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» The critical point of A is called affine maximal surface.
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Chern conjecture

Conjecture(S.S. Chern, 1977). An Euclidean complete, affine
maximal, locally uniformly convex C? hypersurface in R? must
be an elliptic paraboloid.

» It is proved by Trudinger-Wang in 2000 known as affine
Bernstein theorem.

» The Euler-Lagrange equation
Hu] == U'w; =0 (1)
on R”, where (UY) is the cofactor matrix of the Hessian
matrix D2u, and w = [det D?u] 2.
» H[u] is the affine mean curvature.

» The conjecture says in R?, any entire solution to (1) must
be quadratic.
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Theorem(E. Calabi, 1982). In dimension two, when the
affine metric of the graph is complete, then any entire solution
to (1) must be quadratic.

» The completeness represent fairly strong restrictions on
the asymptotic behavior of the second derivatives.

» Euclidean complete hypersurfaces are not generally affine
complete.

» Trudinger-Wang(2002): Affine completeness implies
Euclidean completeness. (= (A different proof to affine
Bernstein theorem)

» Open in higher dimensions!
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A (singular) counterexample in higher dimensions

Trudinger-Wang(2000): when n = 10,

u= /I +x% € Wl (R'®) U C*(R'"\ {0}),

where x’ = (xq,-- - , X9), is affine maximal.

» There is still no smooth counterexamples!

» The critical dimension is unknown!
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The Monge-Ampére typed fourth order equations

u is a uniformly convex function on Q C R". We study the

equation )

Ulwj=f (2)
on R", where (U) is the cofactor matrix of the Hessian matrix
D?u, and

[det D?u]=(=9) 6>0, 6 +#1,
| logdet D2u, o=1.



The Monge-Ampére typed fourth order equations

It is the Euler-Lagrange equation of the Monge-Ampeére typed

functional
Fo(u) = Ag(u) —/qudx,
where
Joldet D?u]? dx, 0>0, 6#1,
Ag(u) = ¢ [, logdet D?u dx, 6 =0,

det D?ulogdet D?udx, 6 =1.
Q
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Abreu’s equation

?ul
Z oxiox h
where (u”) is the inverse matrix of D?wu.

» By computation,

— [ Jiw. — D2 —1.
Zc‘)x,@xj Ulwj, w = [det D?]

» Abreu’s equation is related to the scalar curvature problem
on toric K&hler manifolds.

» The Bernstein theorem means: if (C”, g,,) is (S')"-invariant
and scalar flat, then it is flat.
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Bernstein typed theorems

Theorem(Trudinger-Wang, Jia-Li, Zhou). Let u be an entire
convex solution to

U'[(det D?u)~("=9];, =0

onR2. If0<h < % or # > 1, uis a quadratic polynomial.

» The case of § = % solves Chern conjecture.
» 6 > 1: Trudinger-Wang(JPDE, 2002).

> 0 =1:u= e+ xZis a counterexample.

> 1 <0< 1:open.

» Open in higher dimensions.



Part Il. Proof of the affine Bernstein
theorem(assuming the interior estimstes)



Observation 1

The Monge-Ampére typed equation can be written as a system
of two equations for u and w

1

{det D?u=w~17% (Monge-Ampére equation)

U'Dyw = f (Linearized Monge-Ampére equation)
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Observation 2

» Jorgens-Calabi-Pogorelov: Suppose u is a uniformly
convex solution to

det D°u=1 in R".
Then u is a quadratic polynomial.

» Bernstein-Hopf-Mickle: Suppose u is a smooth solution to

2
> aj(x)uj(x) =0 in R?, a;> 0.
=

If |u(x)| = o(|x]) as |x| — oo, then uis a constant.
» To prove Bernstein theorem, it suffices to show

0< C'<detD?u<C, x € R
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solution to (2) on Q. Suppose that 2 and v are normalized.
Thenforany @ € Q,0 < a < 1,
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Interior estimates

Theorem. Assume 0 < 0 < }1. Let u be a uniformly convex
solution to (2) on Q. Suppose that 2 and v are normalized.
Thenforany @ € Q,0 < a < 1,

[ullcs.a(ary < C,

where C depends on 6, « and dist(', Q).

Assume the a priori estimates hold, we first prove the Bernstein
Theorem.
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Preliminaries: Section

Let u be a convex function on Q ¢ R”. The section centered at
x € Q with height h > 0

Shu(X) :={y € Q:u(y) < k(y) + h},

where Ix(y) = u(x) + Du(x)(y — x) is a support function of u at
X.

