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Dirac operator was first introduced by P.A. Dirac 1928.
While studing spin-1/2 particles in electron-magnetic fields,
Dirac looked for square root P = VA of A = —z,-ai.

Naturally letting P := ¥;y;0x,, here y;’s are n x n matrices, then
)//-2 =-L yiyj+vyyi=0,Vi#]j.

Algebra generated by this kind of y; is called Clifford algebra.
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Let V be an n-dimensional real vector space, equiped with a
inner product ¢, ).

Definition (Clifford algebra)

The Clifford algebra on V is the algebra generated by all the
elements of V and a multiplication "" satisfying

v-wH+w-v=-2v,w), Yv,weV. (1)

Choosing an orthonormal basis {eq, - - , e} of V, then

ef=-1, e-e=-¢-6€ i+j i=1.--,n (2)
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

QX - Y y+tVY - X-y=-2(X,Y)y,
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

QX Y y+Y -X-y=-2(X,Y)y,
Q Vx(Y -¢)=VMY -y + Y. Vxy,
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

QX Y y+Y -X-y=-2(X,Y)y,
Q Vx(Y -¢)=VMY -y + Y. Vxy,
9 <XW,¢>:—<¢,X(P>,
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

Q X Y y+Y - X-y=-2(X,Y)y,
Q Vx(Y-y) =V MY -y+ Y. Vxy,
Q X-v,0) =W, X9,

Q X {(y.p) = (Vx¥,¢) + (¥, Vxo).
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

QX Y y+Y - X-y=-2(X,Y)y,
Q Vx(Y-y) =V MY -y+ Y. Vxy,
Q X-v,0) =W, X9,

Q X<, o) = (Vxy, ) + ¥, Vo).

V is called a Dirac connection.
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Let (E, M™) be a vector bundle with metric ¢, ) over manifold M.

(E,M™.(,),-,V) is a Dirac bundle, if the following properties
hold for all X, Y e [(TM),y, ¢ € T(E):

QX Y y+Y - X-y=-2(X,Y)y,
Q Vx(Y-y) =V MY -y+ Y. Vxy,
Q X-v,0) =W, X9,

Q X<, o) = (Vxy, ) + ¥, Vo).

V is called a Dirac connection.

The Dirac operator is defined by [D:= e; - Vg, Where g; is a local
orthonormal frame of M.
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Definition (Spin structure on principal SO(n)-bundle)

Let (Q, =, M", SO(n)) be a principal SO(n)-bundle. A spin
structure on Q is a pair (P, \) such that
(1) P is a principal Spin(n)-bundle over M;
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Definition (Spin structure on principal SO(n)-bundle)

Let (Q, =, M", SO(n)) be a principal SO(n)-bundle. A spin
structure on Q is a pair (P, \) such that

(1) P is a principal Spin(n)-bundle over M;

(2) N : P — Q is a two-sheeted covering map satisfying

P x Spin(n) —— P
Ax/ll Al
QxSO(n) — Q

Namely, Apg) = A(p)A(g), VYpe P, Yg e Spin(n),
where A : Spin(n) — SO(n) is the 2-fold covering map.
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Definition (Spin manifold)

Let (M", g) be an oriented Riemannian manifold, Q is the
principal SO(n)-bundle consists of all the positively oriented
orthonormal frames on M. If Q admits a spin structure, then
(M, g) is called a spin manifold.
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Definition (Spin manifold)

Let (M", g) be an oriented Riemannian manifold, Q is the
principal SO(n)-bundle consists of all the positively oriented
orthonormal frames on M. If Q admits a spin structure, then
(M, g) is called a spin manifold.

Examples (cf. H.B.Lawson, M.L.Michelson, Spin Geometry,
Princeton University Press, Princeton, NJ,1989.):
(i) Homotopy spheres S™(m > 2).
ii) Simply-connected Lie groups.
i) All the Lie groups, oriented manifolds of dimensions < 3.
iv) RP" with n = 3 mod 4;

CP" with n odd, etc.

