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Topics from (Non-)Convex Optimization



Maximal monotone operators
Throughout: X is a Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖.

A : X → 2X is monotone if

∀(x , u), (y , v) ∈ graA (〈x − y , u − v〉 ≥ 0)

where graA is the graph of A.
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A is maximally monotone if it additionally is not strictly contained
in any monotone operator.



Resolvents

The main tool for studying monotone operators: the resolvent

JAγ = (Id + γA)−1 (for γ > 0).

For a monotone operator: single-valued and firmly nonexpansive
(on its domain).

 A is maximal if, and only if JAγ is total.

Key point for zeros: zerA = fixJAγ for any γ > 0!



Convex functions and subgradients
The prime example: recall the subgradient of a convex function
ϕ : RN → R!

∂ϕ(x) := {z ∈ RN | ϕ(y) ≥ ϕ(x) + 〈y − x , z〉 for all y ∈ RN}.

 ∂ϕ(x) is maximally monotone and

0 ∈ ∂ϕ(x) iff x minimizes ϕ.



Differences of monotone operators

We are interested in algorithms for the following problem:

Problem
Let T ,S be maximally monotone operators. Find an x with

0 ∈ (T − S)(x)

where (T − S)(x) = {y − z | y ∈ Tx and z ∈ Sx}.
Again a prime example: DC programming, i.e. finding critical
points of f − g for f , g convex.



A particular algorithm

For this, given initial data x0, consider the sequence

xn+1 := JSµn(xn + µnTλnxn)

with parameters µn, λn where

Tλn(x) =
x − JTλnx

λn

is the Yosida approximate of T .

 defined by A. Moudafi in 2015.



A particular algorithm

Intuition:

1. 0 ∈ (T − S)(x) if, and only if Tx ∩ Sx 6= ∅.
2. Note Tλx → y ∈ Tx for λ→ 0.

3. Move to the regularized problem

find xλ ∈ X with Tλ(xλ) ∈ S(xλ).

4. Equivalent to

find xλ ∈ X with xλ = JSµ (xλ + µTλ(xλ)).

5. Akin to the Proximal Point Algorithm:

xn+1 := JSµn(xn + µnTλnxn).



A particular algorithm

Theorem (Moudafi (2015))

Let T ,S be maximally monotone on a finite dimensional Hilbert
space X such that zer(T − S) 6= ∅, DomS ⊆ DomT and T is
bounded on bounded sets , i.e.

T (Br (0)) =
⋃

x∈Br (0)

Tx is bounded for any r > 0,

as well as

1. limn→∞ λn = 0,

2.
∑∞

n=0
µn
λn
<∞,

3. limn→∞ ‖xn − xn+1‖ /µn = 0.

Then (xn) converges to a point x∗ ∈ zer(T − S).



Proof Mining



Proof mining

Applied part of mathematical logic, going back to Georg Kreisel’s
work in the 50s.

Proof Interpretations (Dialectica, Negative Translation, etc.) are
applied to theorems of ordinary mathematics to extract uniform
bounds (or witnesses), by analyzing a concrete proof.
 Metatheorems on Proof Mining.

In our context:

convergence statements⇒ rates of metastability.



Metastability

Statement of Cauchyness for a sequence (xn) in some metric space
(X , d):

∀k ∈ N∃N ∈ N∀n,m ≥ N

(
d(xm, xn) <

1

k + 1

)
.

Generally, one can not expect a bound on ‘∃N ∈ N‘.

However, one can expect a bound on ‘∃N ∈ N‘ in the following
statement:

∀k ∈ N∀g : N→ N∃N ∈ N∀i , j ∈ [N;N+g(N)]

(
d(xi , xj) <

1

k + 1

)
.

Such a bound is called a rate of metastability (after Tao).
 Guaranteed (in general contexts) by the Metatheorems on
Proof Mining.



A Quantitative Analysis



(Quasi-)Fejér monotonicity
The main exploited property for the approximations (xn) is
quasi-Fejér monotonicity.

Let (X , d) be a metric space, F ⊆ X nonempty and (xn) be a
sequence in X .

Definition
(xn) is called

1. Fejér monotone w.r.t. F , if for all n ∈ N, all p ∈ F :

d(xn+1, p) ≤ d(xn, p).

2. quasi-Fejér monotone w.r.t. F , if for all n ∈ N, all p ∈ F :

d(xn+1, p) ≤ d(xn, p) + εn.