Lemma(Caffarelli). For any xo and h > 0, there exists x € R”,
such that xg is the center mass of Sp, ,(x).
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Preliminaries: Normalization

Let Q c R" be a bounded domain and u be a convex function
on €.

» Qis normalized if

Bi(x0) C 2 C Bi(xo),

where Xy is the center of mass of €.

» uis normalized on Q if

ulapg =0, Ing: —1.

» For any Q, there exists a dilation T with respect to its
center of mass, such that T(2) is normalized.
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Proof of the Bernstein Theorem
Assume u(0) = infu = 0.
Step 1 For any h > 0(h — +o0),
» there is x; € R” such that 0 is the centre of mass of

Sh,u(Xn);

» there is a dilation Tj, such that Qp, := Tj(Sp u(xn)) is
normalized;

>

Uh(y) _ U(X) - U(Xh) _hDu(Xh)(X - Xh)7 y = Th(X) € Q.

Then up, solves (2) in 4 and is normalized, i.e.,

inf Up = —1, Uh‘(th =0.
Qp



Step 2 By the interior estimate, we have
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Step 2 By the interior estimate, we have

1Unllc3(B, 2n0)) < C

where C is independent of h. It implies
0< C ' <detD?up < C in By5,(0)

and
Cilyl? < un(y) — Dup(0)y — un(0) < Caly .

Note that Q4 is normalized and

det DZu = (det T4)? - h" - det Djup,.
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Step 3 We claim
Ch 2z <detT, < Chz.

Proof. Change y back to x by y = Tx(x), we have

Ci|Thx|?2 < (h)<cyTx|2

Let Ap, A\p be the max, min-eigenvalue of T,. Let |x| = 1.

SUP|yj—1 U inf,—q U
x| Cz)\,%> x| .

2
<
Cihy < h = h

i.e.,

N

A< Ch™2, Ap>Che,
where C is independent of h.

The global determinant estimates follows by letting h — oc.
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Recall: regularity theory of the Linearized
Monge-Ampeére equation

Theorem(Caffarelli-Gutiérrez, 97°). Assume w is a solution to
Ulwj=f in Q.
If 0 < A=! < det D?u < A, then
IWlice) < C(Ifli=, d(2,09), A), VO € Q.

» Boundary and higher regularity by Le-Savin, Le-Nguyen,
Gutierrez-Nguyen, etc.
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Bootstrapping arguments for interior regularity

1

{det D?u=w~19 (Monge-Ampére equation)

U'Dyw = f (Linearized Monge-Ampére equation)
0 < Cy < det D?u < C, (with modulus of convexity estimates)
— || det D?ul|ca < C (C“ of the LMA, Cafferelli-Gutierrez)
— ||ul|ce < C (C*“ of the MA)

— || det D?ul|ce.. < C (Schauder estimate)

| will present new proof (jointly with Ling Wang)
without using Cafferelli-Gutierrez theory.
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Partial Legendre transform in two dimensions

We consider n = 2 and write u(x) = u(x1, Xx2). The partial
Legendre transform in the xi-variable is

U*(f, 7]) = X1Ux, (X1 ; X2) - U(X1 ) X2)7 (3)
where
(57 77) = P(X17X2) = (UX17X2) S P(Q) = Q*.

» The partial Legendre transform is widely used in
Monge-Ampére equations.
(det D2u = f(xq, x2) = f(Uf, )t + Uy, = 0)

» First used to the 4th order equations by Le-Zhou, 2020.



Partial Legendre transform in two dimensions

By computation, we have

1 Uxq x;
M _ (UX1X1 UX1X2> . and (X1, X2) _ <UX1X1 _lexf) .

9(x1, x2) 0 1 a(&;n) 0 1



Partial Legendre transform in two dimensions

By computation, we have

8(5777) — <UX1X1 UX1X2> and 8(X17X2) _ (Ux:)q

8(X1 ) X2) O 1 6(67 "7) 0
Hence,
Up = xq, u; = —Uyy,
2
U 1 o _ detDu . Uxgx
&€y 0 u v T Us. .
X1 X1 X1X4 X1 X4

_ Uxy xo
Uxy xq

1

) |



The equation under partial Legendre transform

Proposition. Let u be a uniformly convex solution to (2) in Q.
Then in Q* = P(Q), its partial Legendre transform u* satisfies

-2
*2
W* WT?

