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A brief history of convexity: convex bodies and the Minkowski sum

A subset K of Rn is said to be a convex body if it is a compact, convex set
with non-empty interior. We denote the set of all convex bodies in Rn by Kn.

The collection Kn is equipped with a natural addition, called Minkowski
addition. That is, given K ,L ∈ Kn, one has

K +L = {x + y : x ∈ K ,y ∈ L}= {x ∈ Rn : K ∩ (x −L) 6= ∅}.
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A brief history of convexity: the Brunn-Minkowski inequality

Brunn-Minkowski Inequality: Given K ,L ∈ Kn,

Voln(K +L)1/n ≥ Voln(K)1/n +Voln(L)1/n,

with equality if, and only if, L = λK + v , with λ > 0 and v ∈ Rn.

We remark that from the AG-GM and the homogeniety of the volume, the
Brunn-Minkowski inequality implies the weaker geometric inequality:

Voln((1− t)K + tL)≥ Voln(K)1−tVoln(L)t , t ∈ (0,1).
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Minkowski’s first inequality and the isoperimetric inequality

Minkowski defined the following notion of surface area of a convex body K :

Voln−1(∂K) := lim
ε→0+

Voln(K +εBn
2 )−Voln(K)
ε

,

where Bn
2 := {x ∈ Rn : |x | ≤ 1} denotes the Euclidean unit ball and we set Sn−1

to be its boundary.

Applying the Brunn-Minkowski inequality to the above
definition, one obtains the following isoperimetric inequality, which is often
referred to as Minkowski’s first inequality:

Voln−1(∂K)≥ nVoln(K)
n−1

n Voln(Bn
2 )

1
n .

Finally, using the fact that Voln−1(Sn−1) = nVoln(Bn
2 ), the above becomes:(

Voln−1(∂K)
Voln−1(Sn−1)

) 1
n−1

≥
(

Voln(K)
Voln(Bn

2 )

) 1
n
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Brunn-Minkowski inequality to β-concave measures

Theorem (Brunn-Minkowski for β-concave measures)

Let s ∈ [−1/n,+∞] and t ∈ (0,1). Given any measure µ on Rn defined by
dµ(x) = φ(x)dx, where φ : Rn→ R+ is s-concave on its support, and any pair
of Borel sets A,B ⊂ Rn, one has that µ is β-concave for β = s

1+ns ∈ [−∞,1/n],
i.e., that

µ((1− t)A+ tB)≥ [(1− t)µ(A)β + tµ(B)β ]1/β

Example
Consider the standard Gaussian probability measure given by.
dγn(x) = 1

(2π)n/2 e−|x |
2/2. Then one has the geometric Gaussian BM inequality:

for any pair of Borel sets A,B ⊂ Rn,

γn((1− t)A+ tB)≥ γn(A)1−tγn(B)t , dγn(x) := 1
(2π) n

2
e−
|x|2
2 dx .

One way to obtain this inequality is with use of the Prékopa-Leindler inequality.
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A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.
Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.
Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.
Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.
Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.

Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A brief history of convexity the Rogers-Shephard inequality

In the 1950s, Rogers and Shephard proved that one can bound the volume of
K −K from above in terms of the volume of K .

Theorem (Rogers-Shephard Inequality)

Given any K ∈ Kn, one has

Voln(K −K)≤
(
2n
n

)
Voln(K),

with equality if, and only if, K is an n-dimensional simplex (i.e. the convex hull
of n+1 affinely independent points).

Theorem (Schneider, 1970)

Given K ∈ Kn and any p ∈ IN,

Volnp(DP(K))≤
(
np+n

n

)
Voln(K)p ,

where Dp(K) := {(x1, . . . ,xp) ∈ (Rn)p : K ∩ (K + x1)∩·· ·∩ (K + xp) 6= ∅}.
Moreover, equality is attained if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



A Rogers-Shephard type inequality for general measures

Question:
Given any Borel measure µ on Rn, can one expect to have

µ(K −K)≤
(
2n
n

)
µ(K)?

