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The (B)-property for Gaussian measures

Let γ denote the standard Gaussian measure in Rn,

dγ
dx = 1

(2π) n
2
e−|x |

2/2.

Let K ⊆ Rn denote a symmetric convex body (compact convex set
K ⊆ Rn with non-empty interior such that K = −K ).

Question (Banaszczyk, via Latała)
Is it true that γ

(√
abK

)2
≥ γ(aK )γ(bK ) for all a, b > 0?

Answer (Cordero–Fradelizi–Maurey, ’04)
Yes.

The main goal of today’s talk is to extend this result to several
non-Gaussian measures.



Log-concavity of measures

Recall that f : Rn → [0,∞) is called log-concave if (− log f ) is a convex
function.

Theorem (Prékopa, Leindler, Borell)
If f : Rn → [0,∞) and dµ = f dx then µ satisfies the Brunn–Minkowski
type inequality

µ ((1− λ)A + λB) ≥ µ(A)1−λµ(B)λ

for all Borel sets A,B ⊆ Rn and 0 < λ < 1. Here + denotes the
Minkowski addition

A + B = {a + b : a ∈ A, b ∈ B} .

In particular since |x |2 /2 is convex γ is a log-concave measure.



Log-concavity of measures
In particular since |x |2 /2 is convex γ is a log-concave measure:

γ ((1− λ)A + λB) ≥ γ(A)1−λγ(B)λ.

Taking A = aK , B = bK , λ = 1
2 for a convex body K we obtain

γ

(
a + b
2 K

)2
≥ γ(aK )γ(bK ).

The theorem of Cordero–Fradelizi–Maurey says that when K is
symmetric, a+b

2 can be replaced with the smaller
√
ab. In fact they

showed more:

Theorem (Cordero–Fradelizi–Maurey, ’04)
For every symmetric convex body K the function

(t1, t2, . . . , tn) 7→ γ
(
e∆(t1,t2,...,tn)K

)
is log-concave on Rn.
The previous claim follows by restricting to the line t1 = t2 = · · · = tn.



Extensions

It was observed already by C-F-M that the function t 7→ µ(etK ) can
sometimes be log-concave when µ is not a Gaussian. For example, we say
that K is unconditional if

(x1, x2, . . . , xn) ∈ K =⇒ (±x1,±x2, . . . ,±xn) ∈ K ,

and similarly for measures. If K is an unconditional convex body and µ is
an unconditional log-concave measure then
(t1, t2, . . . , tn) 7→ γ

(
e∆(t1,t2,...,tn)K

)
is log-concave.

To avoid repetitions we write:

Definition
I µ has the (B)-property if for every symmetric convex body K ⊆ Rn,

t 7→ µ(etK ) is log-concave.
I µ has the strong (B)-property if for every symmetric convex body

K ⊆ Rn, (t1, t2, . . . , tn) 7→ µ
(
e∆(t1,t2,...,tn)K

)
is log-concave.

What measures have the (strong) (B)-property? Maybe all even
log-concave measures?



Known Results

I The standard Gaussian measure has the strong (B)-property (C-F-M)
I Certain Gaussian Mixtures have the strong (B)-property

(Eskenazis–Nayar–Tkocz ’18). In particular e−c|x |p dx and e−c‖x‖p
p dx

have the strong (B)-property for 0 < p ≤ 1. These are not
log-concave unless p = 1.

The (B)-conjecture is also intimately related to the log-Brunn-Minkowski
conjecture:
I If log-BM holds in dimension n then every even n-dimensional

log-concave measure has the (B)-property (Saroglou ’16)
I In particular, every 2-dimensional even log-concave measure has the

(B)-property (using Böröczky-Lutwak-Yang-Zhang)
I Conversely, if the uniform measure on [−1, 1]n has the strong

(B)-property for all n, then log-BM holds (Saroglou ’15).
So we have very good reasons to believe that all even log-concave
measures have the (B)-property, but very few proven examples.



Some Negative Results

I There exists a convex body K ⊆ R2 with 0 ∈ K such that
t 7→ γ(etK ) is not log-concave (Nayar–Tkocz ’13). So symmetry of
K is important.

I There exists an even log-concave measure µ on R2 which does not
have the strong (B)-property (Nayar-Tkocz ’19).

I In fact there exist non-standard Gaussian measures with covariance
matrix arbitrarily close to Id which don’t have the strong
(B)-property (Cordero-R., ’20).

So we cannot expect all even log-concave measures µ to have the strong
(B)-property. It makes sense to impose some symmetry assumptions on
µ. Today we will assume µ is rotation invariant.



Our Main Result

Theorem (Cordero-Erausquin, R. ’21+)
Let w : [0,∞)→ (−∞,∞] be an increasing function such that
t 7→ w (et) is convex. Let µ be the measure with density dµ

dx = e−w(|x |),
and let K ⊆ Rn be a symmetric convex body. Then

(t1, t2, . . . , tn) 7→ µ
(
e∆(t1,t2,...,tn)K

)
is log-concave.
In other words, µ has the strong (B)-property.



