
\int_{K \cap H} f \leq \int_{L \cap H} f, \quad \forall H \in G r_{n-k} .
$$

Then

$$
\int_{K} f \leq\left(d_{B M}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \int_{L} f,
$$

where

$$
d_{B M}\left(K, \mathcal{B} P_{k}^{n}\right)=\inf \left\{a>0: \exists D \in \mathcal{B} P_{k}^{n}: D \subset K \subset a D\right\}
$$

is the Banach-Mazur distance from K to the class of generalized k-intersection bodies.

Another version

Another version of the isomorphic Busemann-Petty problem was proved in K., Paouris, Zvavitch (2019+). Let K and L be star bodies in \mathbb{R}^{n}, let $0<k<n$ be an integer, and let f, g be non-negative continuous functions on K and L, respectively, so that $\|g\|_{\infty}=g(0)=1$,

$$
\int_{K \cap H} f \leq \int_{L \cap H} g, \quad \forall H \in G r_{n-k}
$$

then

$$
\int_{K} f \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, B P_{k}^{n}\right)\right)^{k}|K|^{\frac{k}{n}}\left(\int_{L} g\right)^{\frac{n-k}{n}}
$$

Another version of the isomorphic Busemann-Petty problem was proved in K., Paouris, Zvavitch (2019+). Let K and L be star bodies in \mathbb{R}^{n}, let $0<k<n$ be an integer, and let f, g be non-negative continuous functions on K and L, respectively, so that $\|g\|_{\infty}=g(0)=1$,

$$
\int_{K \cap H} f \leq \int_{L \cap H} g, \quad \forall H \in G r_{n-k},
$$

then

$$
\int_{K} f \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, B P_{k}^{n}\right)\right)^{k}|K|^{\frac{k}{n}}\left(\int_{L} g\right)^{\frac{n-k}{n}} .
$$

Follows from Theorem 1:

$$
\frac{\int_{K} f}{\left(\int_{L} g\right)^{\frac{n-k}{n}}|K|^{\frac{k}{n}}} \leq \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{L \cap H} g} .
$$

We need several definitions and facts. A closed bounded set K in \mathbb{R}^{n} is called a star body if every straight line passing through the origin crosses the boundary of K at exactly two points different from the origin, the origin is an interior point of K, and the Minkowski functional of K defined by

$$
\|x\|_{K}=\min \{a \geq 0: x \in a K\}
$$

is a continuous function on \mathbb{R}^{n}. We use the polar formula for the volume $|K|$ of a star body K :

$$
|K|=\frac{1}{n} \int_{S^{n-1}}\|\theta\|_{K}^{-n} d \theta
$$

If f is a continuous function on K, then

$$
\int_{K} f=\int_{S^{n-1}}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-1} f(r \theta) d r\right) d \theta
$$

For $1 \leq k \leq n-1$, the ($n-k$)-dimensional spherical Radon transform $R_{n-k}: C\left(\bar{S}^{n-1}\right) \rightarrow C\left(G r_{n-k}\right)$ is a linear operator defined by

$$
R_{n-k} g(H)=\int_{S^{n-1} \cap H} g(x) d x, \quad \forall H \in G r_{n-k}
$$

for every function $g \in C\left(S^{n-1}\right)$.

For $1 \leq k \leq n-1$, the $(n-k)$-dimensional spherical Radon transform $R_{n-k}: C\left(\bar{S}^{n-1}\right) \rightarrow C\left(G r_{n-k}\right)$ is a linear operator defined by

$$
R_{n-k} g(H)=\int_{S^{n-1} \cap H} g(x) d x, \quad \forall H \in G r_{n-k}
$$

for every function $g \in C\left(S^{n-1}\right)$.
For an integrable function f and any $H \in G r_{n-k}$,

$$
\int_{K \cap H} f=R_{n-k}\left(\int_{0}^{\|\cdot\|_{K}^{-1}} r^{n-k-1} f(r \cdot) d r\right)(H)
$$

For $1 \leq k \leq n-1$, the ($n-k$)-dimensional spherical Radon transform $R_{n-k}: C\left(\bar{S}^{n-1}\right) \rightarrow C\left(G r_{n-k}\right)$ is a linear operator defined by

$$
R_{n-k} g(H)=\int_{S^{n-1} \cap H} g(x) d x, \quad \forall H \in G r_{n-k}
$$

for every function $g \in C\left(S^{n-1}\right)$.
For an integrable function f and any $H \in G r_{n-k}$,

$$
\int_{K \cap H} f=R_{n-k}\left(\int_{0}^{\|\cdot\|_{K}^{-1}} r^{n-k-1} f(r \cdot) d r\right)(H)
$$

The class of intersection bodies was introduced by Lutwak, and generalized by Zhang, as follows. An origin symmetric star body D in \mathbb{R}^{n} is called a generalized k-intersection body, and we write $D \in \mathcal{B} \mathcal{P}_{k}^{n}$, if there exists a finite Borel non-negative measure ν_{D} on $G r_{n-k}$ so that for every $g \in C\left(S^{n-1}\right)$

$$
\int_{S^{n-1}}\|x\|_{D}^{-k} g(x) d x=\int_{G r_{n-k}} R_{n-k} g(H) d \nu_{D}(H)
$$

When $k=1$ we get the original Lutwak's class of intersection bodies $\mathcal{B} \mathcal{P}_{1}^{n}=\mathcal{I}_{n}$