(
(
(
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If (M, g) is a spin manifold, then there is a spin bundle XM, on
which there exists a unique "spin connection", given by

1
Vxy =XW)+ 3 D a(Vxeie)ei-6 -y @)
i<f

and it is a metric connection:

XW, &) = (Vxyp, &) + W, Vx§), VX eT(TM), y.& e T(M). (4)
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If (M, g) is a spin manifold, then there is a spin bundle XM, on
which there exists a unique "spin connection", given by

1
Vxy =XW)+ 3 D a(Vxeie)ei-6 -y 3)
i<f
and it is a metric connection:

XW, &) = (Vxyp, &) + W, Vx§), VX eT(TM), y.& e T(M). (4)

Taking E as the spinor bundle XM of M, then the Dirac operator
Dis just the classical Dirac operator @ = D in geometry (also
called the Atiyah-Singer operator).
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Atiyah-Singer studied index theory of elliptic operators on
compact manifolds. They found on spin manifold there exists
Dirac construction and defined the operator: @y := ;- Vg .
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Atiyah-Singer studied index theory of elliptic operators on
compact manifolds. They found on spin manifold there exists
Dirac construction and defined the operator: @y := ;- Vg .

Index theorems and their generalizations and applications lies
in the core of modern pure mathematics.
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Introduction

Atiyah-Singer studied index theory of elliptic operators on
compact manifolds. They found on spin manifold there exists
Dirac construction and defined the operator: @y := ;- Vg .

Index theorems and their generalizations and applications lies
in the core of modern pure mathematics.

Besides this, Dirac operators are very useful in other topics in
mathematics and physics such as the existence of positive
scalar curvature (Gromov-Lawson, Schoen-Yau, W.P.Zhang),
and the positive mass theorem (E.Witten 1981) etc.
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Dirac equations

Dirac equations

We consider Dirac type equations on Riemann surfaces M:

= Hyaw,yn, (5)

P
where X is the spinbundleon M, X" := ¥ x--- XX, neZ, ,
lr// = (1701,1//2, e ,l,bn) € r():”), and I_Ijk/ = (I_I]:}(/’ I_Iﬁ(/’ cee I-I/,Ill)
€ C1(M,R”).

Denote |y| := (,_§1<w’,w’>)”2-
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Dirac equations

We consider Dirac type equations on Riemann surfaces M:

dwr = Hiw! "/, (5)
n
where X is the spinbundleon M, X" := ¥ x--- XX, neZ, ,
= (' yP o u") eT(X"), and Hig = (Hjy. Hy. -+ Hy)
e C'(M,R").

Denote |y| := (,_§1<w’,w’>)”2-

We note that (5) is conformally invariant.
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Motivations:
In [C.-Jost-Wang, JMP 2007], we introduced the following

functional:
Lo(9,v) = f 106P + (. B9) ~ SR/ bl ()

We call critical points (¢, y) of L¢ Dirac-harmonic maps with
curvature term.
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Dirac equations

Dirac equations

Motivations:
In [C.-Jost-Wang, JMP 2007], we introduced the following
functional:

Lo(d.0) = f 106P + (. B9) ~ SR/ bl ()

We call critical points (¢, y) of L¢ Dirac-harmonic maps with
curvature term.

This functional comes from the supersymmetry o-model in
superstring theory.
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Dirac equations

Dirac equations

Motivations:
In [C.-Jost-Wang, JMP 2007], we introduced the following
functional:

Lo(d.0) = f 106P + (. B9) ~ SR/ bl ()

We call critical points (¢, y) of L¢ Dirac-harmonic maps with
curvature term.