Examples

(Recall: we need t 7→ w (et) to be increasing and convex)
I All rotation invariant log-concave measures have the strong

(B)-property.
I In particular, we can take µ to be the uniform measure on the

Euclidean ball Bn
2 . By applying a linear map we conclude that∣∣∣√abK ∩ E∣∣∣2 ≥ |aK ∩ E| |bK ∩ E|

for all symmetric convex bodies K , all centered ellipsoids E , and all
a, b > 0.

I One can take w(t) = c · tp for all p > 0 (as w(et) = cept is convex).
Hence all measures e−c·|x |p dx have the strong (B)-property. The
case p = 2 recovers the Gaussian result, and the case p ≤ 1 recovers
the result of Eskenazis–Nayar–Tkocz. Other cases are new.



More Examples

(Recall: we need t 7→ w (et) to be increasing and convex)
I One can create heavy-tailed distributions with the (B)-property.

Taking w(t) = β · log
(
1 + t2

)
(as w(et) = β log(1 + e2t) is convex)

we conclude the Cauchy-type distribution

dµβ = 1(
1 + |x |2

)β dx

has the strong (B)-property.
I By approximation one can create measures with singularities:

dµ = 1
|x |β dx also has the strong (B)-property as long as 0 < β < n

(to ensure that µ is locally finite).



A corollary

While the roles of µ and K seem different in the theorem, there is in fact
some symmetry between them. Instead of assuming µ is rotation
invariant, one may assume the same about K :

Corollary
Let µ be an even log-concave measure on Rn. Then the function

(t1, t2, . . . , tn) 7→ µ
(
e∆(t1,t2,...,tn)Bn

2

)
is log-concave.



Proof Sketch

1D Poincaré inequality Spherical Poincaré inequality

Weighted Poincaré inequality on Rn

Improved Brascamp-Lieb inequality

(B)-property for rotation invariant measures



Back to the Gaussian case

How does the proof work in the Gaussian case? We need to show that

(t1, t2, . . . , tn) 7→ γ
(
e∆(t1,t2,...,tn)K

)
is log-concave. Restricting to a line, it is enough to show that
ρ(t) = γ

(
etA+BK

)
is log-concave for diagonal matrices A and B.

Therefore it is enough to show that (log ρ)′′ (t0) ≤ 0 for all t0 ∈ R.
By replacing K with et0A+BK , we may assume WLOG that B = 0 and
t0 = 0. Then the condition (log ρ)′′ (0) ≤ 0 becomes∫

〈x ,Ax〉2 dγK −
(∫
〈x ,Ax〉dγK

)2
≤ 2

∫
|Ax |2 dγK .

Here γK is the Gaussian measure conditioned to belong to K , i.e.
γK (A) = γ(A∩K)

γ(K) . This is shown by showing that for every even function
f : Rn → R

VarγK f ≤ 1
2

∫
|∇f |2 dγK .



A new Brascamp-Lieb Inequality

When γ is replaced by µ = e−W (x)dx one can do the same. The variance
inequality one needs to prove is

VarµK (〈∇W ,Ax〉) ≤
∫ (〈

∇2W · Ax ,Ax
〉

+
〈
∇W ,A2x

〉)
dµK .

What general inequality will imply it?

Theorem
Let w : [0,∞)→ R be C2-smooth and increasing such that t 7→ w(et) is
convex. Define W (x) = w(|x |), and let ν be any measure which is even
and log-concave with respect to e−W (x)dx. Then for every even function
f : Rn → R one has

Varν f ≤
∫ 〈(

∇2W + w ′(|x |)
|x | Id

)−1
∇f ,∇f

〉
dν.



Remarks

Varν f ≤
∫ 〈(

∇2W + w ′(|x |)
|x | Id

)−1
∇f ,∇f

〉
dν

I Our assumptions on w imply that ∇2W + w ′(|x |)
|x | Id is positive

semi-definite.
I In the Gaussian case w(t) = 1

2 t
2 and this inequality becomes

Varγ f ≤ 1
2
∫
|∇f |2 dγ as expected.

I Since w ′(|x |)
|x | Id is positive definite this theorem is an improvement of

the Brascamp-Lieb inequality

Varν f ≤
∫ 〈(

∇2W
)−1∇f ,∇f 〉 dν.

I In our case ∇2W is a rank-one perturbation of Id so the inverse can
be computed explicitly.