For a small $\delta>0$, let $D \in \mathcal{B P} \mathcal{F}_{k}^{n}$ be a body such that $K \subset D$ and

$$
\begin{equation*}
|D|^{\frac{1}{n}} \leq(1+\delta) d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)|K|^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

and let ν_{D} be the measure on $G r_{n-k}$ corresponding to D by the definition of intersection bodies. Let $\varepsilon=\max _{H} \int_{K \cap H} f / \int_{L \cap H} g$, then

$$
\int_{K \cap H} f \leq \varepsilon \int_{L \cap H} g, \quad \forall H \in G r_{n-k}
$$

Writing this in terms of the Radon transform

$$
\begin{equation*}
R_{n-k}\left(\int_{0}^{\|\cdot\|_{k}^{-1}} r^{n-k-1} f(r \cdot) d r\right)(H) \leq \varepsilon R_{n-k}\left(\int_{0}^{\|\cdot\|_{L}^{-1}} r^{n-k-1} g(r \cdot) d r\right)(\tag{H}
\end{equation*}
$$

for every $H \in G r_{n-k}$. Integrating both sides of the latter inequality with respect to ν_{D} and using the definition of intersection bodies, we get

$$
\begin{align*}
& \int_{S^{n-1}}\|x\|_{D}^{-k}\left(\int_{0}^{\|x\|_{K}^{-1}} r^{n-k-1} f(r x) d r\right) d x \tag{2}\\
& \leq \varepsilon \int_{S^{n-1}}\|x\|_{D}^{-k}\left(\int_{0}^{\|x\|_{L}^{-1}} r^{n-k-1} g(r x) d r\right) d x
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
\int_{K}\|x\|_{D}^{-k} f(x) d x \leq \varepsilon \int_{L}\|x\|_{D}^{-k} g(x) d x \tag{3}
\end{equation*}
$$

Since $K \subset D$, we have $1 \geq\|x\|_{K} \geq\|x\|_{D}$ for every $x \in K$. Therefore,

$$
\int_{K}\|x\|_{D}^{-k} f(x) d x \geq \int_{K}\|x\|_{K}^{-k} f(x) d x \geq \int_{K} f
$$

On the other hand, by a result of V.Milman-Pajor (recall that $g(0)=\|g\|_{\infty}=1$),

$$
\left(\frac{\int_{L}\|x\|_{D}^{-k} g(x) d x}{\int_{D}\|x\|_{D}^{-k} d x}\right)^{1 /(n-k)} \leq\left(\frac{\int_{L} g(x) d x}{\int_{D} d x}\right)^{1 / n}
$$

Since $\int_{D}\|x\|_{D}^{-k} d x=\frac{n}{n-k}|D|$, we can estimate the right-hand side of (3) by

$$
\int_{L}\|x\|_{D}^{-k} g(x) d x \leq \varepsilon \frac{n}{n-k}\left(\int_{L} g\right)^{\frac{n-k}{n}}|D|^{\frac{k}{n}}
$$

Applying (1) and sending δ to zero, we see that the latter inequality in conjunction with (3) implies

$$
\int_{K} f \leq \varepsilon \frac{n}{n-k}\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k}|K|^{\frac{k}{n}} .
$$

Now recall that $\varepsilon=\max _{H \in G r_{n-k}} \frac{\int_{K \cap H} f}{\int_{\llcorner\cap H} g}$.

We say that a compact set K with volume 1 in \mathbb{R}^{n} is in isotropic position if for each $\xi \in S^{n-1}$

$$
\int_{K}\langle x, \xi\rangle^{2} d x=L_{K}^{2}
$$

where L_{K} is a constant that is called the isotropic constant of K.

We say that a compact set K with volume 1 in \mathbb{R}^{n} is in isotropic position if for each $\xi \in S^{n-1}$

$$
\int_{K}\langle x, \xi\rangle^{2} d x=L_{K}^{2}
$$

where L_{K} is a constant that is called the isotropic constant of K.
Hensley has proved that there exist absolute constants $c_{1}, c_{2}>0$ so that for any origin-symmetric convex body K in \mathbb{R}^{n} in isotropic position and any $\xi \in S^{n-1}$

$$
\frac{c_{1}}{L_{K}} \leq\left|K \cap \xi^{\perp}\right| \leq \frac{c_{2}}{L_{K}}
$$

The following inequality was proved by E. Milman.

Theorem

For any origin-symmetric isotropic convex body K in \mathbb{R}^{n}

$$
L_{K} \leq C d_{\mathrm{ovr}}\left(K, \mathcal{I}_{n}\right)
$$

where C is an absolute constant.

Proof: Using

$$
\left(\frac{|K|}{|D|}\right)^{\frac{n-k}{n}} \leq\left(d_{\mathrm{ovr}}\left(K, \mathcal{B} \mathcal{P}_{k}^{n}\right)\right)^{k} \max _{H \in G r_{n-k}} \frac{|K \cap H|}{|D \cap H|} .
$$

with $k=1$ and Hensley's theorem, for any origin-symmetric isotropic convex bodies K, D in \mathbb{R}^{n}

$$
1 \leq d_{\mathrm{ovr}}\left(K, \mathcal{I}_{n}\right) \max _{\xi \in S^{n-1}} \frac{\left|K \cap \xi^{\perp}\right|}{\left|D \cap \xi^{\perp}\right|} \leq d_{\mathrm{ovr}}\left(K, \mathcal{I}_{n}\right) \frac{\frac{c_{2}}{L_{K}}}{\frac{c_{1}}{L_{D}}}
$$

where $c_{1}, c_{2}>0$ are absolute constants, so

$$
\frac{L_{K}}{L_{D}} \leq C d_{\mathrm{ovr}}\left(K, \mathcal{I}_{n}\right)
$$

Now put $D=B_{2}^{n} /\left|B_{2}^{n}\right|^{\frac{1}{n}}$, and use the fact that L_{D} is bounded by an absolute constant.