This functional comes from the supersymmetry o-model in
superstring theory. The only difference is that here the
components of y are ordinary spinor fields on M, while in
physics they take values in a Grassmann algebra.
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The Euler-Lagrange equations of the functional L¢:
i i ik
Dy :§Rjk1<lﬁv¢ W', (7)

) 1. q )
T'(¢)—ER'/ijm,V¢/'¢]>+ﬁh'pﬂmkj/;p(ébm,lﬁj)(lﬁk,lﬂ/> =0, (8)

i=1,2,---,n, where R’y is a component of the curvature
tensor of N, 7(¢) is the tension field of ¢, and Ry., denotes
the covariant derivatives.
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In particular, if ¢ is a constant map, then (7) becomes

A R .
W' = R i=1.2 0, ©)

which is a Dirac equation of type (5).
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Dirac equations

Another more classical example of type (5) comes from
generalized Weierstrass representation of surfaces in
three-manifolds (T.Friedrich, 1998; I.S.Tamanov, 1997).
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Dirac equations

Another more classical example of type (5) comes from
generalized Weierstrass representation of surfaces in
three-manifolds (T.Friedrich, 1998; I.S.Tamanov, 1997).

Theorem (T.Friedrich JGP 1998)

Suppose (M?, g) is a 2-dimensional orientable Riemannian
manifold, H € C* (M), then the following facts are equivalent:
(1) The universal covering space M of M is isometric immersed
into Euclidean space R®: (M, g) — R® with mean curvature H;
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Dirac equations

Another more classical example of type (5) comes from
generalized Weierstrass representation of surfaces in
three-manifolds (T.Friedrich, 1998; I.S.Tamanov, 1997).

Theorem (T.Friedrich JGP 1998)

Suppose (M?, g) is a 2-dimensional orientable Riemannian
manifold, H € C* (M), then the following facts are equivalent:
(1) The universal covering space M of M is isometric immersed
into Euclidean space R®: (M, g) — R® with mean curvature H;

(2) There is nontrivial solution y for Dirac equation @y = Hy,
and || = constant.
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Dirac equations

Let M be a compact Riemann surface with fixed spin structure.
For any local orthonormal basis {e,},—1.2, one can define the
so-called chirality operator I' := j e - €2- and

M= %(/d—l— N, r-.= %(Id— .

Let U = U(y), V = V(y) be complex functions. We consider
the following Dirac equation:

= [UW) . + V()T y. (10)

Equation (5) corresponds to the case U = V = —H|y|?.
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Surfaces in some 3-Lie groups:

The Dirac equation for surfaces immersed into some
three-dimensional Lie groups N take a special form of (10), c.f.
I.S.Tamanov, Russian Mathematical Surveys 2006:

N=SU®2): U=V=—(H-i)u? (11)

N=Nil:  U=V=-Hpl - S0P - el (12)

_ .3
N = SL, U=-HyPP - /(§|w2|2 — l1l?),

, 3
v=—HWF—MmF—§mF) (13)
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In [C.-Jost-Wang, AGAG 2008], we considered geometric
analysis of the above type of equations and obtained:

Regularity:
Small energy regularity theorem;

Removable singularity theorem;

Blow up analysis:

K A
Energy identity: lim E(ym) = E(v) + kZ1 Zi E(&3).
=1 a=

Chen Qun, Wuhan University
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[C.Y.Wang, PAMS 2010] proved that weak solutions of
M = Hya(w!, 0! (14)

on Riemannian surfaces must be smooth, which answered a
question raised in [C.-Jost-Wang, AGAG 2008].
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Dirac equations

Dirac equations

[C.Y.Wang, PAMS 2010] proved that weak solutions of
M = Hya(w!, 0! (14)

on Riemannian surfaces must be smooth, which answered a
question raised in [C.-Jost-Wang, AGAG 2008].

The energy identity was improved by [M.Zhu, PAMS 2016].
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Boundary value problems for Dirac equations:

Chen Qun, Wuhan University



Dirac equations

Dirac equations

Boundary value problems for Dirac equations:

Although the index theorems and Fredholm theorems give us
information or criteria for the existence of solutions, in many
cases, for an elliptic boundary problem and given boundary
data, one needs more direct results about the existence and
unigueness of solutions.

This is our motivation for studying the boundary values
problems for Dirac equations.
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Dirac equations

Boundary value conditions

Definition ( boundary operator)
Let E be a Dirac bundle, and G € End(E) be a chiral operator,
i.e.,

G=G, G’=1d, GX-=-X-G, VG=0, ¥XeTM.

