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Part I. Introduction



Affine maximal surface

Let u be a locally uniformly convex function on Ω ⊂ Rn.
I The graph of u defines a hypersurface M in Rn+1.

I The affine metric (Blaschke metric) g, i.e.,

gij = [det D2u]−
1

n+2 uij

gives an affine invariant metric on M.

I The affine area

A(u) =

∫
Ω

√
det gij dx =

∫
Ω

[det D2u]
1

n+2 =

∫
M

K
1

n+2 dVM ,

where K = det D2u

(1+|Du|2)
n+2

2
is the Gauss curvature.

I The critical point of A is called affine maximal surface.
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Chern conjecture

Conjecture(S.S. Chern, 1977). An Euclidean complete, affine
maximal, locally uniformly convex C2 hypersurface in R2 must
be an elliptic paraboloid.
I It is proved by Trudinger-Wang in 2000 known as affine

Bernstein theorem.

I The Euler-Lagrange equation

H[u] := U ijwij = 0 (1)

on Rn, where (U ij) is the cofactor matrix of the Hessian
matrix D2u, and w = [det D2u]−

n+1
n+2 .

I H[u] is the affine mean curvature.

I The conjecture says in R2, any entire solution to (1) must
be quadratic.
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Calabi conjecture

Theorem(E. Calabi, 1982). In dimension two, when the
affine metric of the graph is complete, then any entire solution
to (1) must be quadratic.

I The completeness represent fairly strong restrictions on
the asymptotic behavior of the second derivatives.

I Euclidean complete hypersurfaces are not generally affine
complete.

I Trudinger-Wang(2002): Affine completeness implies
Euclidean completeness. (⇒ (A different proof to affine
Bernstein theorem)

I Open in higher dimensions!
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A (singular) counterexample in higher dimensions

Trudinger-Wang(2000): when n = 10,

u =
√
|x ′|9 + x2

10 ∈W 2,1
loc (R10) ∪ C∞(R10 \ {0}),

where x ′ = (x1, · · · , x9), is affine maximal.

I There is still no smooth counterexamples!

I The critical dimension is unknown!
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The Monge-Ampère typed fourth order equations

u is a uniformly convex function on Ω ⊂ Rn. We study the
equation

U ijwij = f (2)

on Rn, where (U ij) is the cofactor matrix of the Hessian matrix
D2u, and

w =

 [det D2u]−(1−θ), θ ≥ 0, θ 6= 1,

log det D2u, θ = 1.
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The Monge-Ampère typed fourth order equations

It is the Euler-Lagrange equation of the Monge-Ampère typed
functional

Fθ(u) = Aθ(u)−
∫

Ω
fu dx ,

where

Aθ(u) =


∫

Ω[det D2u]θ dx , θ > 0, θ 6= 1,∫
Ω log det D2u dx , θ = 0,∫
Ω det D2u log det D2u dx , θ = 1.



The case of θ = 0 (Abreu’s equation)

Abreu’s equation ∑
i,j

∂2uij

∂xi∂xj
= f ,

where (uij) is the inverse matrix of D2u.

I By computation,

∑
i,j

∂2uij

∂xi∂xj
= U ijwij , w = [det D2u]−1.

I Abreu’s equation is related to the scalar curvature problem
on toric Kähler manifolds.

I The Bernstein theorem means: if (Cn,gu) is (S1)n-invariant
and scalar flat, then it is flat.
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Bernstein typed theorems

Theorem(Trudinger-Wang, Jia-Li, Zhou). Let u be an entire
convex solution to

U ij [(det D2u)−(1−θ)]ij = 0

on R2. If 0 ≤ θ ≤ 1
4 or θ > 1, u is a quadratic polynomial.

I The case of θ = 1
4 solves Chern conjecture.

I θ > 1: Trudinger-Wang(JPDE, 2002).

I θ = 1: u = ex1 + x2
2 is a counterexample.

I 1
4 < θ < 1: open.

I Open in higher dimensions.
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Part II. Proof of the affine Bernstein
theorem(assuming the interior estimstes)



Observation 1

The Monge-Ampère typed equation can be written as a system
of two equations for u and w

det D2u = w−
1

1−θ (Monge-Ampère equation)

U ijDijw = f (Linearized Monge-Ampère equation)



Observation 2
I Jorgens-Calabi-Pogorelov: Suppose u is a uniformly

convex solution to

det D2u = 1 in Rn.

Then u is a quadratic polynomial.

I Bernstein-Hopf-Mickle: Suppose u is a smooth solution to

2∑
i,j=1

aij(x)uij(x) = 0 in R2, aij > 0.

If |u(x)| = o(|x |) as |x | → ∞, then u is a constant.

I To prove Bernstein theorem, it suffices to show

0 < C−1 ≤ det D2u ≤ C, x ∈ R2.
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Interior estimates

Theorem. Assume 0 ≤ θ ≤ 1
4 . Let u be a uniformly convex

solution to (2) on Ω. Suppose that Ω and u are normalized.
Then for any Ω′ b Ω, 0 < α < 1,

‖u‖C4,α(Ω′) ≤ C,

where C depends on θ, α and dist(Ω′,Ω).