The answer to the above question turns out to be false. One can construct
examples where the left-hand side of the above inequality may be a fixed
positive constant, whereas, the µ measure of the right-hand side may be made
arbitrarily small. For example, let dµ(x) = e−|x |

2/2dx and K be the closed
Euclidean unit ball sufficiently far away from the origin.
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A Rogers-Shephard type inequality for general measures

Theorem (Alonso-G.-Cifre-R.-Yepes-Zvavitch)

Let µ be a measure on Rn given by dµ(x) = φ(x)dx, where φ : Rn→ [0,∞) is
radially decreasing, i.e, for every x ∈ Rn and every t ∈ (0,1), one has
φ(tx)≥ φ(x). Then, for any K ∈ Kn, one has

µ(K −K)≤
(
2n
n

)
min{µ(K),µ(−K)}

where
µ(K) = 1

Voln(K)

∫
K
µ(−y +K)dy .

Moreover, if φ is continuous at the origin, then equality holds above if, and
only if, µ is a positive multiple of the Lebesgue measure on K −K and K is a
simplex.
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An example demonstrating the necessity of the radial decay assumption

Let 0< ε < δ < 2, and consider the measure dµ(x) = ϕ(x)dx on R2 defined by
ϕ(x) = 1 if x ∈ δB2

2 ∪ (2B2
2 \ (2− ε)B2

2), and ϕ(x) = 0 otherwise. Then one has

µ(B2
2 −B2

2)> 6sup{µ(x +B2
2) : x ∈ R2}.
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A generalization of Schneider’s result

Theorem (R., 2019)

Fix p ∈ IN. Let η be a measure on Rn given by dη(x) = ψ(x)dx, where
ψ : Rn→ R+ is

( 1
s
)
-concave, for some s ∈ (0,∞), and such that

ψ(0) = ‖ψ‖∞. For each i = 1, . . . ,p let µi be measure on Rn with density
φi : Rn→ R+ that is radially decreasing. Let ν =

∏p
i=1µi be the associated

product measure on (Rn)p having density φ. For each i = 1, . . . ,p let
Hi ∈ Gn,mi Hi ∈ Gn,mi be an mi -dimensional subspace of the ith copy of Rn,
and set H̄ = H1×·· ·×Hp be the associated product subspace of (Rn)p .

Then,
for any convex body K ⊂ Rn with η(K)> 0,

ν
(
Dp(K)∩ H̄

)
≤ c(n,m,s)

η(K)

∫
K

p∏
i=1

µi [(y −K)∩Hi ]dη(y),

where m = m1 + · · ·+mp and where

c(n,m,s) =
(
n+m+ s
m+ s

)
.
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The support function of a convex body

Given any K ∈ Kn, the support function of K is defined to be

hK (u) := max
x∈K
〈x ,u〉, u ∈ Sn−1

Moreover, we remark the one may redefine the Minkowski sum of two convex
bodies K and L as hK+L(u) = hK (u) +hL(u), u ∈ Sn−1.
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Projection bodies and the covariogram

Given any K ∈ Kn, the projection body of K is the convex body ΠK whose
support function is given by

hΠK (θ) = Voln−1(K |θ⊥), θ ∈ Sn−1, θ⊥ = {x ∈ Rn : 〈x ,θ〉= 0}.

The covariogram of a convex body K is defined to be

gK (x) = Voln(K ∩ (x +K)) = (χK ∗χ−K )(x).
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Projection bodies continued

The covariogram plays an essential role in many question in convex geometry.
In particular, as was established by Matherian, its radial derivatives have a
critical connection with ΠK :

∂

∂r gK (rθ) |r=0=−1
2

∫
∂K
|〈θ,nK (y)〉|dy =−Voln−1(K |θ⊥) =−hΠK (θ),

where nK (y) is the unit outer normal at the point y ∈ ∂K .
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Projection bodies continued

Projection bodies were used independently by both Petty’s and Schneider’s
solution to the so-called Shephard problem:

if, for any pair of origin symmetric
members K ,L ∈ Kn, one has that

hΠK (θ) = Voln−1(K |θ⊥)≤ Voln−1(L|θ⊥) = hΠL(θ) for all θ ∈ Sn−1,

must one have Voln(K)≤ Voln(L)? It was shown that the answer is positive if
n ≤ 2, and negative if n ≥ 3.
A profound question of Petty from the 1960s asks whether ellipsoids minimize
the affine invariant PPI(K) := Voln(K)1−nVoln(ΠK) over all origin-symmetric
K ∈ Kn, n ≥ 3. It was shown by Saroglou that PPI(·) is not preserved under
Steiner symmetrization, which attests to the conjectures difficulty.
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Projection bodies were used independently by both Petty’s and Schneider’s
solution to the so-called Shephard problem: if, for any pair of origin symmetric
members K ,L ∈ Kn, one has that

hΠK (θ) = Voln−1(K |θ⊥)≤ Voln−1(L|θ⊥) = hΠL(θ) for all θ ∈ Sn−1,

must one have Voln(K)≤ Voln(L)?