The chiral boundary operator 87, . is defined by

B = %(Idin - G).

Where n is the unit normal vector of the boundary oM.
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Dirac equations

Boundary value conditions

Definition ( -boundary operator)
Let E be a Dirac bundle, and J € End(E) be a J-operator, i.e.,

J=-J, S=-ld, IJX-=X-J, VJ=0, VXeTM.
The J-boundary operator 87 is defined by

.
85 = 5 (Idzn-J).

Where n is the unit normal vector of the boundary oM.

Denote by 8 be one of 87, or B7.
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Dirac equations

BVP of Dirac equations

Consider the BVP

Dy = ¢, in M;
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Dirac equations

BVP of Dirac equations

Consider the BVP

{w:¢, in 1, (15)

Theorem (Bartnik-Chrusiel, Crelle’s J. 2005)
The BVP (15) is solvable in H'(E) if and only if

f<<p,n>+f (Byog,n-ny=0, Vneker(,B"). (16)
M oM

Moreover, [yl < C (llellizy + 1BYollzamy + 11112y -

Chen Qun, Wuhan University



Dirac equations

Suppose p* > 1if m=2; p*> (83m-2)/4if m> 2.

Theorem (C-Jost-Sun-Zhu, JEMS 2019)
Forany 1 < p < p*, the BVP

{W:go, in M: a7

By = By, onaiM.

admits a unique solution y € W'"P(M; E), here ¢ € LP(M; E)
and Byo € W'=1/PP(M; E).
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Suppose p* > 1if m=2; p*> (83m-2)/4if m> 2.

Theorem (C-Jost-Sun-Zhu, JEMS 2019)
Forany 1 < p < p*, the BVP

Dy = ¢, in M:
By = By, onaiM.

(17)

admits a unique solution y € W'"P(M; E), here ¢ € LP(M; E)
and Byo € W'=1/PP(M; E).
Moreover, ys satisfies the following estimate

W llwrogmy < C(lleliomy + 1BYollwr-ves@my) - (18)

V.
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Extrinsic Eigenvalues

Submanifold Dirac operators:

The submanifold theory for Dirac operators was introduced by
C.Bar 1998.
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Submanifold Dirac operators:

The submanifold theory for Dirac operators was introduced by
C.Bar 1998.

Let M™ be a closed spin submanifold embedded in a spin
manifold M™+".
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Submanifold Dirac operators:

The submanifold theory for Dirac operators was introduced by
C.Bar 1998.

Let M™ be a closed spin submanifold embedded in a spin
manifold M™+".

By Milnor's Lemma there is a unique spin structure on the
normal bundle N. Denoted by XM, ~M and =N the spinor
bundles of M, M and N respectively.
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The spinor bundles Z_A7I|M =XYXM® XN unless mand n are both
odd in which case XM|y = (EM @ IN)® (M ® XN).
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The spinor bundles Z_A7I|M =XYXM® XN unless mand n are both
odd in which case XM|y = (EM @ IN)® (M ® XN).

Denoted by V,V and V+ the Levi-Civita connections on M, M, N
respectively.
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Extrinsic Eigenvalues

The spinor bundles Z_A7I|M =XYXM® XN unless mand n are both
odd in which case XM|y = (EM @ IN)® (M ® XN).

Denoted by V,V and V+ the Levi-Civita connections on M, M, N
respectively.

Denoted by VEM ¥EM and VEN the Levi-Civita connections on
YM, M and XN respectively.
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Extrinsic Eigenvalues

The spinor bundles Z_A7I|M =XYXM® XN unless mand n are both
odd in which case XM|y = (EM @ IN)® (M ® XN).

Denoted by V,V and V+ the Levi-Civita connections on M, M, N
respectively.

Denoted by VEM ¥EM and VEN the Levi-Civita connections on
YM, M and XN respectively.