0
W*ng—i-W;n—i-(@—‘l)WEZ—i— — 0, (4)

Here w* = — 222 (= det D?u).
Uee



Proof

In order to derive the equation under partial Legendre

transform, we consider the associated functionals of (2)
Joldet D?u)? dx, 0>0, 0#1,
Ag(u) = { | logdet D?u dx,

0=0,
Jq det D?ulogdet D?udx, 6 =1.
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Proof

In order to derive the equation under partial Legendre
transform, we consider the associated functionals of (2)

Joldet D?ul® dx, >0, 0+#1,
Ag(u) = ¢ [ log det D?u dx, 6=0,
Jq det D?ulogdet D2udx, 6 =1.



Proof

U*
det D°u = —%

* )

133

axdy = uge dédn,

we have

0
u*
Ag(u) = / <_UZZ> Uz, dedn

- / (—ut,)uz '~ dedy = Ag(u), 8 € (0.1);
Q*

133

* U*
A(u) = / ) jog (= m ) e, dedy = As(u).
s\ Y Uee

Ao(u) = /* log (—ﬁ) Uz dédn == Ag(u™);



Proof

* )

U*
det D?y = -1
Uee

axdy = uge dédn,

we have
ux o
A(u) = / <_u’m> Uz, dedn
* &€
- /Q*(—u;n)eugg_o dedi = Ay(u*), 0 € (0,1);

u*
Ao(U) = /* log <_UT7> U& dédn = AB(U*);

133

ux ur
w0 = (o () = )
* 139 133

It suffices to derive the Euler-Lagrange equation of Aj.



The key estimate

For simplicity, we change notations and write new equation as

240
Ul + Uy = (1 — O)UZ + ; us. (5)



The key estimate

For simplicity, we change notations and write new equation as

2-0
Ul + Uy = (1 — O)UZ + ; us. (5)
We have the following interior gradient estimate

Theorem. Assume u is a solution to (5) on Bg(0) and satisfies
0 < A < u < A. Then there exists «, C > 0 depending on A, A,
R and 0, such that

/ VuP(R? — X2 — y2)* dV < C. (6)
Bgr(0)



Proof

Let z = vo(u)n(x, y), where

v = \Juf+ui+1,
n = (R?=x?-y?)" a>3,

o(u) = Au'?— u

/\3—9

202 —90+9’

>
AZ 5 —eg59 "

1.



Proof

Let z = v (u)n(x, y), where

vo= Jutuget,
n = (R—x*-y%)* a>3,

u N30

= A2 - A>
P(u) u 52 0059 " 2@ _ogrg

1.

Compute uzy + z,y, integration by parts, - - - - .



The interior estimate of the fourth order equation

Theorem. Assume n=2and 6§ € [0,1]. Let Q c R? be a
convex domain and u be a uniformly convex solution to
equation (2) on 2 satisfying

0 < )\ < detD?u <A.

Then for any Q' € Q, there exists a constant C > 0 depending
on supgq |ul, A, A and dist(Q’, 0Q), such that

[ullgsaqary < C.



The modulus of convexity

For a convex function on R", the modulus of convexity of u
my(t) = inf{u(x) — £z(x) : |x — z| > t},

where t > 0 and £, is the supporting function of u at z.
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The modulus of convexity

For a convex function on R”, the modulus of convexity of u
my(t) = inf{u(x) — £z(x) : |x — z| > t},
where t > 0 and £, is the supporting function of u at z.
» For a strictly convex function, m, > 0.

» Heinz: in two dimensions, when det D?u > \ > 0, there
exists C > 0 depending on A such that m, > C > 0.

For the partial Legendre transform (£, n) = P(x, y) = (ux, ¥),

Lemma(J. K. Liu). There exists a constant § > 0 depending on
my, such that Bs(0) C P(Bg).
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Forpe Q,letR = w. W. L. O. G, we assume P(p) = 0.
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Proof of interior estimates

dist(p,
Forp e Q,let R = 2220 w | 0. G, we assume P(p) = 0.

> supg,p) |Du| < C for C > 0 depending on R and supq, [u|.
» By Liu’s Lemma, there exists § > 0, s.t. B;(0) C P(Bg(p)).

» By the interior gradient estimate(Key lemma) of the new
equation

0—2
W Wi + wy, + (0 — 1)W§*2 + a w2

n =0,

we have
[IW*llw13(Bgs (0)) < C-
4
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Proof of interior estimates

» Note that n = 2. By Sobolev theorem, we have the C*
estimate of w*.

» By the interior W2P-estimate of the new equation, we have

|]W*HW27%(B o) < C, which implies W' estimate of Vw*.
)
2

» Repeating this arguments, we have all the higher order
estimates.

» Transforming back by partial Legendre transform, we
obtain the interior estimate of u.



Thank you for your attention!