Assume the a priori estimates hold, we first prove the Bernstein
Theorem.
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Preliminaries: Section

Let u be a convex function on Ω ⊂ Rn. The section centered at
x ∈ Ω with height h > 0

Sh,u(x) := {y ∈ Ω : u(y) ≤ lx (y) + h},

where lx (y) = u(x) + Du(x)(y − x) is a support function of u at
x .

Lemma(Caffarelli). For any x0 and h > 0, there exists x ∈ Rn,
such that x0 is the center mass of Sh,u(x).
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Preliminaries: Normalization

Let Ω ⊂ Rn be a bounded domain and u be a convex function
on Ω.
I Ω is normalized if

B 1
n
(x0) ⊂ Ω ⊂ B1(x0),

where x0 is the center of mass of Ω.

I u is normalized on Ω if

u|∂Ω = 0, inf
Ω

u = −1.

I For any Ω, there exists a dilation T with respect to its
center of mass, such that T (Ω) is normalized.
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Proof of the Bernstein Theorem
Assume u(0) = inf u = 0.

Step 1 For any h > 0(h→ +∞),

I there is xh ∈ Rn such that 0 is the centre of mass of
Sh,u(xh);

I there is a dilation Th, such that Ωh := Th(Sh,u(xh)) is
normalized;

I

uh(y) =
u(x)− u(xh)− Du(xh)(x − xh)

h
, y = Th(x) ∈ Ωh.

Then uh solves (2) in Ωh and is normalized, i.e.,

inf
Ωh

uh = −1, uh|∂Ωh = 0.
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Step 2 By the interior estimate, we have

‖uh‖C3(B1/2n(0)) ≤ C,

where C is independent of h. It implies

0 < C−1 ≤ det D2uh ≤ C in B1/2n(0)

and
C1|y |2 ≤ uh(y)− Duh(0)y − uh(0) ≤ C2|y |2.

Note that Ωh is normalized and

det D2
x u = (det Th)2 · hn · det D2

y uh.
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Step 3 We claim
Ch−

n
2 ≤ det Th ≤ Ch−

n
2 .

Proof. Change y back to x by y = Th(x), we have

C1|Thx |2 ≤ u(x)

h
≤ C2|Thx |2.

Let Λh, λh be the max, min-eigenvalue of Th. Let |x | = 1.

C1Λ2
h ≤

sup|x |=1 u
h

, C2λ
2
h ≥

inf |x |=1 u
h

.

i.e.,
Λh ≤ Ch−

1
2 , λh ≥ Ch−

1
2 ,

where C is independent of h.

The global determinant estimates follows by letting h→∞.
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C1Λ2
h ≤

sup|x |=1 u
h

, C2λ
2
h ≥

inf |x |=1 u
h

.

i.e.,
Λh ≤ Ch−

1
2 , λh ≥ Ch−

1
2 ,

where C is independent of h.

The global determinant estimates follows by letting h→∞.



Part III. Interior estimates



Recall: regularity theory of the Linearized
Monge-Ampère equation

Theorem(Caffarelli-Gutiérrez, 97’). Assume w is a solution to

U ijwij = f in Ω.

If 0 < Λ−1 ≤ det D2u ≤ Λ, then

‖w‖Cα(Ω′) ≤ C(‖f‖L∞ ,d(Ω′, ∂Ω),Λ), ∀Ω′ b Ω.

I Boundary and higher regularity by Le-Savin, Le-Nguyen,
Gutierrez-Nguyen, etc.
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Bootstrapping arguments for interior regularitydet D2u = w−
1

1−θ (Monge-Ampère equation)

U ijDijw = f (Linearized Monge-Ampère equation)

0 < C1 ≤ det D2u ≤ C2 (with modulus of convexity estimates)

=⇒ ‖ det D2u‖Cα ≤ C (Cα of the LMA, Cafferelli-Gutierrez)

=⇒ ‖u‖C2,α ≤ C (C2,α of the MA)

=⇒ ‖ det D2u‖C2,α ≤ C (Schauder estimate)

=⇒ ‖u‖C4,α ≤ C · · · · · · · · ·

I will present new proof (jointly with Ling Wang)
without using Cafferelli-Gutierrez theory.
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Partial Legendre transform in two dimensions

We consider n = 2 and write u(x) = u(x1, x2). The partial
Legendre transform in the x1-variable is

u?(ξ, η) = x1ux1(x1, x2)− u(x1, x2), (3)

where

(ξ, η) = P(x1, x2) := (ux1 , x2) ∈ P(Ω) := Ω?.

I The partial Legendre transform is widely used in
Monge-Ampère equations.
(det D2u = f (x1, x2) =⇒ f (u?ξ , η)u?ξξ + u∗ηη = 0)

I First used to the 4th order equations by Le-Zhou, 2020.
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Partial Legendre transform in two dimensions

By computation, we have

∂(ξ, η)

∂(x1, x2)
=

(
ux1x1 ux1x2

0 1

)
, and

∂(x1, x2)

∂(ξ, η)
=

(
1

ux1x1
−ux1x2

ux1x1

0 1

)
.