_ 1 n
VM = v3iM @ 1d + Id @V + 5 D HANX) va),
a=1

where A? is the shape operator w.r.t. v,.
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The spinorial curvature operator satisfies

REMu (X, Y)

M:

=R™M(X,Y)old+1deR™ (X, Y) + y([AY(X), A%(Y)]) @ Id

+% D ((AT(X). A (Y)) - (A )Aﬁ(x»)ld@y (Ve - v)
a,B=1
+ %;vqw)am (Vy A (X)) - va)
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We consider the Dirac operator D*N on the bundle *XM & *N
which can be viewed as a Dirac bundle on M.
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We consider the Dirac operator D*N on the bundle *XM & *N
which can be viewed as a Dirac bundle on M.
Locally,

m
D*N(y®06) =Dyt + ) y(e)y @ Vao.
i=1
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We consider the Dirac operator D*N on the bundle *XM & *N
which can be viewed as a Dirac bundle on M.
Locally,

m
D*N(y®06) =Dyt + ) y(e)y @ Vao.
i=1

The Weitzenbdck formula:

( D'z/\/)2 _ (VZM®ZN)* VEMEEN | =N

where ]
RN — E?(e,- . ej)RZM®ZN(6‘,', e,-).
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Eigenvalues of Dirac operators:
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Extrinsic Eigenvalues

Eigenvalues of Dirac operators:

Dy = .

The eigenvalues of Dirac operators on spin manifolds are
extensively studied.
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Extrinsic Eigenvalues

Eigenvalues of Dirac operators:

Dy = .

The eigenvalues of Dirac operators on spin manifolds are
extensively studied.

Friedrich 1980 first derived the lower bound of the first
eigenvalues of the Dirac operator D (in terms of the scalar
curvature Sy, and dimension m of the underling manifold M):

22 (D) >

m .
> Zim 7y " S (19)
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Since then, various kinds of estimates in terms of intrinsic
geometric quantities have been proved.

A well known result of Hijazi 1986 states that
m

4(m-1)

for m> 3, where Ly = (m ”A + Sy is the Yamabe operator
of M.

A2(D) > A1(Lw) (20)
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If m=2, C.Bar 1992 proved that

471'(1 - gM)

(D)2 Area(M) ~°

(21)

where gy is the genus of M.
The equality in (19), (20) or (21) gives an Einstein metric.
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If m=2, C.Bar 1992 proved that

471'(1 — gM)

(D)2 Area(M) ~°

(21)
where gy is the genus of M.
The equality in (19), (20) or (21) gives an Einstein metric.

On the other hand, O.Hijazi, S.Montiel and X.Zhang, 2001
established eigenvalue estimates for Dirac operator on
embedded hypersurfaces and submanifolds
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Extrinsic Eigenvalues

If m=2, C.Bar 1992 proved that

471'(1 — gM)

(D)2 Area(M) ~°

where gy is the genus of M.
The equality in (19), (20) or (21) gives an Einstein metric.

On the other hand, O.Hijazi, S.Montiel and X.Zhang, 2001
established eigenvalue estimates for Dirac operator on
embedded hypersurfaces and submanifolds in terms of the
mean curvature, the Yamabe number, and the
energy-momentum tensor etc. under some extra assumptions.
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We proved the following lower bound estimates for D>N:

Theorem (C.-Sun, Math.Z. 2021)

Let M™ be a closed spin submanifold isometrically embedded
in a spin manifold M™+". Suppose n =1 or M is locally
conformally flat.
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We proved the following lower bound estimates for D>N:

Theorem (C.-Sun, Math.Z. 2021)

Let M™ be a closed spin submanifold isometrically embedded
in a spin manifold M™*". Suppose n =1 or M is locally
conformally flat.

Then any eigenvalue A of the Dirac operator D*N of the twisted
bundle XM ® N satisfies

o |2
4n(1 —gM)_(”—1)fm|A| _
2> Area(M) ~  2Area(M) =
M (L), m> 2.

e

4(m-1)
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Theorem (Conti.)