Here: (εn) such that
∑

n εn <∞.
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(Quasi-)Fejér monotonicity

Lemma
Let (X , d) be boundedly compact, (xn) bounded and let F ⊆ X be
nonempty. Suppose that

1. (xn) is quasi-Fejér monotone w.r.t. F ,

2. F =
⋂

k∈N AFk for closed sets AFk ⊆ X with AFk ⊇ AFk+1,

3. ∀k , n ∈ N∃N ≥ n (xN ∈ AFk) (lim inf-property),

then (xn) converges to a point x ∈ F .

By introducing quantitative versions of (1) and (3),
Kohlenbach/Leuştean/Nicolae (CCM 2018) obtained rates of
metastability for the convergence of (xn).



(Quasi-)Fejér monotonicity

This could apply here: (xn) is quasi-Fejér monotone w.r.t.
zer(T − S).

Moudafi proves:

Lemma
For x∗ ∈ zer(T − S) and y∗ ∈ T (x∗) ∩ S(x∗):

‖xn+1 − x∗‖ ≤
(

1 +
µn
λn

)
‖xn − x∗‖+ µn(‖T ◦x∗‖+ ‖y∗‖).

Here: T ◦x∗ is the element of minimal norm in Tx∗.

 need to assume a uniform bound on ‖T ◦x∗‖+ ‖y∗‖.



(Quasi-)Fejér monotonicity

Suitable AFk for zer(T − S)?

Write Γ = zer(T − S) and set

Γk :=

{
x∗ | ∃y∗∀i ≤ k :

∥∥∥x∗ − JSµi (x
∗ + µiy

∗)
∥∥∥ ≤ 1

k + 1

}
.

 Simplified! Needs tweaking for ∩kΓk = Γ!



(Quasi-)Fejér monotonicity

What are these quantitative versions of quasi-Fejér monotonicity
and the lim inf-property?

I uniform quasi-Fejér monotonicity.

I lim inf-bounds.



lim inf-bounds

Definition
A (monotone) bound Φ(k , n) on ‘∃N ∈ N‘ in

∀k , n ∈ N∃N ≥ n (xN ∈ AFk)

is called a lim inf-bound.

Lemma
For any n and any i , we have∥∥∥xn − JSµi (xn + µiTλnxn)

∥∥∥ ≤ ‖xn − xn+1‖+ |µn − µi |
‖xn − xn+1‖

µn
.

 to show xn ∈ Γk for given k :

1. y∗ = Tλnxn,

2. ‖xn − xn+1‖ /µn → 0 by assumption in Moudafi’s result,

3. µn convergent and thus bounded.



lim inf-bounds

Lemma
Let C ≥ 1 be an upper bound on both diam(µn) and (µn).
Further, let φ be monotone s.t.

∀k , n∃N ∈ [n;φ(k , n)]

(
‖xN − xN+1‖ /µN <

1

k + 1

)
.

Then the function

Φ(k, n) = φ (d2C (k + 1)e − 1,max{n, k})

is a lim inf-bound for (xn) w.r.t. Γk .



Uniform quasi-Fejér monotonicity

Definition
(xn) is called uniformly quasi-Fejér monotone w.r.t. F and (AFk) if
for all r , n,m ∈ N:

∃k ∈ N∀p ∈ AFk∀l ≤ m(
d(xn+l , p) < d(xn, p) +

n+l−1∑
i=n

εi +
1

r + 1

)
.

An upper bound (realizer) χ(n,m, r) on ‘∃k ∈ N‘ is called a
modulus for uniform quasi-Fejér monotonicity.
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Uniform quasi-Fejér monotonicity

Lemma
Assume DomS ⊆ DomT. Let M ≥ ‖T ◦x∗‖ for any x∗ ∈ Γ0.
Further, let A ≥

∑∞
n=0

µn
λn

and assume that limn→∞ λn = 0. Then
(xn) is uniformly quasi-Fejér monotone w.r.t. Γk with modulus χ,
that is for all r , n,m ∈ N:

∀x∗ ∈ Γk∀l ≤ m

(
‖xn+l − x∗‖ < eA ‖xn − x∗‖

+ 2MeA
n+l−1∑
i=n

µi +
1

r + 1

)
where

k = χ(r , n,m) = max{n + m−· 1, d(r + 1) ·m · eAe}.