It was shown that the answer is positive if
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Progress

There is a deep history to Petty’s problem, which is impossible to encapsulate
into one slide, so for a comprehensive survey of the problem’s history,
significance, and contributions, see the books of Schneider and Gardner.

Here
we collection some key points:
Schneider established a class reduction: if one knows the Busemann-Petty
centroid inequality, with equality conditions, for polar zoniods, then from this,
one can deduce Petty’s conjectured inequality, with its associated equality
conditions.
Lutwak has many works in the 1980s concerning Petty’s conjecture.
In 2017 some progress was made: Petty’s conjecture was shown to hold true in
a smooth neighborhood of the Euclidean unit ball by Sargolou and Zvavitch
based on a work of Fish, Nazarov, Ryabogin and Zvavitch on fixed points of
the intersection body operator.
More progress has appeared due to Ivaki, and more recently, by O.
Ortega-Moreno and F. Schuster concerning fixed points of Minkowski
Valuations.
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Petty’s projection inequality

While Petty’s conjecture still remains open, one may instead consider the affine
invariant quantity

Voln(K)n−1Vol((ΠK)◦),

where L◦ = {x ∈ Rn : hL(x)≤ 1} denotes the polar body of a convex body L
containing the origin.

In the 1970s Petty established an extremely strong affine isoperimetric
inequality, which implies the usual isoperimetric inequality for convex bodies.

Petty’s Projection Inequality: Given K ∈ Kn,

Voln(K)n−1Voln((ΠK)◦)≤
(

Voln(Bn
2 )

Voln−1(Bn−1
2 )

)n

with equality if, and only if, K is an ellipsoid.

It was shown by Zhang that Petty’s Projection inequality not only implies but
is, in fact, equivalent to an affine version of the Sobolev inequality.
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Zhang’s inequality

A reverse form of Petty’s Projection inequality was established by Zhang in
1991.

Zhang’s Inequality: Given K ∈ Kn,

Voln(K)n−1Voln((ΠK)◦)≥
(2n

n
)

nn ,

with equality if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



Zhang’s inequality

A reverse form of Petty’s Projection inequality was established by Zhang in
1991.

Zhang’s Inequality: Given K ∈ Kn,

Voln(K)n−1Voln((ΠK)◦)≥
(2n

n
)

nn ,

with equality if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



Zhang’s inequality

A reverse form of Petty’s Projection inequality was established by Zhang in
1991.

Zhang’s Inequality: Given K ∈ Kn,

Voln(K)n−1Voln((ΠK)◦)≥
(2n

n
)

nn ,

with equality if, and only if, K is a simplex.

Michael Roysdon Roger-Shephard and Zhang inequalities for general measures



Zhang’s inequality continued

In the 1990s Gardner and Zhang found a family of convex bodies, called the
radial mean bodies, which they used to connect the Rogers-Shephard inequality
to Zhang’s projection inequality in a continuous way. Their result reads:

Theorem (Gardner-Zhang)

Let K ∈ Kn. For each −1< p ≤ q, there exist convex bodies RpK ,RqK such
that

Voln(K −K)≤ cn,pVoln(RpK)≤ cn,qVoln(RqK)≤ nnVoln(K)nVoln((ΠK)◦),

with equality if, and only if, K is a simplex. Here

cn,r = (nB(r +1,n))−1/r

whenever r >−1 and B denotes the Beta function.

They showed that, when choosing p = q = n, then one has
Voln(RnK) = Voln(K), and the far left side becomes the Rogers-Shephard
inequality and the far right side Zhang’s inequality.
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Zhang’s inequality for a general measure

Theorem (Gardner-Zhang)

For any convex body K ∈ Rn, one has

K −K ⊂ nVoln(K)(ΠK)◦.

Corollary (Zhang’s inequality for a general measure)
Let µ be a measure that is absolutely continuous with respect to the Lebesgue
measure on Rn and K ∈ Kn. Then one has

1
Voln(K)

∫
Rn

gK (x)dµ(x)≤ µ(nVoln(K)(ΠK)◦).

This inequality is asymptotically sharp.
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Measure theoretic projection bodies

Given a measure µ on Rn defined by dµ(x) = ϕ(x)dx , with ϕ : Rn→ R+ and a
convex body K , the µ-covariogram of K is defined by

gµ,K (x) = µ(K ∩ (x +K)) =
∫

K∩(x+K)
ϕ(y)dy .