Here A is the traceless part of the shape operator A, 11 (L) (if

m > 2) is the first eigenvalue of the operator L defined by

4(m-1)
m-—2

.12
h=— A+Su-(n-1)A".
Moreover, if A # 0, then the equality implies that the Ricci
curvature of M satisfies

: 4( _1 - C
RIC:T Z A’

a=1
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Remark.

If M is a hypersurface, i.e., n = 1, then DN = D is just the
classical Dirac operator on M.
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Remark.

If M is a hypersurface, i.e., n = 1, then DN = D is just the
classical Dirac operator on M.

In this case, our Theorem is reduced to the above mentioned
Hijazi’s result for m > 3 and Bar’s result for m = 2.
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Sketch of proof

First, _
Denoted P by the Schouten tensor:

s QAB), 1<AB<n+m,

Pag = n+m—2(RICAB_2(n+m—1)

the Weyl tensor W is given by

Wascop = Rasco - (Pac8sp + Papdac — Pandsc — Pacdan).-
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Lemma

1 ,
For the curvature term R=N = S7(ei- ) REMEEN (g; ) in the
Weitzenbdck formula, we have

REN — 7] ~3 jop¥(€i - € - Va - vp)
n m n . .1 n 2
—= Z Z [)7 (Aﬁ(e,-) yﬂ) - Z 7(Aa(e,) va)
i=1 =1 a=1
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Second, For every f € C*(M), we have the weighted spinorial
Reilly formula established in [C-Jost-Sun-Zhu, JEMS 2019]:

m-—1 SN 12
TLGXPU)‘D l//|

= fMexp(f)(mz— 1 Af - (m- 1{4(m—2) |Vf’2 +R§N) w2 (22)

+ fM exp((1 — m)f) |PEN (exp(gf)w)

where REN |y = (R¥Ny,y), and PEN is the twistor operator

defined by PNy .= ViMexNy 1 —y(X )D*Ny, and y = y ® Id.

2

’
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Third, Suppose v is an eigenspinor of D>N associated with 2,
i.e.,

DNy = ay.
Then the weighted spinorial Reilly formula implies

m-1 , P
—A
m f/\//el(rll|

A2
(fm-1 (m=1)(m=2),_ .2 SM—(n—1)|A\ )
sze[ g A vif + ; Wi,

(23)
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Fourth, we choose f € C* (M) as the unique solution to the
following PDE (for m = 2):

Af—I—KM—

-1, 4n(1-gu) _ fM|A’ ff
2 ~ Area(M) 2Area B

on M.
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Extrinsic Eigenvalues

Fourth, we choose f € C* (M) as the unique solution to the
following PDE (for m = 2):

Af + Kk —

-1, 4n(1-gu) _ fM|A’ ff
2 ~ Area(M) 2Area 7

on M.

Therefore, according to the above inequality (23), we have

. |2
2 4r(1-9gum) _ (n_1)fM|Al
Area(M) 2 Area(M)
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For the limit case, since P>V (exp(gf) w) = 0, we deduce that

’
VEMEEN,, | %Z(X)‘f” n gx(f)w +57(X-VHy=0. (24)

A direct computation gives

mT_1 (DZN)'? v = (PZN)* PENy 1+ RENy,
Su-(n- 1A

4

m-1 (m_1)(m_2)|Vf|2+

¥
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Notice that in the limit case,

(m=1)(m su-(- A" m-s

m-1
A 4 m

A2
2

f- _vaﬂ2+

We conclude that

m-1

Since 1 # 0 and ¥ # 0 everywhere, we know that f is a constant
and f = 0 according to the normalizing condition. Hence,

A
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which implies that

m g2
PR T 2m = DS 6w

Applying Gauss equations and Ricci equations, a direct
computation gives

> He)RHEN (e, gy =37 (Ric(e)y + 5 > 7((2) (&) w.

i=1 a=1
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Thus

1_ .. 1=N A _(( 22 2(m—1)A2_

57 (Ric(e))v + = 3 7((A) (e))w = =7 —H(ew.
Since ¢ vanishes nowhere on M, then (25) implies that

Ric = —4(mr;21 gt (n-1) i (A)*.

a=1
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Thank You!
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