Hence,

u?ξ = x1, u?η = −ux2 ,

u?ξξ =
1

ux1x1

, u?ηη = −det D2u
ux1x1

, u?ξη = −ux1x2

ux1x1

.
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The equation under partial Legendre transform

Proposition. Let u be a uniformly convex solution to (2) in Ω.
Then in Ω? = P(Ω), its partial Legendre transform u? satisfies

w?w?
ξξ + w?

ηη + (θ − 1)w?
ξ

2 +
θ − 2
w?

w?
η

2 = 0, (4)

Here w? = −u?ηη
u?ξξ

(= det D2u).



Proof

In order to derive the equation under partial Legendre
transform, we consider the associated functionals of (2)

Aθ(u) =


∫

Ω[det D2u]θ dx , θ > 0, θ 6= 1,∫
Ω log det D2u dx , θ = 0,∫
Ω det D2u log det D2u dx , θ = 1.



Proof

In order to derive the equation under partial Legendre
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Proof
By

det D2u = −
u?ηη
u?ξξ

, dxdy = u?ξξ dξdη,

we have

Aθ(u) =

∫
Ω?

(
−

u?ηη
u?ξξ

)θ
u?ξξ dξdη

=

∫
Ω?

(−u?ηη)θu?ξξ
1−θ dξdη := A?θ(u?), θ ∈ (0,1);

A0(u) =

∫
Ω?

log

(
−

u?ηη
u?ξξ

)
u?ξξ dξdη := A?0(u?);

A1(u) =

∫
Ω?

(
−

u?ηη
u?ξξ

)
log

(
−

u?ηη
u?ξξ

)
u?ξξ dξdη := A?1(u?).

It suffices to derive the Euler-Lagrange equation of A?θ.
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The key estimate

For simplicity, we change notations and write new equation as

uuxx + uyy = (1− θ)u2
x +

2− θ
u

u2
y . (5)

We have the following interior gradient estimate

Theorem. Assume u is a solution to (5) on BR(0) and satisfies
0 < λ ≤ u ≤ Λ. Then there exists α,C > 0 depending on λ, Λ,
R and θ, such that∫

BR(0)
|∇u|3(R2 − x2 − y2)α dV ≤ C. (6)
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Proof

Let z = vφ(u)η(x , y), where

v =
√

u2
x + u2

y + 1,

η = (R2 − x2 − y2)α, α > 3,

φ(u) = Auθ−2 − u
2θ2 − 9θ + 9

, A ≥ Λ3−θ

2θ2 − 9θ + 9
+ 1.

Compute uzxx + zyy , integration by parts, · · · · · · .
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The interior estimate of the fourth order equation

Theorem. Assume n = 2 and θ ∈ [0,1]. Let Ω ⊂ R2 be a
convex domain and u be a uniformly convex solution to
equation (2) on Ω satisfying

0 < λ < det D2u ≤ Λ.

Then for any Ω′ b Ω, there exists a constant C > 0 depending
on supΩ |u|, λ, Λ and dist(Ω′, ∂Ω), such that

‖u‖C4,α(Ω′) ≤ C.



The modulus of convexity

For a convex function on Rn, the modulus of convexity of u

mu(t) = inf{u(x)− `z(x) : |x − z| > t},

where t > 0 and `z is the supporting function of u at z.

I For a strictly convex function, mu > 0.

I Heinz: in two dimensions, when det D2u ≥ λ > 0, there
exists C > 0 depending on λ such that mu ≥ C > 0.

For the partial Legendre transform (ξ, η) = P(x , y) = (ux , y),

Lemma(J. K. Liu). There exists a constant δ > 0 depending on
mu, such that Bδ(0) ⊂ P(BR).
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Proof of interior estimates

For p ∈ Ω, let R = dist(p,∂Ω)
2 . W. L. O. G, we assume P(p) = 0.

I supBR(p) |Du| ≤ C for C > 0 depending on R and supΩ |u|.

I By Liu’s Lemma, there exists δ > 0, s.t. Bδ(0) ⊂ P(BR(p)).

I By the interior gradient estimate(Key lemma) of the new
equation

w?w?
ξξ + w?

ηη + (θ − 1)w?
ξ

2 +
θ − 2
w?

w?
η

2 = 0,

we have
‖w?‖W 1,3(B 3δ

4
(0)) ≤ C.
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Proof of interior estimates

I Note that n = 2. By Sobolev theorem, we have the Cα

estimate of w?.

I By the interior W 2,p-estimate of the new equation, we have
‖w?‖

W 2, 3
2 (B δ

2
(0))
≤ C, which implies W 1,6 estimate of ∇w?.

I Repeating this arguments, we have all the higher order
estimates.

I Transforming back by partial Legendre transform, we
obtain the interior estimate of u.
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Thank you for your attention!