A rate of metastability

Theorem
Let T ,S be maximally monotone on a finite dimensional Hilbert
space X with DomS ⊆ DomT. Let M ≥ ‖T ◦x∗‖ for any x∗ ∈ Γ0

be non-zero. Further, let A ≥
∑∞

n=0
µn
λn

and assume that
limn→∞ λn = 0. Let C ≥ 1 be an upper bound on both diam(µn)
and (µn). Further, let φ be monotone s.t.

∀k , n∃N ∈ [n;φ(k, n)]

(
‖xN − xN+1‖ /µN <

1

k + 1

)
and such that it is monotone w.r.t. k and n.
Let L ≥ diam(xn) and let ξ be a Cauchy rate for

∑
n µn <∞.

Then (xn) is Cauchy with a rate of metastability

Ψ(k , g) = Ψ0(P, k , g ,Φ, χ, ξ̃).



A rate of metastability

Theorem (continued)

Here: Ψ0 defined by recursion via
Ψ0(0, k , g ,Φ, χ, ξ̃) = 0

Ψ0(n + 1, k , g ,Φ, χ, ξ̃) =

Φ(χM
g (Ψ0(n, k , g ,Φ, χ, ξ̃), 8k + 7, ξ̃(8k + 7))

with P = d2d8eA(k + 1)e
√
dLed + 1 where d = dimX,

ξ̃(n) = ξ(d2MeA(n + 1)e − 1) and

Φ(k , n) = φ (d2C (k + 1)e − 1,max{n, k})

as well as

χ(r , n,m) = max{n + m−· 1, d(r + 1) ·m · eAe},
χg (n, k) = χ(n, g(n), k), χM

g (n, k) = max{χg (i , k) | i ≤ n}.



Generalizations



Error terms
We can generalize Moudafi’s result: the finitary analysis suggest
that it is possible to incorporate error terms into the sequence.

We consider

xn+1 := JSβn(xn + αnzn + βnTµnxn).

with the additional condition∑
n

αn ‖zn‖ <∞.

Not artificial: there are generalizations like this in the literature,
e.g.

xn+1 := JSβn(xn + αn(xn − xn−1) + βnTµnxn)

which adds an inertia term emanated from the evolution equation
of a heavy ball with friction system.

 one can provide a similar analysis and obtain a corresponding
rate of metastability.



Moduli of regularity

Due to results from recursion theory, we can not hope (in general)
for rates of convergence.

However, adding certain assumptions allows for the construction of
these. This has been explored under the name of moduli of
regularity in a work by Kohlenbach/López-Acedo/Nicolae (IJM
2019).

Here:

Definition
φ is a modulus of regularity for T − S if for all ε > 0 and all x :

|dist(0, (T − S)(x))| < φ(ε) implies dist(x , zer(T − S)) < ε.
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these. This has been explored under the name of moduli of
regularity in a work by Kohlenbach/López-Acedo/Nicolae (IJM
2019).

Here:

Definition
φ is a modulus of regularity for T − S at z if for all ε > 0 and all
x ∈ Br (z):

|dist(0, (T − S)(x))| < φ(ε) implies dist(x , zer(T − S)) < ε.



Moduli of regularity

Theorem
Let T ,S be maximally monotone on a finite dimensional Hilbert
space X with DomS ⊆ DomT and zer(T − S) 6= ∅. Let
M ≥ ‖T ◦x∗‖ for any x∗ ∈ Γ0. Further, let A ≥

∑∞
n=0

µn
λn

and
assume that limn→∞ λn = 0. Let C ≥ 1 be an upper bound on
both diam(µn) and (µn). Further, let Φ be s.t.

∀ε, n∃N ∈ [n; Φ(ε, n)] (‖xN − xN+1‖ /µN < ε)

and such that it is monotone w.r.t. ε and n. Let ξ be a Cauchy
rate for

∑
n µn ≤ d <∞.



Moduli of regularity

Theorem (continued)

Let b ≥ ‖x0 − z‖ for some z ∈ zer(T − S) and suppose φ is a
modulus of regularity for T − S at BeAb+d(z).

Then (xn) is Cauchy with Cauchy rate

∀ε > 0∀n,m ≥ θ(ε) := Φ

(
φ
(
ε

4eA

)
2C

, ξ̃
(ε

4

))
(d(xn, xm) < ε)

where ξ̃(n) = ξ(d2MeA(n + 1)e − 1).

 Can be generalized to the error terms.



At last ...

Thank You!
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