Examples

I If dν
dx = e−|x |p/p−V (x) for V convex then

Varν f ≤
∫ (1

2 |x |
2−p |∇f |2 − p − 2

2p · 〈∇f , x〉
2

|x |p

)
dν

for all even smooth functions f : Rn → Rn. Using the bounds
0 ≤ 〈∇f , x〉2 ≤ |∇f |2 |x |2 one deduces

Varν f ≤ max
{
1
p ,

1
2

}
·
∫
|x |2−p |∇f |2 dν

I If dν
dx = 1

(1+|x |2)β then

Varν f ≤
1
4β

∫ (
1 + |x |2

)(
|∇f |2 + 〈∇f , x〉2

)
dν



From Brascamp-Lieb to weighted Poincaré

Assume in general we want to prove

Varµ f ≤
∫ 〈

A−1∇f ,∇f
〉

dµ

for dµ = e−W (x)dx and a positive definite A. We assume WLOG that∫
f dµ = 0 and solve Lu := ∆u −∇W · ∇u = f . Integrating by parts our

inequality is the same as∫ 〈(
A−∇2W

)
· ∇u,∇u

〉
dµ ≤

∫ (∥∥∇2u
∥∥2
2 +

∣∣∣A− 1
2∇f + A 1

2∇u
∣∣∣2)dµ.

If A(x)−∇2W (x) = c(x) · I like in our case then it is enough to prove
that ∫

c · (∂iu)2 dµ ≤
∫
|∇∂iu|2 dµ.

In our case f and W are even, so u is also even, so every ∂iu is odd.



A new Poincaré inequality

The above discussion explains why the entire result follows from the
following:

Theorem
Let w : [0,∞)→ R be C1-smooth and increasing, and let µ be even and
log-concave with respect to e−w(|x |)dx. Then for every odd function
h : Rn → R one has ∫ w ′(|x |)

|x | h2dµ ≤
∫
|∇h|2 dµ.

In the Gaussian case w(t) = 1
2 t

2 this is the standard Gaussian Poincaré
inequality,

∫
h2dγ ≤

∫
|∇h|2 dγ, which is well-known.

The main idea of the proof is to integrate in polar coordinates, x = rθ,
and combine two Poincaré inequalities - one in r , and one in θ.



The 1-dimensional argument

.
In the r variable, we essentially use the following:

Lemma
Let f ,w : [0,∞)→ R be smooth functions such that f (0) = 0. Then∫ ∞

0

w ′
r f 2e−w dr ≤

∫ ∞
0

(f ′)2 e−w dr .

Proof.
Since f (0) = 0 we can write f (r) = rg(r) for a smooth function g .
Integrating by parts one computes that∫ ∞

0
(f ′)2 e−w d−

∫ ∞
0

w ′
r f 2e−w dr =

∫ ∞
0

(g ′)2 r2e−w dr ≥ 0.



The spherical argument

On the unit sphere Sn−1 = {x : |x | = 1} we need the following result:

Proposition
Let v : Rn → R be a convex smooth function and let ν be the measure
on Sn−1 with density e−v . Then for every smooth g : Sn−1 → R with∫
Sn−1 gdν = 0 one has∫

Sn−1
(n − 1− 〈∇v , θ〉) g2dν ≤

∫
Sn−1
|∇Sg |2 dν,

where ∇Sg denotes the spherical gradient.
When v = 0 and ν is the Haar measure on Sn−1 this reduces to the usual
Poincaré inequality on Sn−1,

Varν g ≤
1

n − 1

∫
Sn−1
|∇Sg |2 dν



The spherical argument

∫
Sn−1

(n − 1− 〈∇v , θ〉) g2dν ≤
∫
Sn−1
|∇Sg |2 dν

I This follows from a general Poincaré inequality of
Kolesnikov–Milman on the boundary of weighted Riemannian
manifold.

I Their result extends a result of Colesanti. He showed (among other
things) that the standard Poincaré inequality on Sn−1 is the
infinitesimal form of the Brunn–Minkowski inequality.

I In the same way our result is an infinitesimal Prékopa–Leindler
inequality: If Kt is the convex body with support function
hKt = 1 + t · g , then

ρ(t) = ν (Kt)

is log-concave. Our inequality is exactly the statement
(log ρ)′′ (0) ≤ 0.



Summarizing the argument

1D Poincaré inequality Spherical Poincaré inequality

Weighted Poincaré inequality on Rn

Improved Brascamp-Lieb inequality

(B)-property for rotation invariant measures



The role of symmetry

We only showed that (t1, t2, . . . , tn) 7→ µ
(
e∆(t1,t2,...,tn)K

)
is log-concave

for symmetric bodies K . Where did we use the symmetry?
I K is symmetric =⇒ µK is even =⇒ u from the Brascamp–Lieb

proof is even =⇒ f from the weighted Poincaré is odd.
So the question becomes: Why is it important for the weighted Poincaré
that f is odd? Because we integrate in polar coordinates, so we need to
know that ∫

Sn−1
f (rθ)e−v(rθ)dσ(θ) = 0

for all r > 0. This is obvious if f is odd and v is even, but difficult to
guarantee otherwise.
I It is a natural question if the assumption “f is odd” can be replaced

by a weaker assumption that f is “centered” in some sense. It will
probably not have any geometric implications.



Thank you!