Figure: Left: A convex body K ⊂ R2 centered at the origin. Right: Π◦
γ2K .
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Measure theoretic projection bodies

Theorem (Langharst-.R.-Zvavitch, 2021)
Let F : R+→ R+ be an increasing, invertiable, and let µ be a measure that if
F (t)-concave on Rn have a non-negative density ϕ. Then, for any convex body
K with µ(K)> 0 and such that

∫
K ∇ϕ(x)dx = 0, one has

K −K ⊂ F (µ(K))
F ′(µ(K)) (ΠµK)◦ .

Theorem (Langharst-R.-Zvavitch, 2021)

Let K ∈ Kn. Given a measure µ on Rn defined by dµ(x) = ϕ(x)dx, with
ϕ : Rn→ R+ locally Lipschitz in a domain containing K, the following holds:
for each θ ∈ Sn−1

∂

∂r gµ,K (rθ) |r=0=−1
2

∫
∂K
|〈θ,nK (y)〉|ϕ(y)dy +ηµ,K ,

where ηµ,K = 1
2
∫

K ∇ϕ(y)dy .
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Measure theoretic projection bodies

With the above theorem in hand, it makes sense to define the µ-projection
body of ΠµK of K as the convex body whose support function is defined by

hΠµK (θ) = 1
2

∫
∂K
|〈θ,nK (y)〉|ϕ(y)dy , θ ∈ Sn−1.

These bodies were considered at an earlier time by G. Livshyts in her solution
of a Shephard-type problem for general measures.
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A general inequality

Lemma (L.-R.-Z., 2021)
Let ν be a measure with radially non-decreasing, continuous density ϕ, and let
f : Rn→ R+ be a compactly supported concave function such that
0 ∈ int(supp(f )) and f (0) = max f (x). If q : R+→ R is an increasing function,
then we have∫

supp(f )
q(f (x))dν(x)≤ β

∫
Sn−1

∫ z(θ)

0
ϕ(rθ)rn−1drdθ,

where

z(θ) =−
(
df (rθ)
dr

∣∣∣∣
r=0

)−1
f (0) and β = n

∫ 1

0
q(f (0)t)(1− t)n−1dt.

Equality occurs if, and only if, ϕ is a constant.
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Zhang’s inequality for two measures

Theorem (L.-R.-Z., 2021)

Let K ∈ Kn, µ,ν be measures on Rn, with the density of µ locally Lipschitz,
and the density of ν radially non-decreasing. Let F : R+→ R+ be an
increasing, invertiable, and differentiable function such that F ◦gµ,K is
concave. Then one has

1
µ(K)

∫
K
ν(y −K)dµ(y)≤ n

µ(K) ·ν
(

F (µ(K))
F ′(µ(K)) (ΠµK −ηµ,K )◦

)
×
∫ 1

0
F−1(F (µ(K))t)(1− t)n−1dt.
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Zhang’s inequality for two measures

We obtain the following immediate corollary

Corollary
Suppose s > 0 and ν is a measure with radially non-decreasing density, and
that µ is an s-concave measure. Then, for any K ∈ Kn, one has(n+s−1

n
)

µ(K)

∫
K
ν(y −K)dµ(y)≤ ν(s−1µ(K)(ΠµK −ηµ,K )◦).

In particular, if µ and ν are taken to be the Lebesgue measure on Rn, then we
recover Zhang’s inequality.
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Zhang’s inequality for two measures

We obtain the following immediate corollary

Corollary
Suppose s > 0 and ν is a measure with radially non-decreasing density, and
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A functional version of the µ-covariogram.

Let K ∈ Kn and dµ(x) = ϕ(x)dx be a measure on Rn with non-negative
density ϕ.

Given non-negative f ∈ L1loc (Rn), we define

gµ,f (K ,x) :=
∫

K∩(K+x)
f (y − x)ϕ(y)dy .

Theorem (L.-R.-Z., 2021)
Under the above assumptions, with the additional assumption of differentiablity
of f and a Lipschitz condition on ϕ, one has

d
dr gµ,f (K , rθ)|r=0 = 1

2

∫
K
〈f∇ϕ−ϕ∇f ,θ〉dy

− 1
2

∫
∂K
|〈θ,nK (y)〉|f (y)dµ(y).
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Thanks

Thanks for listening, everyone! Questions?
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